Document Type

Article

Publication Date

4-10-2020

Abstract

A new constitutive model for Q235B structural steel is proposed, incorporating the effect of dynamic strain aging. Dynamic strain aging hugely affects the microstructural behavior of metallic compounds, in turn leading to significant alterations in their macroscopic mechanical response. Therefore, a constitutive model must incorporate the effect of dynamic strain aging to accurately predict thermo-mechanical deformation processes. The proposed model assumes the overall response of the material as a combination of three contributions: athermal, thermally activated, and dynamic strain aging stress components. The dynamic strain aging is approached by two alternative mathematical expressions: (i) model I: rate-independent model; (ii) model II: rate-dependent model. The proposed model is finally used to study the mechanical response of Q235B steel for a wide range of loading conditions, from quasi-static loading ( ε˙=0.001 s−1 and ε˙=0.02 s−1 ) to dynamic loading ( ε˙=800 s−1 and ε˙=7000 s−1 ), and across a broad range of temperatures ( 93 K−1173 K ). The results from this work highlight the importance of considering strain-rate dependences (model II) to provide reliable predictions under dynamic loading scenarios. In this regard, rate-independent approaches (model I) are rather limited to quasi-static loading.

Comments

Original published version available at https://doi.org/10.3390/ma13071794

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Title

Materials

DOI

10.3390/ma13071794

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.