Document Type

Article

Publication Date

6-2023

Abstract

The correct description of strongly interacting matter at low temperatures and moderately high densities—in particular the conditions realized inside neutron stars—is still unknown. We review some recent results on the magnetic dual chiral density wave (MDCDW) phase, a candidate phase of quark matter for this region of the QCD phase diagram. We highlight the effects of magnetic fields and temperature on the condensate, which can be explored using a high-order Ginzburg-Landau (GL) expansion. We also explain how the condensate's nontrivial topology, which arises due to the asymmetry in the lowest Landau level modes, affects its physical properties. Finally, we comment on the possible relevance of these results to neutron star applications. Over a wide range of densities and magnetic field strengths, MDCDW is preferred over the chirally symmetric ground state at temperatures consistent with typical cold neutron stars, and in some cases, even hot ones.

Comments

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Publication Title

Journal of Physics: Conference Series

DOI

10.1088/1742-6596/2536/1/012004

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.