
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Electrical and Computer Engineering Faculty
Publications and Presentations College of Engineering and Computer Science

2005

An Enhanced Dynamic Packet Buffer Management An Enhanced Dynamic Packet Buffer Management

Vinod Rajan

Yul Chu
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Rajan, Vinod, and Yul Chu. 2005. “An Enhanced Dynamic Packet Buffer Management.” Proceedings of the
10th IEEE Symposium on Computers and Communications, ISCC ’05, , 869–874. https://doi.org/10.1109/
ISCC.2005.27.

This Conference Proceeding is brought to you for free and open access by the College of Engineering and
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Electrical and Computer
Engineering Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/ece_fac?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

An Enhanced Dynamic Packet Buffer Management

 Vinod Rajan Yul Chu

Cypress Southeast Design Center Dept. of Electrical and Computer Engineering
 Cypress Semiconductor Cooperation Mississippi State University
 vur@cypress.com chu@ece.msstate.edu

Abstract

A packet buffer for a protocol processor is a large
shared memory space that holds incoming data
packets in a computer network. This paper investigates
four packet buffer management algorithms for a
protocol processor including Dynamic Algorithm with
Different Thresholds (DADT), which is proposed to
reduce the packet loss ratio efficiently. The proposed
algorithm takes the advantage of different packet sizes
for each application by allocating buffer space for
each queue proportionally. According to our
simulation results, the DADT algorithm works well in
reducing packet loss ratio compared to other three
algorithms.

1. Introduction

Data is transmitted over the computer network as
the form of data packets [1]. Each packet consists of
necessary data for an application associated with
headers (control information). Packets coming into the
computer network terminal are processed and
classified based on its destination application by the
protocol processor [2]. The processed application
(payload) data is stored in a packet buffer until the host
application retrieves it [3].

The packet buffer is a large dual ported memory
shared by all output queues. Packets for each
application are multiplexed into a single stream and
fed into the packet buffer for storage. In a packet
buffer, the packets are organized into logical FIFO
queues (output queues), one for each application
[2][4].

Each application has a logical FIFO queue inside
the packet buffer associated with it [3]. Packets coming
in for different applications at different data rates can
fill up the large FIFO-based packet buffer. Once the
packet buffer is full, further incoming packets will be
dropped. This packet dropping (or loss) happens
whenever the buffer is full. Therefore, it is important

to reduce packet loss ratio to support any end-to-end
application over the computer network [5][6]. Packet
loss ratio can be improved by using buffer
management algorithms. Buffer management
algorithms determine how the total buffer space is
distributed among the various output queues.
Therefore, the design of a buffer management
algorithm needs to consider the following two factors
[2]: 1) Packet loss ratio: It is defined as the ratio of
number of packets dropped to the total number of
packets received [8]; and 2) Hardware complexity: The
amount of hardware that is required to implement a
given buffer management algorithm.

There have been many proposed buffer
management algorithms since a packet buffer without
an algorithm could not perform well under overload
conditions [9 -16]. In this paper, we introduced three
popular buffer algorithms; Completely Partitioned
algorithm, Completely Shared algorithm, and Dynamic
algorithm [11][14].

The purpose of these algorithms is to provide an
even packet loss ratio for all output queues in a buffer.
However, when these algorithms are applied to a
packet buffer, they have an uneven packet loss ratio
for the various output queues. This is due to the
different packet sizes for each output queue (refer to
section 3). In addition, queues with large packet sizes
tend to fill up the buffer space at a much faster rate,
resulting in excessive packet losses for other output
queues. Therefore, we propose an efficient buffer
management algorithm called DADT to develop: 1) a
dynamic buffer management algorithm intended for
protocol processors, which reduces the packet loss
ratio by using different threshold values for the
queues; and 2) a simulation model of the packet buffer
intended for a protocol processor.

This paper is set out as follows: Section 2 discusses
the background information for a protocol processor
and related works regarding buffer management
algorithms; section 3 introduces the proposed DADT
algorithm; section 4 discusses our simulation model to
measure the performance metrics for buffer

management algorithms; section 5 provides and
analyzes the simulation results; and section 6 gives the
conclusions.

2. Background and Related Works

To reduce the bottleneck, Henrikkson et. al
[2][4][7] proposed off-loading the host processor for
handling the protocol tasks. The idea is to move a
processor (protocol processor for handling layers 3-4)
to Network Interface Card (NIC). They showed
significant reduction processing time spent by the host
processor in 3-4 layers.

The memory organization using a protocol
processor is shown in Figure 1. The protocol processor
consists of three major components: 1) General
Purpose Micro-controller (µC) to control the slow path
operations; 2) Programmable Protocol Processor (PPP)
to process the data at a wire speed; and 3) Packet
Buffer Memory (PBMEM) to hold incoming packets
[5].

As shown in Figure 1, incoming packets will stream
through the protocol processor and the payload
(application) data will be stored in the packet buffer
until the host application retrieves it [5]. Packets are
classified based on the application (per-flow). Once the
packet is classified, it is stored in an output queue in
the buffer [5].

In c o m in g
P a c k e ts

P ro g ra m m a b le
P ro to c o l

P ro c e sso r
(F a s t P a th)

G e n e ra l P u rp o se
M ic ro -C o n tro lle r

(S lo w P a th)

P a c k e t B u ffe r
M e m o ry

H o s t
M e m o r y

P ro to c o l P ro c e sso r

Figure 1. Major components of a protocol processor

Different applications have different sizes of packet

associated with it [5]. The packets for different
applications at different data rates can fill up the large
FIFO-based packet buffer. To reduce the packet losses,
a sophisticated algorithm is required to manage the
buffer efficiently.

There are various buffer management algorithms
that exist for managing a packet buffer [8-10][12-13].
Some of the popular algorithms are: 1) Completely
Partitioned: The entire buffer is completely partitioned
with a constant buffer size for each queue; 2)
Completely Shared: the entire buffer is shared among
the various queues; and 3) Dynamic: This algorithm

varies the size of each queue dynamically based on the
remaining space in the buffer.

Kamoun and Kleinrock [11] proposed Completely
Partitioned algorithm; the total buffer space ‘M’ is
divided equally among the queues. Since the number
of output queues are known, the buffer space allocated
to each and every queue can be pre-determined. Since
the buffer space for every queue is decided statically,
this is known as static threshold scheme. Packet loss
for a queue occurs when the buffer space allocated to
the particular queue becomes full. If it cannot
accommodate any more packets, the incoming packet
is dropped. If ki, i= 1…n, represents the size of queues
i=1…n, and M is the total buffer space, then:

(1)

(2)

The advantage of this algorithm is that it works well
when all the output queues are competing for the
buffer space [6]. It can be implemented easily in
hardware [6]. The drawback is that it sometimes rejects
incoming packets (or cells) even though there is a
space left in the buffer [6].

Completely Shared algorithm allows the output
queues to completely share all the available space in
the buffer. If there is a memory space available in the
buffer, the corresponding incoming packet will be
accommodated in the buffer [11]. In other words,
individual buffer allocations may run up to the total
buffer memory.

Packet loss occurs only when the entire buffer is
full. Unlike the Completely Partitioned case, the
individual queues do not have any static thresholds
placed on them. If ki, i= 1…n, represents the size of
queues i=1…n, and M is the total buffer space, then:

 ki = M, i =1,2,.…,N
The advantage of this algorithm is that it is well

suited for balanced traffic since it allows complete
sharing of the buffer space [6]. It is easy to implement
in hardware [6]. The drawback is that a single output
queue can monopolize most of the buffer space if load
on its corresponding input port is very high.

For the Dynamic algorithm, the amount of buffer
space each queue is decided by a threshold placed on
each queue [14]. This threshold is called as the control
threshold. The main idea is that the control threshold
of each queue is proportional to the remaining space in
the buffer.

 (3)

Mkkk n =+++ ...21

∑
=

=
N

i
i Mk

1

−=−= ∑

i

i tQBftQBftT)())(()(

Where T(t) is the control threshold, B is the total

buffer space, Q(t) is the sum of all the output queue
lengths and f is a proportionality constant. When an
incoming packet to the output queue ‘i’ finds that the
current queue length (Qi(t)) is greater than the current
threshold value (T(t)), then the incoming packet is
dropped. Since then, no further packets are accepted
into the queue unless the existing packets in queue i
are drained out or else T(t) increases beyond Qi(t) [14].
The simplest scheme based on the above theory is the
Dynamic algorithm [14]. Dynamic algorithm chooses
the control threshold to be a multiple ‘α (alpha)’ of the
remaining buffer space.

 (4)

3. Proposed Dynamic Algorithm

The DADT algorithm is similar to the dynamic

algorithm except that it has multiple threshold values
as opposed to a single control threshold value in the
Dynamic algorithm.
 ())()(tQBitiT −⋅=α (5)

where αi is the proportionality constant and varies
for each and every queue.

The Dynamic and DADT algorithms have two
major advantages over the static threshold schemes: 1)
It is adaptive to change according to traffic conditions
[14]. Once an output queue becomes active, it starts
receiving packets and its queue length increases. This
increases the total buffer occupancy, and the control
threshold decreases correspondingly. If the current
queue length is greater than the control threshold
value, the incoming packets will be dropped until the
output queues naturally drain out [14]; and 2) It is easy
to implement in hardware. The only requirements are
queue length counters and comparators with a shift
register [6][14].

DADT algorithm has similar properties like the
Dynamic algorithm (i.e. the control threshold value of
the queues is directly proportional to the remaining
space in the buffer) except different thresholds for
each queue. The DADT algorithm is specially
developed for the packet buffer, while the Dynamic
algorithm was initially developed for an ATM switch
[6]. The ATM switch has a fixed size of incoming
ATM packets [6]. That is why the behavior of all the
output queues is similar when experiencing uniform
traffic. Hence, one queue cannot monopolize the buffer
space when experiencing uniform traffic. However, for
the case of the packet buffer on a NIC, there are
various incoming packet sizes for output queues [5].

With different packet sizes for each queue, having a
single threshold value for all the queues may let one
queue monopolize the entire buffer space. Queues with
large incoming packet sizes tend to fill the buffer space
at a much faster rate. Having a single threshold value
for all the queues results in excessive packet loss for
other output queues. According to our simulation
results, by controlling the threshold values of each
queue separately, the proposed DADT algorithm can
decrease the packet loss at other queues efficiently.

4. Simulation Model

We developed the simulation model for a packet

buffer by using VHDL as shown in Figure 2. Most of
the blocks in Figure 2 resemble the blocks in a shared
memory switch model [6]. In Figure 2, the Traffic
Generator block produces output (packets) according
to two inputs (Traffic Model and Load on each port)
[6].

Generated
Packets

Traffic
Generator

Controller

Packet Buffer

FIFO (Queue 0)

FIFO (Queue 1)

FIFO (Queue 2)

FIFO (Queue 3)

FIFO (Queue 4)

FIFO (Queue 5)

Output link

Headers
RA/WA

Traffic
Model

Load on
each port

Two Inputs

Figure 2. Simulation model for the packet buffer

For the first input, there are three kinds of Traffic

Model that are available for selection. Those are
[6][16]:
• Bursty Uniform Traffic Model: Burst of packets in

busy-idle periods with destinations uniformly
distributed packet-by-packet or burst-by-burst
over all the output ports. The number of packets in
the busy and idle periods can be specified; and

• Bursty Non-Uniform Traffic Model: Burst of
packets in busy-idle periods with destinations non-
uniformly distributed packet-by-packet or burst-
by-burst over all the output ports; and

• Bernoulli Uniform Traffic Model: Bernoulli
arrivals, destinations uniformly distributed over all
the output ports.

 The second input, Load on each port (ρ), is
determined by the ratio of the number of packets in the
busy-idle periods [14] and is given by the equation:

())()(tQBtT −⋅=α

(6)

where Lb = mean burst length and Lidle= mean idle
length.
For example: For a given load of ρ= 0.7 and a mean
burst length of 20 packets, the mean idle length is 10

packets such as

 =

+
7.0

1020
20 .

Based on the two inputs, Traffic Generator
produces packets (trace file) in a serial fashion with a
randomly distributed output destination request. The
packets are produced with a mean inter-arrival time
and mean burst length [6]. The ‘SIM’ simulator in [15]
is used for producing the trace of packets.

In Figure 2, once the packet is generated and arrives
at the packet buffer, the headers from the Traffic
Generator activate the Controller. The Controller then
decides to accept or drop the packet based on the
buffer management algorithm used. If the packet is
accepted into the buffer, the Controller specifies the
write address (WA) based on the output queue to
which the packet is destined. Irrespective of whether
the packet is accepted or dropped, the Controller
updates its state variables (number of packets received,
dropped, etc.).

The Packet Buffer (shared memory) in Figure 2 is
arranged in terms of First In-First Out (FIFO) queues
[6]. Depending on the memory (buffer) size and the
number of output queues, the memory can be
partitioned among the different output queues.

The primary task of the Output Link in Figure 2 is
to remove the packets from the memory after a certain
dequeue time [6]. Dequeue time, for the simulations
shown in [6], is one unit of time, which matches the
inter-packet time [6]. For simulations of the packet
buffer memories on the NIC (where the packets stay
for a specified amount of time), we model dequeue
time as a Poisson random variable with a fixed mean
[5].

5. Simulation Results and Analysis

We implemented a traffic mix with average network

traffic loads according to [5]. With this traffic mix, we
determined the optimum value of α (alpha) and then
compared the performance between the DADT and
Dynamic algorithm.

Figure 3 explains the properties of six output
queues of our simulation model, which are based on
the average network traffic load flow in [5].

Figure 3 shows that Queue 5 has the largest buffer
size (512 bytes), and Queues 0, 2, and 5 can manage
more incoming packets than other Queues.

 Q0 Q1 Q2 Q3 Q4 Q5
Size in bytes 256 64 256 32 128 512
packet unit #
(32 bytes/unit)

8 2 8 1 4 16

 ** Queue i = Queue i (e.g., Queue 1 = Q1)

Figure 3. Queue properties for average traffic load

Figure 4 shows the variation of packet loss ratio (#
of dropped packets / # of received packets) with alpha
for the Dynamic algorithm through the traffic mix. In
Figure 4, we implemented the buffer with 600
incoming packets, six output queues, bursty uniform
traffic model with the load of 70% on each of the
queues and the average dequeue time of 14 clock
cycles for the burst of 10 packets. In Figure 4, the loss
ratio first decreases till alpha = 10.0 and then increases
afterwards because larger alpha values can increase
the control threshold of the queues with large packet
sizes.

0.094
0.095
0.096
0.097
0.098
0.099
0.100
0.101
0.102
0.103
0.104

0 2 4 6 8 10 12 14 16
Alpha

Lo
ss

 R
at

io

Figure 4. Packet loss ratio vs. Alpha for Dynamic

The increase in control threshold prevents them
from being dropped even though they have a large
queue length. Therefore, we determined the optimum
value of alpha for the Dynamic algorithm as 10. Our
results show that this is the best packet loss ratio that
Dynamic algorithms can achieve.

As discussed in section 3, for the DADT algorithm,
each queue has different threshold values since the
alpha can be varied for each queue. Therefore, the
optimum value of alpha for a given queue depends
upon the packet size it receives. As different queues
receive different sizes of packet, the optimum value of
alpha is dependent on the traffic mix. Our simulation
results show that the optimum value of alpha is
determined between 6 and 16. Table 1 shows the best

idleLbL
bL

+
=ρ

optimum alpha values for each Queue based on our
simulation results and also shows the improvement
ratio (%) for DADT over Dynamic algorithm.
According to Table 1, we found that DADT would
work better (> 6%) than Dynamic algorithm.

Table 1. Optimum alpha value for DADT

 Q0 Q1 Q2 Q3 Q4 Q5 Improvement
ratio (%)
(DADT/Dynamic)

1st 16 14 16 14 14 6 6.7%
2nd 15 12 15 12 12 6 6.1%
3rd 16 14 16 14 16 8 5.5%
** Qi = Queue i (ex: Queue 1)

The performance comparison for other buffer
management algorithms for the traffic mix is shown in
Figure 5. Figure 5 shows the performance of the four
algorithms (Completely Shared, Completely
Partitioned, Dynamic, and DADT) for varying loads.
As seen in Figure 5, the DADT algorithm has the most
efficient packet loss ratio for all the loads. The packet
loss ratio increases for all the algorithms with
increasing load on the queues. Notice that the
performance difference decreases somewhat at higher
loads. The Completely Shared and Completely
Partitioned algorithms have higher packet loss ratio
than Dynamic and DADT algorithm. Figure 5 shows
that DADT algorithm works better than Dynamic just
like Dynamic works well than Completely Shared or
Completely Partitioned [14].

0.00

0.05

0.10

0.15

0.4 0.5 0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0
Offered Load

P
ac

ke
t L

os
s

R
at

io

DADT
Dynamic
Completely Shared
Completely Partitioned

Figure 5. Packet loss ratio vs. Load for algorithms

 The performance of DADT and Dynamic algorithm
are compared when the buffer size is increased. Figure
6 shows the variation of packet loss ratio for increase
in buffer sizes. Increasing the number of packets in the

buffer increases the buffer size. In Figure 6, the packet
loss ratio decreases by an average of 18.5% and 18 %
for an increase of 100 packets for both the Dynamic
and DADT algorithm respectively. With an increase in
buffer size, since each queue has a much bigger space,
it is reasonable for a queue to accommodate more
number of packets. This results in an improvement of
packet loss ratio as well.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

400 450 500 550 600 650 700 750 800

Buffer Size (Packets)

P
ac

ke
t L

os
s

R
at

io

Dynamic

DADT

Figure 6. Packet loss ratio vs. Buffer Size for Dynamic
algorithm and DADT

6. Conclusions

This paper proposes the Dynamic Algorithm with
Dynamic Thresholds (DADT) to reduce the number of
packets being dropped at the packet buffer. Packets
coming into the packet buffer can be dropped if the
output queue in a buffer is full and each packet size
can be different.
 Packets with the same size will be stored in the same
queue of the buffer. A buffer management algorithm
will decide the amount of space for each output queue
in the packet buffer. Four buffer management
algorithms are implemented for our simulations: 1)
Completely Partitioned algorithm; 2) Completely
Shared algorithm; 3) Dynamic algorithm; and 4)
DADT algorithm.
 The DADT algorithm has different threshold values
for each queue, which is different from other
algorithms such as the Dynamic algorithm. The DADT
algorithm takes advantage of the different size of
packets coming into each output queue. By observing
the packet size for a particular queue, we can
determine an optimum value of threshold for the
queue. With the optimum threshold value for a queue,
the DADT algorithm can reduce the number of packets
dropped significantly.

 The optimum threshold value for a queue depends
upon the size of a packet it receives. Different-sized
packets were used to determine the optimum value of
threshold during simulations. The simulations
considered a buffer of size as 600 packets, 6 output
queues (0-5), bursty uniform traffic model, dequeue
time of 14 clock cycles for a burst of 10 packets and
uniform load for all output queues. For the traffic mix
with average network traffic loads [5], the DADT
algorithm improves the packet loss ratio by 6.7%
compared to the Dynamic algorithm and more than
10% for other algorithms.

7. References

[1] A. Tanenbaum, Computer Networks, 4th ed., Prentice
Hall, 2002.

[2] T. Henriksson, U. Nordqvist, D. Liu, “Embedded
Protocol Processor for fast and efficient packet reception”,
IEEE Proceedings on Computer Design: VLSI in Computers
and Processors, vol. 2, pp. 414-419, September 2002.

[3] V. Paxson, “End-to-End internet packet dynamics”,
Proceedings of ACM SIG-COM, vol. 27, pp. 13-52, October
1997.

[4] Tomas Henriksson, “Intra-Packet Data-Flow Protocol
Processor”, PhD Dissertation, Linkopings universitet, 2003.

[5] U. Nordqvist, D. Liu, “Power optimized packet buffering
in a protocol processor”, Proceedings of the 2003 10th IEEE
International Conference on Electronics, Circuits and
Systems, vol. 3, pp. 1026-1029, December 2003.

[6] M. Arpaci, J.A. Copeland, “Buffer Management for
Shared Memory ATM Switches”, IEEE Communication
Surveys, First Quarter 2000.

[7] T. Henriksson, U. Nordqvist, D. Liu, “Specification of a
configurable general-purpose protocol processor”, IEE
Proceedings on Circuits, Devices and Systems, vol. 149,
issue: 3, pp. 198-202, June 2002.

[8] A. Tobagi, “Fast Packet Switch Architectures for
Broadband Integrated Services Digial Networks”,
Proceedings of IEEE, vol. 78, pp. 133-167, January 1990.

[9] M. Irland, “Buffer Management in a Packet Switch”,
IEEE Transactions on Communications, COM-26, no. 3, pp.
328-337, March 1978.

[10] G. J. Foschini, B. Gopinath, “Sharing Memory
Optimally”, IEEE Transactions on Communications, vol.
COM-31, no. 3, pp. 352-360, March 1983.

[11] F. Kamoun, L. Kleinrock, “Analysis of Shared Finite
Storage in a Computer Network Node Environment under

General Traffic Conditions”, IEEE Transactions on
Communications, vol., COM-28, pp. 992-1003, July 1980.

[12] S. X. Wei, E.J. Coyle, M.T. Hsiao, “An Optimal Buffer
Management Policy for High-Performance Packet
Switching”, Proceedings of IEEE GLOBECOM’91, vol. 2,
pp. 924-928, December 1991.

[13] A. K. Thareja, A.K. Agarwal, “On the Design of
Optimal Policy for Sharing Finite Buffers”, IEEE
Transactions on Communications, vol. COM—32, no. 6, pp
737-780, June 1984.

[14] A. K. Choudhury, E.L. Hahne, “Dynamic Queue Length
Thresholds for Shared-Memory Packet Switches”,
IEEE/ACM Transactions on Communications, vol. 6, no. 2,
pp. 130-140, April 1998.

[15] Sundar Iyer, “ SIM: A Fixed Length Packet Simulator”,
http://klamath.stanford.edu/tools/SIM

[16] Sundar. I, McKeown. N, “Techniques for Fast Shared
Memory Switches”, Stanford University HPNG Technical
Report, TR01-HNPG-081501, Stanford, March 2001.

	An Enhanced Dynamic Packet Buffer Management
	Recommended Citation

	Microsoft Word - chuy_packet1568951119.doc

