Talks

Presenting Author

Renu Wadhwa

Presentation Type

Oral Presentation

Discipline Track

Biomedical Science

Abstract Type

Program Abstract

Abstract

Background: The COVID-19 pandemic emerged in December 2019 by a novel strain of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has led to new endeavours in repurposing of existing drugs, anti-COVID-19 vaccine and drug development. Natural products, due to their general safety and wider availability, have attracted research and public attention. In this study, we report anti-COVID potential of compounds from honeybee propolis and Ayurvedic herb, Ashwagandha. Effect of active ingredients was studied on human cell surface receptors (ACE-2:Angiotensin Converting Enzyme-2/Spike protein and TMPRSS2:Transmembrane Protease Serine 2), critical for virus infection and virus main protease (Mpro, essential for virus replication), through molecular simulations and in vitro experiments.

Methods: Structure-based computational analyses were performed to predict the effect of honeybee propolis (CAPE: Caffeic Acid Phenethyl Ester and ARC: Artepillin C), and Ashwagandha (Withanolides) ingredients on virus-host cell surface receptors. Cell-based assays were used to investigate the effect of these compounds on the expression level of the target proteins and virus replication.

Results: Ashwagandha-derived nine withanolides were tested in silico for their potential to target and inhibit (i) ACE-2 and TMPRSS2 receptors (ii) viral main protease Mpro. We found that most withanolides possess capacity to bind to ACE-2, TMPRSS2 and Mpro . On the other hand, CAPE and ARC showed stable interactions at the active site of ACE2 and Mpro . ARC, but not CAPE, showed stable interaction with TMPRSS2. Human cells treated with withanolides, CAPE or ARC showed downregulation of both the receptors. Furthermore, celland PCR-based SARS-CoV-2 replication assays endorsed their antiviral activity.

Conclusion: The findings suggest that the Ashwagandha-withanolides and honeybee propolis-derived compounds, CAPE, and ARC, could be helpful in the reduction of viral replication/infection, and hence warrant further experimental and clinical attention.

Academic/Professional Position

Faculty

Share

COinS
 

Cell-based experimental evidence to the anti-COVID-19 potential of Ashwagandha and honeybee propolis ingredients

Background: The COVID-19 pandemic emerged in December 2019 by a novel strain of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) has led to new endeavours in repurposing of existing drugs, anti-COVID-19 vaccine and drug development. Natural products, due to their general safety and wider availability, have attracted research and public attention. In this study, we report anti-COVID potential of compounds from honeybee propolis and Ayurvedic herb, Ashwagandha. Effect of active ingredients was studied on human cell surface receptors (ACE-2:Angiotensin Converting Enzyme-2/Spike protein and TMPRSS2:Transmembrane Protease Serine 2), critical for virus infection and virus main protease (Mpro, essential for virus replication), through molecular simulations and in vitro experiments.

Methods: Structure-based computational analyses were performed to predict the effect of honeybee propolis (CAPE: Caffeic Acid Phenethyl Ester and ARC: Artepillin C), and Ashwagandha (Withanolides) ingredients on virus-host cell surface receptors. Cell-based assays were used to investigate the effect of these compounds on the expression level of the target proteins and virus replication.

Results: Ashwagandha-derived nine withanolides were tested in silico for their potential to target and inhibit (i) ACE-2 and TMPRSS2 receptors (ii) viral main protease Mpro. We found that most withanolides possess capacity to bind to ACE-2, TMPRSS2 and Mpro . On the other hand, CAPE and ARC showed stable interactions at the active site of ACE2 and Mpro . ARC, but not CAPE, showed stable interaction with TMPRSS2. Human cells treated with withanolides, CAPE or ARC showed downregulation of both the receptors. Furthermore, celland PCR-based SARS-CoV-2 replication assays endorsed their antiviral activity.

Conclusion: The findings suggest that the Ashwagandha-withanolides and honeybee propolis-derived compounds, CAPE, and ARC, could be helpful in the reduction of viral replication/infection, and hence warrant further experimental and clinical attention.

blog comments powered by Disqus
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.