Document Type

Article

Publication Date

7-26-2022

Abstract

We study the phase transitions at finite temperature and density of the magnetic dual chiral density wave (MDCDW) phase. This spatially inhomogeneous phase emerges in cold, dense QCD in the presence of a strong magnetic field. Starting from the generalized Ginzburg-Landau (GL) expansion of the free energy, we derive several analytical formulas that enable fast numerical computation of the expansion coefficients to arbitrary order, allowing high levels of precision in the determination of the physical dynamical parameters, as well as in the transition curves in the temperature vs chemical potential plane at different magnetic fields. At magnetic fields and temperatures compatible with neutron star (NS) conditions, the MDCDW remains favored over the symmetric ground state at all densities. The phase’s “resilience” manifests in (1) a region of small but nonzero remnant mass and significant modulation at intermediate densities, originating in part from the nontrivial topology of the lowest Landau level, and (2) a region of increasing condensate parameters at high densities. Our analysis suggests the MDCDW condensate remains energetically favored at densities and temperatures much higher than previously considered, opening the possibility for this phase to be a viable candidate for the matter structure of even young neutron stars produced by binary neutron star (BNS) mergers.

Comments

© 2022 American Physical Society. Original published version available at https://doi.org/10.1103/PhysRevD.106.016011

Publication Title

Physical Review D

DOI

10.1103/PhysRevD.106.016011

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.