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Abstract 
 

Modern processors usually have a deep pipeline, 
superscalar architecture to obtain higher performance. As 
pipelines are getting deeper, accurate branch prediction is 
critical to achieve high performance since fetched 
instructions after a branch have to be flushed inside 
pipeline when prediction is wrong. This paper studies the 
performance of several types of branch predictors starting 
from local branch predictor and global branch predictor. 
Simulation results show that global history predictor 
outperforms local history predictor due to the 
characteristic that branches tend to be correlated. 
However, global history predictor still suffers aliasing 
problem that degrades performance. Four techniques are 
proposed to alleviate aliasing problem. The performance is 
evaluated by using Simplescalar with SPEC CINT95 
benchmark programs. The proposed predictors display 
better performance over the conventional predictors after 
careful configuration for each. 

 
1. Introduction 

 
Pipelining is common to modern microprocessor 

architectures. It essentially overlaps the execution of 
instructions to improve performance, which is ILP 
(Instruction-Level Parallelism). The performance gained is 
largely affected by dependencies of instructions. Control 
dependency is one of them. In general, there is 
approximately one branch instruction out of five or six 
instructions in most of programs [1]. Hence, accurate 
branch prediction is significant to improve performance. It 
is even more critical for the deep pipeline processors since 
more instructions have to be flushed as the wrong 
instructions have been fetched.  

Studies have shown that branch behavior is not random. 
They are either biased for taken or not taken, or correlate 
with each other [2]. “For” loop is an example of biased 
taken branch except for the beginning and ending of the 
loop. A sequence of ifs (ex: if -if -else) instructions can be 
the examples of highly correlated branches [1].  

Several branch prediction schemes have been proposed 
[2, 3, 4, 5]. The primitive ones are static in which they 
predict always taken or not taken. Obviously static schemes 
will not satisfy the strict requirement of prediction accuracy 

for high performance superscalar processors. Another 
trivial way is to just use branch-target buffer (BTB) by 
recording taken branches in a buffer. The lower order bits 
of the instruction are used to index the buffer. If there is a 
hit, it predicts taken. Otherwise, it predicts not taken [2]. 
BTB usually gives about 80% accuracy whereas more 
accuracy (>95%) is required in modern superscalar 
processor design [6]. Hence, a more advanced design of 
branch predictor has to be defined.  

This paper is explained as follows: Section 2 discusses 
the branch classification; section 3 introduces the proposed 
techniques to alleviate aliasing; section 4 discusses the 
simulation methodologies and results; section 5 gives the 
conclusions. 

 
2. Branch Classification 

 
Many researchers have studied branch prediction 

strategies extensively. To summarize, branch predictors fall 
into two categories. One is using a local history, in which 
the prediction is made solely based on the history of that 
branch itself. The other is using a global history, in which 
the history of the last few branches determines the direction 
of the current branch. However, the last few branches may 
not necessarily be the same as the current branch. Each 
class is suitable for certain types of branch. For example, 
simple branch such as for-loop can be better predicted by 
local history whereas high correlated branch such as if-else 
will get better results from global history based predictor. 
In general, most research indicate that global history 
predictors tend to give better results than local history since 
correlated branches seem to occur more than simple loop 
branches in the modern programs and benchmark programs 
[4, 7].  

A conventional branch predictor in a global history 
might be the one proposed by Yeh and Patt [7], in which 
the global pattern history of last m branches is used to 
index the predictor table. This scheme is illustrated and 
compared to local history buffer in Figure 1. The global 
shift register used to index predictor table is m-bit wide, 
which records the branch behavior of the last m branches 
occurred. Once the current branch is resolved, its behavior 
will shift into global register. Both local and global 
predictors use 2-bit wide table entry, which is essentially an 
up-down saturating counter.  



 
 

Figure 1. (a) Local history predictor vs. (b) 
global history predictor  

 

 
Figure 2. Aliasing problem for both schemes 

 
 

 
 
   Figure 3. Split global history prediction 

However, the way to index the table entry is different. 
After the branch is resolved, the corresponding entry will be 
updated. A serious problem in both schemes is that different 
branches could map to the same entry, which is called 
aliasing [9]. Aliasing is shown in Figure 2. If the two aliasing 
branches happen to bias to the same direction, they will not 
interfere with each other when updating the predictor table. 
This is called neutral aliasing [9], which does not cause a 
misprediction. However, if these two branches have different 
biasing branch direction, one updating the table entry will 
hurt the prediction for the other. This is destructive aliasing 
[9]. Solving the destructive aliasing problem is the key to 
improving predictor performance.  

The simplest way is to increase the number of entries in 
the table so that fewer branches will map to the same entry, 
but this directly increases the cost of resources, and it is 
obviously not possible to use unlimited lines of the table. In 
this paper, we proposed and compared four techniques to 
alleviate the aliasing problem by using global and/or local 
histories.  

 
3. Proposed Techniques to alleviate aliasing 

 
The first technique to lower aliasing is called 

‘Correlating’, in which the history table was split into m 
tables. Each table has the same number of entries, n. 
Instead of solely using local branch address or global 
history to index the history table, both global history (upper 
parts of index) and local address (lower parts of index) will 
be used. By using both, different branches will index to 
other entries even if they have the same global history 
pattern. This can eliminate most of the aliasing problem. 
The disadvantage is the number of global history bits has to 
be decreased and used to include local branch address to 
index the table. Since it is known that global history is 
superior to local history in predicting, reducing the bits of 
global history might affect the performance.  

Split global history, ‘Split’, is another method to lessen 
the aliasing problem. As we discussed in Figure 2, there are 
two cases when two different branches have the same 
global history, neutral aliasing and destructive aliasing [9]. 
The purpose of Split is to separate destructive aliasing since 
aliasing does not impose negative effect. In this strategy, 
only global history is used to predict branch direction, but 
the whole global history pattern table is split into two tables 
of the same size. The two-predictor tables labeled P1 and 
P2 are shown in Figure 3. The global history shift register 
indexes both P1 and P2. The third table called choice table 
determines the final result. The choice table is indexed by 
the branch address. The entries in the choice table are also 
two bits wide up-down saturating counter. In the method of 
split history, the choice table will be updated according to 
the resolved branch direction. 



 
 

 
 
Figure 4. Combined branch predictor 
 
Since destructive aliasing branches will bias in different 

directions, their corresponding entry in the choice table will 
choose different predictor, P1 or P2. These aliasing 
branches are ultimately separated to use different 
predictors. Additionally, only the selected table is updated 
as to not effect the other predictor. Hence, destructive 
aliasing branches are separated and should not interfere 
with each other. 

The third way is called ‘Combine’ which is based on the 
dynamic prediction [4] in selecting the direction of a branch 
by using 2-bit counters (not taken: 00 and 01, taken: 10 
and 11). In this scheme, two different predictors are 
established, P1 and P2. Unlike the split global history, P1 
and P2 are different predictors that could be any 
combination of effective predictors. This paper takes P1 as 
a local history predictor and takes P2 as a global history 
predictor. The two predictors are used in tandem to predict 
the branch direction. The underlying principle is that 
different types of predictors usually fit a certain types of 
branches whereas it is not suitable for every type of 
branches. By combining two types of predictors and 
making a decision based on which one is better suited to the 
certain types of branch, the prediction accuracy could be 
greatly improved. The key is how to select the more 
suitable predictor whenever a branch instruction occurs. As 
illustrated in Figure 4, an additional table containing 2-bit 
up-down saturating counters is used to select the best 
predictor. The branch address is used to index the selection 
table. The easiest way to make the selection is to just use 
the sign bit of the counter. If it is ‘1’, P2 is selected, if it is 
‘0’, P1 is selected. The resolved behavior will update the 
counter. If P1 predicts right while P2 is wrong, then the 
counter is decremented. If P2 gets the right prediction while 
P1 is wrong, then the counter is incremented. If both P1 and 
P2 predict the same result whatever it is right or wrong, 
nothing is updated to the counter. We found that a 

particular branch would bias to the predictor that fits its 
behavior. 

The fourth way is called ‘Xor’ which can improve the 
performance of global history predictor from Yeh and Patt 
[7,8]. The idea is to take the local branch address and XOR 
it with global history pattern register to utilize the table by 
dispersing the addresses. This is a cost effective way to 
reduce the aliasing problem. Although the destructive 
aliasing branch instructions have the same global history 
pattern, they now are mapped to different entries in a global 
history pattern table. This could alleviate the aliasing issue 
to some extent, but this method’s most important attribute 
is its cost for hardware implementation.  

 
4. Simulation results 

 
We implemented six types of predictors in this paper: 2 

conventional branch predictors (Bimodal and Global) and 4 
proposed predictors (Correlating, Split, Combine, and Xor). 
We modified Simplescalar to implement all the predictors 
and used SPEC CINT95 benchmark programs. Predictor 
table size is in the unit of bits. Figure 5 shows the results of 
both the local history prediction and global history 
prediction. Local history prediction, also called Bimodal, is 
saturated on the prediction rate after the table size is above 
2K bits. Obviously, the global history prediction (called 
Global) outperforms local history prediction. This is 
because most of branch instructions tend to be correlated. 
The previous branches usually determine the direction of 
the following branches.  

Although global history results in better prediction 
accuracy than local history, it still suffers the aliasing 
problem. The other four predictors presented in this paper 
use different techniques to try to eliminate aliasing. No 
matter what technique is adopted the ultimate purpose is to 
have aliasing branches map to different predictor table 
entries so they do not interfere with each other. Figure 6 
gives the results of these four predictors versus a common 
global history predictor (Global). 

It is observed that the combined predictor (Combine) has 
the best prediction accuracy when the predictor size is 
smaller than 8K. After that, Xor shows almost the same 
performance as the combined predictor. As the size keeps 
increasing, the performance of Correlating predictor and 
Global history predictor catch up after 16K. It is also clear 
that only the Xor and Combine predictors perform better 
than the Global predictor whereas Correlating and Split 
predictors do not. As described previously, Correlating 
predictor takes bits from both local address and global 
history pattern to index predictor table. Although this 
would be beneficial to the aliasing issue, it reduces the 
number of bits taken from the global history pattern as well 
when the same size of predictor table is used. Hence, it 
ultimately degrades the performance of the predictor.  
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Figure 5. Performance of Bimodal predictor and Global history predictor 
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Figure 6. Performance of Global history predictor vs. other variations of predictor 
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 Figure 7. Performance of modified split predictor vs. global history predictor 
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Figure 8. Performance of six predictors with size of 256K bits (except for Split having 258K bits) 

 
 

Since we want to obtain a fair comparison between 
various predictors versus global history predictor, each 
predictor is forced to have the same number of bits used.  

In terms of Split predictor, there are three tables in use. 
One is the choice table; the other two are prediction tables 
that are exactly the same. In order to have the same bits 
used in the tables, the choice table is twice size of 
prediction table so the total sum of bits used are a power of 
2. Doing this is both beneficial and detrimental; the bigger 
choice table is helpful to relieve aliasing problem, but it 
also wastes bits that could be used for prediction. This 
problem is magnified because the Global predictor is in two 

pieces in order to separate destructive aliasing branches 
thus reducing capacity in half. Simulation results illustrate 
that taking a half of bit resources to resolve aliasing 
apparently exaggerates the problem. Based on this the 
configuration of Split predictor needs to be modified. The 
choice table contains small enough number of entries 
compared to the prediction table. Figure 7 shows the results 
of the new configuration for the Split predictor together 
with Global history predictor. The number of lines in the 
choice table is 256 when the total size of table is less than 
5K bits. For the total table size equal to or above 5K, the 
number of entries used in choice table is 1024. It is clear 



that the performance of Split predictor starts to exceed 
Global history predictor after the total size of predictor is 
above 8K. Figure 8 gives the results of performance of all 
the six predictors with size of 256K bits except for Split 
history predictor that has 258K bits. Obviously, predictors 
based on the global history perform better than local history 
predictor. Among the variations based on global history, 
Combined predictor seems to give the best accuracy. 

 
5. Conclusions 

 
This paper investigates several types of branch 

predictors. It started with local history predictor and global 
history predictor. Local history is more suitable for the 
branches that are just simple loops - the behavior of loop 
branches depends on its own history. Global history 
predictor exploits another characteristic of branches; they 
are highly correlated. The history of past branches usually 
determines the direction of next branch. Simulation results 
show that global history predictor gives better performance 
than local history, which shows that branches tend to be 
correlated.  

Although global history predictor is good at predicting 
the correlated behavior of branches, it still suffers the 
destructive aliasing problem because it does not use the 
branch address. As stated before, aliasing is when different 
branches have the same global history pattern are mapped 
to the same predictor entry. If they display different branch 
bias directions, then they will interfere with each other due 
to the alternate update of the same entry. Separating the 
aliasing branches is a key to improve the performance of 
global history predictors. Four techniques were presented: 
Correlating, Split, Combine, and Xor. Although each 
technique is different in implementation, the common idea 
is to integrate the local branch address into the global 
history shift register so that both local history and global 
history can affect the prediction. Global history is better in 
predicting whereas local branch address is effective in 
separating aliasing branches 

Our experimental results show that Combine has the 
best prediction accuracy when the prediction table is less 
than 8K bits. If the size is more than 8K bits, Xor works 
slightly better than (or almost similar to) Combine. 
Basically, Combine and Xor can improve branch prediction 
accuracy more than conventional branch predictors that use 
global and/or local history branch addresses.  

One aspect needs to be pointed out is that some 
techniques implement integration by adding bits from the 
local address to the global history register. For a fixed size 
table, adding bits from branch address means reducing the 
same number of bits from the global history register. That 
is why Split does not work well for the smaller size (less 
than 8K bits) compared to the predictor that use global 
history.  
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