
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Electrical and Computer Engineering Faculty
Publications and Presentations College of Engineering and Computer Science

2005

A Study for Branch Predictors to Alleviate the Aliasing Problem A Study for Branch Predictors to Alleviate the Aliasing Problem

Tieling Xie

Robert Evans

Yul Chu
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Tieling Xie, R. Evans and Y. Chu, "A study for branch predictors to alleviate the aliasing problem
[pipelining]," Proceedings. IEEE SoutheastCon, 2005., Ft. Lauderdale, FL, USA, 2005, pp. 603-608, doi:
10.1109/SECON.2005.1423313.

This Conference Proceeding is brought to you for free and open access by the College of Engineering and
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Electrical and Computer
Engineering Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/ece_fac?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

A Study for Branch Predictors to Alleviate the Aliasing Problem

 Tieling Xie, Robert Evans, and Yul Chu
Electrical and Computer Engineering Department

Mississippi State University
chu@ece.msstate.edu

Abstract

Modern processors usually have a deep pipeline,
superscalar architecture to obtain higher performance. As
pipelines are getting deeper, accurate branch prediction is
critical to achieve high performance since fetched
instructions after a branch have to be flushed inside
pipeline when prediction is wrong. This paper studies the
performance of several types of branch predictors starting
from local branch predictor and global branch predictor.
Simulation results show that global history predictor
outperforms local history predictor due to the
characteristic that branches tend to be correlated.
However, global history predictor still suffers aliasing
problem that degrades performance. Four techniques are
proposed to alleviate aliasing problem. The performance is
evaluated by using Simplescalar with SPEC CINT95
benchmark programs. The proposed predictors display
better performance over the conventional predictors after
careful configuration for each.

1. Introduction

Pipelining is common to modern microprocessor

architectures. It essentially overlaps the execution of
instructions to improve performance, which is ILP
(Instruction-Level Parallelism). The performance gained is
largely affected by dependencies of instructions. Control
dependency is one of them. In general, there is
approximately one branch instruction out of five or six
instructions in most of programs [1]. Hence, accurate
branch prediction is significant to improve performance. It
is even more critical for the deep pipeline processors since
more instructions have to be flushed as the wrong
instructions have been fetched.

Studies have shown that branch behavior is not random.
They are either biased for taken or not taken, or correlate
with each other [2]. “For” loop is an example of biased
taken branch except for the beginning and ending of the
loop. A sequence of ifs (ex: if -if -else) instructions can be
the examples of highly correlated branches [1].

Several branch prediction schemes have been proposed
[2, 3, 4, 5]. The primitive ones are static in which they
predict always taken or not taken. Obviously static schemes
will not satisfy the strict requirement of prediction accuracy

for high performance superscalar processors. Another
trivial way is to just use branch-target buffer (BTB) by
recording taken branches in a buffer. The lower order bits
of the instruction are used to index the buffer. If there is a
hit, it predicts taken. Otherwise, it predicts not taken [2].
BTB usually gives about 80% accuracy whereas more
accuracy (>95%) is required in modern superscalar
processor design [6]. Hence, a more advanced design of
branch predictor has to be defined.

This paper is explained as follows: Section 2 discusses
the branch classification; section 3 introduces the proposed
techniques to alleviate aliasing; section 4 discusses the
simulation methodologies and results; section 5 gives the
conclusions.

2. Branch Classification

Many researchers have studied branch prediction

strategies extensively. To summarize, branch predictors fall
into two categories. One is using a local history, in which
the prediction is made solely based on the history of that
branch itself. The other is using a global history, in which
the history of the last few branches determines the direction
of the current branch. However, the last few branches may
not necessarily be the same as the current branch. Each
class is suitable for certain types of branch. For example,
simple branch such as for-loop can be better predicted by
local history whereas high correlated branch such as if-else
will get better results from global history based predictor.
In general, most research indicate that global history
predictors tend to give better results than local history since
correlated branches seem to occur more than simple loop
branches in the modern programs and benchmark programs
[4, 7].

A conventional branch predictor in a global history
might be the one proposed by Yeh and Patt [7], in which
the global pattern history of last m branches is used to
index the predictor table. This scheme is illustrated and
compared to local history buffer in Figure 1. The global
shift register used to index predictor table is m-bit wide,
which records the branch behavior of the last m branches
occurred. Once the current branch is resolved, its behavior
will shift into global register. Both local and global
predictors use 2-bit wide table entry, which is essentially an
up-down saturating counter.

Figure 1. (a) Local history predictor vs. (b)
global history predictor

Figure 2. Aliasing problem for both schemes

 Figure 3. Split global history prediction

However, the way to index the table entry is different.
After the branch is resolved, the corresponding entry will be
updated. A serious problem in both schemes is that different
branches could map to the same entry, which is called
aliasing [9]. Aliasing is shown in Figure 2. If the two aliasing
branches happen to bias to the same direction, they will not
interfere with each other when updating the predictor table.
This is called neutral aliasing [9], which does not cause a
misprediction. However, if these two branches have different
biasing branch direction, one updating the table entry will
hurt the prediction for the other. This is destructive aliasing
[9]. Solving the destructive aliasing problem is the key to
improving predictor performance.

The simplest way is to increase the number of entries in
the table so that fewer branches will map to the same entry,
but this directly increases the cost of resources, and it is
obviously not possible to use unlimited lines of the table. In
this paper, we proposed and compared four techniques to
alleviate the aliasing problem by using global and/or local
histories.

3. Proposed Techniques to alleviate aliasing

The first technique to lower aliasing is called

‘Correlating’, in which the history table was split into m
tables. Each table has the same number of entries, n.
Instead of solely using local branch address or global
history to index the history table, both global history (upper
parts of index) and local address (lower parts of index) will
be used. By using both, different branches will index to
other entries even if they have the same global history
pattern. This can eliminate most of the aliasing problem.
The disadvantage is the number of global history bits has to
be decreased and used to include local branch address to
index the table. Since it is known that global history is
superior to local history in predicting, reducing the bits of
global history might affect the performance.

Split global history, ‘Split’, is another method to lessen
the aliasing problem. As we discussed in Figure 2, there are
two cases when two different branches have the same
global history, neutral aliasing and destructive aliasing [9].
The purpose of Split is to separate destructive aliasing since
aliasing does not impose negative effect. In this strategy,
only global history is used to predict branch direction, but
the whole global history pattern table is split into two tables
of the same size. The two-predictor tables labeled P1 and
P2 are shown in Figure 3. The global history shift register
indexes both P1 and P2. The third table called choice table
determines the final result. The choice table is indexed by
the branch address. The entries in the choice table are also
two bits wide up-down saturating counter. In the method of
split history, the choice table will be updated according to
the resolved branch direction.

Figure 4. Combined branch predictor

Since destructive aliasing branches will bias in different

directions, their corresponding entry in the choice table will
choose different predictor, P1 or P2. These aliasing
branches are ultimately separated to use different
predictors. Additionally, only the selected table is updated
as to not effect the other predictor. Hence, destructive
aliasing branches are separated and should not interfere
with each other.

The third way is called ‘Combine’ which is based on the
dynamic prediction [4] in selecting the direction of a branch
by using 2-bit counters (not taken: 00 and 01, taken: 10
and 11). In this scheme, two different predictors are
established, P1 and P2. Unlike the split global history, P1
and P2 are different predictors that could be any
combination of effective predictors. This paper takes P1 as
a local history predictor and takes P2 as a global history
predictor. The two predictors are used in tandem to predict
the branch direction. The underlying principle is that
different types of predictors usually fit a certain types of
branches whereas it is not suitable for every type of
branches. By combining two types of predictors and
making a decision based on which one is better suited to the
certain types of branch, the prediction accuracy could be
greatly improved. The key is how to select the more
suitable predictor whenever a branch instruction occurs. As
illustrated in Figure 4, an additional table containing 2-bit
up-down saturating counters is used to select the best
predictor. The branch address is used to index the selection
table. The easiest way to make the selection is to just use
the sign bit of the counter. If it is ‘1’, P2 is selected, if it is
‘0’, P1 is selected. The resolved behavior will update the
counter. If P1 predicts right while P2 is wrong, then the
counter is decremented. If P2 gets the right prediction while
P1 is wrong, then the counter is incremented. If both P1 and
P2 predict the same result whatever it is right or wrong,
nothing is updated to the counter. We found that a

particular branch would bias to the predictor that fits its
behavior.

The fourth way is called ‘Xor’ which can improve the
performance of global history predictor from Yeh and Patt
[7,8]. The idea is to take the local branch address and XOR
it with global history pattern register to utilize the table by
dispersing the addresses. This is a cost effective way to
reduce the aliasing problem. Although the destructive
aliasing branch instructions have the same global history
pattern, they now are mapped to different entries in a global
history pattern table. This could alleviate the aliasing issue
to some extent, but this method’s most important attribute
is its cost for hardware implementation.

4. Simulation results

We implemented six types of predictors in this paper: 2

conventional branch predictors (Bimodal and Global) and 4
proposed predictors (Correlating, Split, Combine, and Xor).
We modified Simplescalar to implement all the predictors
and used SPEC CINT95 benchmark programs. Predictor
table size is in the unit of bits. Figure 5 shows the results of
both the local history prediction and global history
prediction. Local history prediction, also called Bimodal, is
saturated on the prediction rate after the table size is above
2K bits. Obviously, the global history prediction (called
Global) outperforms local history prediction. This is
because most of branch instructions tend to be correlated.
The previous branches usually determine the direction of
the following branches.

Although global history results in better prediction
accuracy than local history, it still suffers the aliasing
problem. The other four predictors presented in this paper
use different techniques to try to eliminate aliasing. No
matter what technique is adopted the ultimate purpose is to
have aliasing branches map to different predictor table
entries so they do not interfere with each other. Figure 6
gives the results of these four predictors versus a common
global history predictor (Global).

It is observed that the combined predictor (Combine) has
the best prediction accuracy when the predictor size is
smaller than 8K. After that, Xor shows almost the same
performance as the combined predictor. As the size keeps
increasing, the performance of Correlating predictor and
Global history predictor catch up after 16K. It is also clear
that only the Xor and Combine predictors perform better
than the Global predictor whereas Correlating and Split
predictors do not. As described previously, Correlating
predictor takes bits from both local address and global
history pattern to index predictor table. Although this
would be beneficial to the aliasing issue, it reduces the
number of bits taken from the global history pattern as well
when the same size of predictor table is used. Hence, it
ultimately degrades the performance of the predictor.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0.25K 0.5K 1K 2K 4K 8K 16K 32K 64K 128K 256K

Predictor Size (bits)

P
re

di
ct

io
n

A
cc

ur
ac

y

Bimodal
Global

Figure 5. Performance of Bimodal predictor and Global history predictor

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.25K 0.5K 1K 2K 4K 8K 16K 32K 64K 128K 256K

Predictor Size (bits)

P
re

di
ct

io
n

A
cc

ur
ac

y

global
Correlating
Split
Combine
Xor

Figure 6. Performance of Global history predictor vs. other variations of predictor

0.93

0.94

0.95

0.96

0.97

0.98

0 1 2 3 4 5 6 7 8 9
Predictor Size, Log2(KBits)

P
re

di
ct

io
n

A
cc

ur
ac

y

Global
Split

 Figure 7. Performance of modified split predictor vs. global history predictor

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

go gcc compress li ijeg perl vortex

P
re

di
ct

io
n

R
at

e

Bimodal
Global
Xor
Correlate
Combine
Split

Figure 8. Performance of six predictors with size of 256K bits (except for Split having 258K bits)

Since we want to obtain a fair comparison between
various predictors versus global history predictor, each
predictor is forced to have the same number of bits used.

In terms of Split predictor, there are three tables in use.
One is the choice table; the other two are prediction tables
that are exactly the same. In order to have the same bits
used in the tables, the choice table is twice size of
prediction table so the total sum of bits used are a power of
2. Doing this is both beneficial and detrimental; the bigger
choice table is helpful to relieve aliasing problem, but it
also wastes bits that could be used for prediction. This
problem is magnified because the Global predictor is in two

pieces in order to separate destructive aliasing branches
thus reducing capacity in half. Simulation results illustrate
that taking a half of bit resources to resolve aliasing
apparently exaggerates the problem. Based on this the
configuration of Split predictor needs to be modified. The
choice table contains small enough number of entries
compared to the prediction table. Figure 7 shows the results
of the new configuration for the Split predictor together
with Global history predictor. The number of lines in the
choice table is 256 when the total size of table is less than
5K bits. For the total table size equal to or above 5K, the
number of entries used in choice table is 1024. It is clear

that the performance of Split predictor starts to exceed
Global history predictor after the total size of predictor is
above 8K. Figure 8 gives the results of performance of all
the six predictors with size of 256K bits except for Split
history predictor that has 258K bits. Obviously, predictors
based on the global history perform better than local history
predictor. Among the variations based on global history,
Combined predictor seems to give the best accuracy.

5. Conclusions

This paper investigates several types of branch

predictors. It started with local history predictor and global
history predictor. Local history is more suitable for the
branches that are just simple loops - the behavior of loop
branches depends on its own history. Global history
predictor exploits another characteristic of branches; they
are highly correlated. The history of past branches usually
determines the direction of next branch. Simulation results
show that global history predictor gives better performance
than local history, which shows that branches tend to be
correlated.

Although global history predictor is good at predicting
the correlated behavior of branches, it still suffers the
destructive aliasing problem because it does not use the
branch address. As stated before, aliasing is when different
branches have the same global history pattern are mapped
to the same predictor entry. If they display different branch
bias directions, then they will interfere with each other due
to the alternate update of the same entry. Separating the
aliasing branches is a key to improve the performance of
global history predictors. Four techniques were presented:
Correlating, Split, Combine, and Xor. Although each
technique is different in implementation, the common idea
is to integrate the local branch address into the global
history shift register so that both local history and global
history can affect the prediction. Global history is better in
predicting whereas local branch address is effective in
separating aliasing branches

Our experimental results show that Combine has the
best prediction accuracy when the prediction table is less
than 8K bits. If the size is more than 8K bits, Xor works
slightly better than (or almost similar to) Combine.
Basically, Combine and Xor can improve branch prediction
accuracy more than conventional branch predictors that use
global and/or local history branch addresses.

One aspect needs to be pointed out is that some
techniques implement integration by adding bits from the
local address to the global history register. For a fixed size
table, adding bits from branch address means reducing the
same number of bits from the global history register. That
is why Split does not work well for the smaller size (less
than 8K bits) compared to the predictor that use global
history.

6. References

[1] J.L. Hennessy and D.A. Patterson, Computer Architecture, A
Quantitative Approach”, Morgan Kaufmann Publish, New York,
N.Y., 1993

[2] J.E. Smith, “A Study of Branch Prediction Strategies”,
Proceedings of the 8th International Symposium on Computer
Architecture, May 1981, pp. 135-148.

[3] W.W. Hwn, T.M. Conte, and P.P. Chang, “Comparing
Software and Hardware Schemes for Reducing the Cost of
Branches”, Proceedings of the 16th International Symposium on
Computer Architecture, May 1989

[4] S. McFarling and J. Hennessy, “Reducing the Cost of
Branches”, Proceedings of the 13th International Symposium on
Computer Architecture, 1986, pp. 396-403

[5] J. Lee and A.J. Smith, “Branch Prediction Strategies and
Branch Target Buffer Design”, IEEE Computer, Jan. 1984, pp. 6-
22

[6] P.Y. Chang, E. Hao, T.Y. Yeh and Y. Patt, “Branch
Classification: a New Mechanism for Improving Branch Predictor
Performance”, Proceedings of the 27th Annual International
Symposium on Microarchitecture, 30 Nov.-2 Dec. 1994, pp. 22-31

[7] T.Y. Yeh and Y.N. Patt, “Alternative Implementations of
Two-Level Adaptive Branch Prediction”, Proceeding of the 19th
Annual International Symposium on Computer Architecture, May
1992, pp. 124-134

[8] T.Y. Yeh and Y.N. Patt, “A Comparison of Dynamic Branch
Predictors that Use Two-Levels of Branch History”, Proceeding
of the 20th International Symposium on Computer Architecture,
May 1993, pp. 257-266

[9] A.N. Eden and T. Mudge, “the YAGS Branch Prediction
Scheme”, Proceeding of the 31st Annual ACM/IEEE International
Symposium on Microarchitecture, Nov 1998, pp. 69-77

	A Study for Branch Predictors to Alleviate the Aliasing Problem
	Recommended Citation

	tmp.1593187026.pdf.SR3Cw

