Document Type


Publication Date



Construction Engineering and Management (CEM) is a broad domain with publications covering interrelated subdisciplines and considered a key source of knowledge sharing. Previous studies used scientometric methods to assess the current impact of CEM publications; however, there is a need to predict future citations of CEM publications to identify the expected high-impact trends in the future and guide new research efforts. To tackle this gap in the literature, the authors conducted a study using Machine Learning (ML) algorithms and Social Network Analysis (SNA) to predict CEM-related citation metrics. Using a dataset of 93,868 publications, the authors trained and tested two machine learning classification algorithms: Random Forest and XGBoost. Validation of the RF and XGBoost resulted in a balanced accuracy of 79.1% and 79.5%, respectively. Accordingly, XGBoost was selected. Testing of the XGBoost model revealed a balanced accuracy of 80.71%. Using SNA, it was found that while the top CEM subdisciplines in terms of the number of predicted impactful papers are “Project planning and design”, “Organizational issues”, and “Information technologies, robotics, and automation”; the lowest was “Legal and contractual issues”. This paper contributes to the body of knowledge by studying the citation level, strength, and interconnectivity between CEM subdisciplines as well as identifying areas more likely to result in highly cited publications.


© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title






To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.