
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Electrical and Computer Engineering Faculty
Publications and Presentations College of Engineering and Computer Science

6-2006

A Simple Project Paradigm for Teaching Computer Architecture A Simple Project Paradigm for Teaching Computer Architecture

Yul Chu
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Chu, Yul. 2005. “A Simple Project Paradigm for Teaching Computer Architecture.” Computers in Education
Journal 16 (2). https://www.asee.org/papers-and-publications/publications/division-publications/
computers-in-education-journal/papers/16060_1.pdf.

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
ScholarWorks @ UTRGV. It has been accepted for inclusion in Electrical and Computer Engineering Faculty
Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information,
please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/ece_fac?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

A Simple Project Paradigm for Teaching Computer Architecture

Yul Chu
Electrical and Computer Engineering Department

Mississippi State University
chu@ece.msstate.edu

Abstract

This paper presents a teaching method for a possible
computer architect by using a simple DCT project for an
undergraduate-level computer architecture course. The
goal of the project is to let students (two or three students
per team) understand the concept of computer hardware
and how to design a simple RISC-type 32-bit Instruction
Set Architecture (ISA). The project consists of three
different tasks: 1) D (Design) - Designing a processor at
the abstract level; 2) C (Code) - Writing a simulation
program for the ISA; and 3) T (Test) - Running a test
program to verify each function of computer hardware. For
the first task, students are required to design their own
instruction sets, datapath, and control unit. For the second
task, they write a simulation program by using a high-level
language such as C/C++ or VHDL/Verilog based on the
directions provided, and then they run a test program with
the simulator to produce the results.

The project has worked well for students since they
responded favorably to the project and indicated that they
learned the concepts of computer hardware and how to
design computer architecture as a professional engineer.

1. Introduction

The main job of a computer architect includes the

logical design of computer hardware based on current
technology and applications [1]. The logical design, in
general, deals with designing the datapath, control unit,
memory, and input/output at the abstract level instead of
the circuit level [2][3]. Therefore, it is necessary to
simulate the design with test programs (or benchmark
programs) before chip fabrication to verify whether or not
the designed architecture works properly. This design
procedure is called DCT (Design, Code, and Test) in this
paper. In addition, a computer architect should consider the
performance and cost as major factors in determining the
specifications for computer hardware [1-3].

Traditionally, simulation tools have been used for
computer engineering courses such as computer
architecture to let students understand basic operations
easily [4][5]. However, some detailed simulators used to
discourage students with many options for selection and
lengthy lines of code [6]. For a computer architecture class,

even if you have a simple simulator for easy understanding,
you can just implement the fixed/limited operations
repetitively without any trials to design new function logic.
Thus, students might be discouraged from designing
computer hardware because of this limitation in traditional
simulators.

To implement a special function for any purpose, you
need to define an instruction, design the datapath & control
unit, write a simulation code for the instructions, and test it
to check whether or not it works properly. We believe this
works well for students to understand more easily and
interactively. So don’t just try to use a simulator, but try to
write a simple simulator for your clear understanding!

This paper presents the DCT procedures (as in handling
a short-term project instead of laboratory exercises [7]) in
detail, as a computer architect would use in designing
computer hardware such as a processor. This paper is set
out as follows: Section 2 introduces the DCT procedures of
a simple project for an undergraduate-level computer
architecture class; section 3 discusses how to grade the
project and provide for students’ evaluation; and section 4
gives the conclusions.

2. DCT Procedures

v0 = 0;
v1 = 0;
v2 = 0;
a1 = 10;
While (a1 > 0) do

{
a1 = a1 –1;
t0 = Mem[a0]
a0 = a0 + 2
if (t0 > 0) then {

v0 = v0 * t0;
Mem[a0-2] = v0; }

Else {
v1 = v1 + t0;
v2 = v1 || t0; }

}
Return

Mem[a0] 1
Mem[a0 + 2] -1
Mem[a0 + 4] 2
Mem[a0 + 6] -2
Mem[a0 + 8] 3
Mem[a0 + 10] -3
Mem[a0 + 12] 4
Mem[a0 + 14] -4
Mem[a0 + 16] 5
Mem[a0 + 18] -5

b) Initial Memory data (a0)a) Pseudo code (test)

 Figure 1. Sample pseudo code for the test program and
initial memory data

As we discussed in section 1, DCT stands for Design,

Code, and Test. This section shows each DCT procedure in
detail by using a simple computer architecture project as an

example. The project is to design a 32-bit RISC Instruction
Set Architecture (ISA) through MultiCycle Implementation
(MCI). MCI means that it takes multi cycles, which are
different from instruction to instruction, to execute an
instruction [1]. Figure 1 shows a sample pseudo code for
the test program, which has Arithmetic and Logic, Data
Transfer, and Control functions.

To run the test program, students should complete D
(Design) and C (Code) procedures and convert the test
program to their own instructions for T (Test) procedure.

2.1 D (Design) Procedure

There are three steps to design an ISA, which is an
interface between high-level (system software such as
operating system or compiler) and low-level (gate or
circuit-level). Those are: 1) Design instruction sets; 2)
Design datapath components with clock methodology and
datapath; and 3) Design control signals and control unit.
Since there are many factors to determine in designing ISA,
it would be recommended for students as a team (2 to 3
students per team) to discuss the three steps in detail.
Through the discussion, we expect students could build
strong and clear concepts for ISA operations.

2.1.1 Design instruction sets. For the first step, each team
needs to design instructions to execute a program in an
efficient way. For example, MIPS architecture (32-bit) has
3 different types of instruction formats: 1) R (Register)
Format for most arithmetic and logical operations; and 2) I
(Immediate) Format for immediate addressing modes and
memory access operations (data transfer such as load and
store); and 3) J (Jump) Format for jump instruction. Figure
2 shows the three instruction formats for MIPS architecture
[1].

Opcode
(6)

Rs
(5)

Rt
(5)

Shamt
(5)

Rd
(5)

Funct
(6)

R (Register) Format:

Most arithmetic and logic instructions (except ‘immediate’)

Opcode
(6)

Rs
(5)

Rt
(5)

16-bit Immediate value
(16)

I (Immediate) Format:

Data Transfer, Immediate, and Cond. Branch instructions

Opcode
(6)

26-bit word address
(26)

J (Jump) Format:

Unconditional Jump instructions

Figure 2. Instruction formats for MIPS architecture [1]

In Figure 2, for the 32-bit instruction format, the high-
order 6 bits are used for defining operations, which is
called ‘opcode’. The opcode will be transferred to the
control unit after fetching an instruction from memory.

Three types of register are defined in Figure 2 such as ‘Rs,
Rt, and Rd’. For R-Format, Rs and Rt are used for source
registers to compute and Rd is for destination register to
store in the Register File (one for datapath component,
refer to section 2.2.2). For I-Format, Rs and Immediate
field (low-order 16 bits) are used for two inputs of ALU
(Arithmetic Logic Unit, refer to section 2.2.2) and Rt
would be used for the destination register to save the output
(data) from ALU or memory unit. For J-Format, a 26-bit
word address is used to compute an unconditional target
address for jump instruction. After reviewing the MIPS
architecture, each team could design any kind of
instructions to execute the test program for its own
purpose.

2.1.2 Design Datapath. After designing instructions,
students need to design the datapath component to
implement its instructions.

Figure 3. Assemble the datapath [1].

For example, an ‘add’ instruction (R Format in Figure 2)
of MIPS architecture is required to have several datapath
components to execute: 1) PC (Program Counter) to access
Memory to fetch an instruction; and 2) Memory to fetch an
‘add’ instruction; 3) Register File to read data from source
registers according to the fetched instruction and to store
the data into the destination register; and 4) ALU
(Arithmetic and Logic Unit) to add two register contents
(Rs and Rt in Figure 2). In addition, datapath components
could include MUX (multiplexer), Adder (kind of ALU),
and Sign-Extension Unit for immediate value, etc. to
implement instructions for any purpose. In this way,
students could design all the datapath components for
various instructions such as data transfer (load and store)
instructions, control (branch) instructions, etc.

The next step is to assemble the datapath components
for various instructions. Figure 3 shows an example of how
to assemble the datapath for 32-bit MIPS architecture [1].
In MIPS, there are a maximum of 5 stages to execute an
instruction: Fetch, Decode, Execute, Memory Access, and
Write Back. The datapath can be assembled according to

those stages and instruction types. There are 4 types of
datapath: 1) Instruction Fetch – common for all
instructions; 2) Arithmetic and Logical Computation – add,
subtract, etc.; 3) Memory Reference – load and store; 4)
Control – branch and jump.

The execution procedures are: 1) Fetch instruction from
Memory (datapath components: PC, Memory, Adder, and
Mux); 2) Decode instructions and read operands (Register
File, Sign-extension unit, and Mux); 3) Execute arithmetic
and logical computation for output data, condition check,
or memory address (ALU, Adder, and Mux); 4) Memory
access to read/store data from/into memory (Memory and
Mux); and 5) Write back data into Register File to update
(Register File, Mux). In this way, students could assemble
the datapath for their instructions to work properly.

2.1.3 Design Control Unit. After completing the datapath
for all instructions, it is necessary to define control signals
to execute each instruction independently since most
datapath components are shared for all instructions. In
Figure 3, for load instructions, the ALU can compute the
memory address with two inputs according to the ALUOp
control signal, which defines the ‘add’ operation. After
computing the memory address, the data in Memory is read
according to the MemRead control signal to fetch data from
the memory. The fetched data from Memory should be
written to Register File according to the RegWrite control
signal. Therefore, there should be at least three control
signals to implement load instructions. In this way, students
could define control signals for each instruction.

Control
Unit

OPCode (6 bits): Intruction [31-26]
(From Instruction Register to Control Unit)

To PC (Program
Counter)

To Memory
To ALU

To Register FileTo Instruction
Register

To Mux

Figure 4. A sample MCI Control Unit

Control signals are issued from the Control Unit during
the ‘Decode stage’ according to the opcode transferred
from a fetched instruction. After defining control signals
for all instructions, students need to assemble control
signals by designing a Control Unit with input (opcode)
and outputs (control signals). Figure 4 shows the MIPS
MCI Control Unit, which has 13 control signals as an
example in [1]. Once this is done by building the data path
with control signals, the next step is to build the Finite

State Machine (FSM) to implement instructions through
MultiCycle Implementation. The sample FSM is shown in
Figure 5.

Fetch
MemRead
ALUSrc = 0
IorD = 0
IRWrite
ALUSrcB = 01
PCWrite
PCSource = 00

Start

Decode

ALUSrcA = 0
ALUSrcB=11
ALUOp = 00

Op = Jump

Execute

Op = load & sto
re

Execute
Memory Access
Write Back

O
p

=
R-

Fo
rm

at

Execute
Memory Access
Write Back

O
p = Branch

Execute
Control signals for

Figure 5. A sample FSM for MCI Implementation

2.2 C (Code) Procedure

entity cpu_datapath is
port(clk,reset,zflag,stop : in std_logic;

drdata,daluout: in std_logic_vector(15 downto 0);
dr1addr,dr2addr,dwaddr: out std_logic_vector(2 downto 0);
dmem_address : out std_logic_vector(7 downto 0);
dwdata,alua,alub,pc_in: out std_logic_vector(15 downto 0);
dr1data,dr2data,pc_out: in std_logic_vector(15 downto 0);
fun : out std_logic_vector(2 downto 0);

pcwritecond,pcwrite,iord : in std_logic;
memtoreg: in std_logic;
irwrite,alusrca,regdst : in std_logic;
pcsource,alusrcb : in std_logic_vector(1 downto 0);
addr : in std_logic_vector(7 downto 0);
tdata : in std_logic_vector(15 downto 0);
dtdata : out std_logic_vector(15 downto 0);
pc_load : out std_logic);

end cpu_datapath;
architecture ab of cpu_datapath is
-- pc
signal PCLoad : std_logic;
signal pcout : std_logic_vector (15 downto 0);
signal pcin : std_logic_vector (15 downto 0);
-- imem
signal mem_address: std_logic_vector(7 downto 0);
signal instruction_reg: std_logic_vector(15 downto 0);
signal addr1: std_logic_vector(7 downto 0);
.

PC

Instruction
Memory

Figure 6. A sample VHDL coding for datapath, control unit.

Since the computer architecture class is an intermediate

undergraduate course in most computer engineering
schools, programming languages such as C/C++ or
VHDL/Verilog would be prerequisites for computer
architecture in general [4].

In section 2.1, students could design instructions,
datapath, and the control unit for their own purposes. The
next step is to write the code for the datapath components
and control unit. For example, students would write a code
for Register File (consisting of 32 registers) and control
signals to update it. Figure 6 shows a sample VHDL
datapath coding for cpu_datapath, PC, and instruction
memory (imem).

After coding the datapath and control unit, students
could write a code to implement each instruction as a Finite

State Machine (FSM). Figure 7 shows a code for control
signals, Instruction Fetch (IF) stage, and Instruction
Decode (ID) stage for the FSM in Figure 5.

main: process (pstate'transaction,inst,clk_count)

variable ll : line;
variable ic : integer := 0;
variable cpi : real := 0.0;
begin
pcwritecond <= '0'; pcwrite <= '0'; iord <= '0';com <= 'Z';
memread <= '0'; memwrite <= '0'; memtoreg <= '0';
irwrite <= '0'; alusrca <= '0'; regdst <= '0'; …….

case pstate is
when zero =>
if(reset = '0') then nstate <= one;
else memwrite <= '0'; nstate <= zero;
end if;
when one =>
if(pstate'active) then

iord <= '0'; memread <= '1'; irwrite <= '0';
alusrca <= '0'; alusrcb <= "01"; aluop <= "0000";
pcsource <= "00"; pcwrite <= '1'; ic := ic+1
nstate <= two;

end if;
when two =>
alusrca <= '0'; alusrcb <= "11"; irwrite <= '1';
aluop <= "0000"; nstate <= three;
.

Initialize all
control signals

IF Stage

ID Stage

Figure 7. A sample VHDL coding for FSM in Figure 5.

2.3 T (Test) Procedure

After students complete the Design and Code procedure,
they need to test their architecture with the test program.
The input for the simulator would be a sequence of
designed instructions converted from the test program.
After the instructions (machine code) are placed into
Memory, all instructions would be fetched from Memory
according to PC and be executed in the simulator. The
output of the simulator would be placed in the Register file
or Memory for the test program. So, students need to print
the contents of the Register file and Memory to verify
whether the simulator works properly or not. The steps for
T procedure are: 1) Input operations − Clear contents of
Memory and Register File, and place the instructions
(machine code) into Memory and initialize PC; 2)
Execution of instructions − Print initial contents of
Memory and Register File, and Execute the instruction by
feeding it into the FSM; and 3) Output operation − Print
final contents of Memory & Register File after executing
the instructions.

After completing the DST procedures, students are
required to prepare and submit a final project report. The
final report would include the following:

- An explanation of the architecture (datapath and
control unit);

- A discussion of how to test the architecture;
- A discussion of errors in the architecture;
- A discussion of how to optimize the errors;
- Simulation results.

3. Grading Projects and students’ Evaluation

The grading for the DCT project is mainly based on the
work for the three procedures (DCT). For D (Design)
procedure, we need to check the efficiency of the designed
ISA and the usage of clocking methodology (rising edge
trigger or falling edge trigger). For C (Code) procedure, the
major point is to check whether each instruction works
properly or not. For T (Test) procedure, the whole test
procedure would be checked with the results. In addition to
the DCT grading, we need to check the discussion among
team members since the goal of the project is to share ideas
and get a clear concept through discussion.

0
2
4
6
8

10
12
14
16
18
20

bad good very good execellent

N
um

be
r

of
 st

ud
en

ts

bad: less than 80%; good: 80% to 90%;
very good: 90% to 95%; excellent: 95% to 100%

Figure 8. Grading for DCT project (Fall semester, 2004)

 As a case study, Figure 8 shows the project grading for a
DCT project (Fall semester, 2004 at Mississippi State
University). There were 14 teams (2 to 3 students per
team). Their final reports for the DCT project were graded
based on efficiency (20%), clocking methodology (10%),
correctness (30%), testing (15%), results (15%), and
discussion (10%).

Figure 8 shows that most students (71.0%) got grade A
(more than 90%) and other students (26.3%) had grade B
(between 80% and 90%) except 1 student (2.6%).
Therefore, we could say the DCT project was successful to
let students understand the concepts and design process for
the 32-bit ISA as a computer architect.

Figure 9 shows the evaluation from computer
architecture (ECE4713) students in Fall 2004 at Mississippi
State University. In Figure 9, most of the students (84.2%)
responded that they learned a great deal about fundamental-
level datapath design and concepts since the DCT project is
easy to follow and a good experience for getting a grasp on
a professional career. Especially, they mentioned that the
project was closely related to the class work. However,
there were 5 students (13.1%) who did not agree like the
project since they wanted more detailed guidelines
regarding how to write a simulator, and some students
wanted to use a FPGA hardware design instead of a
software simulation program. Therefore, we believe that it
is feasible to expand the DCT project from hardware to a

software simulator if students take the FPGA class as a
prerequisite for the computer architecture class.

Good Project to learn: Do you agree the team project is a good
way to learn about MCI implementation and concept?

Good team member work: Do you agree the team project is a
good method to work with other team members?

0

5

10

15

20

25

1 2 3 4 5

Good project to learn

Good team member work

1: strongly disagree; 3: Neither agree nor disagree; 5: strongly agree

 Figure 9. Student Evaluation for the project (38 students
and Fall semester, 2004).

Figure 9 also shows that 30 students (78.9%) responded

that the team project (2 to 3 students per team) would be a
good method to work with other members since they could
share ideas and re-establish the concept clearly by
discussing the DCT procedures step by step. However, 6
students (15.7%) responded that they did not agree since
some team members did not attend team meetings at all
during the project, and there was some difficulty in finding
good team members in a short period of time. Therefore, it
would be necessary for an instructor to help students who
cannot find a team by using communication tools such as
class email or bulletin board. In addition, it is required to
let students write a contribution report for their work to
differentiate some students who do not attend the project
actively.

The project term in Figure 9 was from Nov. 11, 2004 to
Dec. 3, 2004 and there was a Thanksgiving break (from
Nov. 23 to Nov. 28, 2004) for one week. Because of the
break, most students were short of time to finish the project
on time. Therefore, it would be better to start the project
one week earlier than Nov. 11, 2004. Another valuable
comment from students was that they wanted to have
feedback regarding their project results. So it would be a
good idea to open their project grading with comments
before the final exam as well.

4. Conclusion

There have been so many software tools developed to

teach computer engineering courses such as computer
architecture. Traditionally, those tools have many options
to choose from for proper operations and consist of a
lengthy line of code to figure out. Therefore, it is possible
for students to figure out the options first and then to learn

the operations through the tools. In addition, since the tools
used to have limited functions to operate, it is difficult to
design a different type of instruction with the tools.
Therefore, those tools can be used to let students
understand the limited operations instead of creative design
since they lack experience of the designing process.

This paper introduces DCT procedures to accommodate
students to design an ISA with their own ideas by: 1)
Designing instructions, datapath, and control unit; 2)
Coding the simulator for the architecture from step 1); and
3) Testing the architecture through the simulator with a test
program.

According to the grading project and student evaluation
from Mississippi State University, we found that the DCT
procedures worked successfully for the undergraduate level
computer architecture class since most students (97.3%)
who participated in the DCT project had As and Bs for
their grades and 78.9% of the students evaluated the project
as favorable (agree and strongly agree) since they could
learn fundamental concepts and the design process clearly
and gain confidence in the area of computer architecture.

5. References

[1] David A. Patterson & John L. Hennessy, Computer
organization and design: the hardware/software interface, second
edition, Morgan-Kaufmann, San Francisco, California, 1998.

[2] Vincent P. Heuring and Harry F. Jordan, Computer Systems
Design and Architecture, second edition, Prentice Hall, Upper
saddle river, New Jersey, 2004.

[3] John L. Hennessy & David A. Patterson, Computer
Architecture: A Quantitative Approach, third edition, Morgan-
Kaufmann, San Francisco, California, 2003.

[4] Lillian Cassel et al, Distributed Expertise for Teaching
Computer Organization & Architecture, Working Group Reports
in the 5th Annual Conference on Innovation and Technology in
Computer Science Education, Helsinki, Finland, July 2000.

[5] D. Ellard, D. Holland, N. Murphy, and M. Seltzer, On the
Design of a New CPU Architecture for Pedagogical Purposes, in
Proc. WCAE 02 – workshop on Computer Architecture
Education, on 29th International Symposium on Computer
Architecture, Anchorage, AK (USA), 2002, pp.28-34.

[6] Christopher T. Weaver, Eric Larson, and Todd Austin,
Effective Support of Simulation in Computer Architecture
Instruction, Workshop on Computer Architecture Education
(WCAE02) held in conjunction with the 29th International
Symposium on Computer Architecture, Anchorage, AK, May
2002.

[7] Daniel C. Hyde, Teaching Design In a Computer Architecture
Course, IEEE Micro, Volume 20, Number 3, May/June 2000,
pp23-28.

	A Simple Project Paradigm for Teaching Computer Architecture
	Recommended Citation

	Microsoft Word - CoED_Chu.doc

