Document Type

Article

Publication Date

2018

Abstract

In this work, a two-dimensional finite element model for the grain boundary flow rule is developed based on the thermo-mechanical gradient-enhanced plasticity theory. The proposed model is temperature-dependent. A special attention is given to physical and micromechanical nature of dislocation interactions in combination with thermal activation on stored and dissipated energy. Thermodynamic conjugate microforces are decomposed into energetic and dissipative components. Correspondingly, two different grain boundary material length scales are present in the proposed model. Finally, numerical examples are solved in order to explore characteristics of the proposed grain boundary flow rule.

Comments

Original published version available at https://doi.org/10.15632/jtam-pl.56.2.377

First Page

377

Last Page

391

Publication Title

Journal of Theoretical and Applied Mechanics

DOI

10.15632/jtam-pl.56.2.377

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.