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Abstract 
 

A packet buffer for a protocol processor is a large 
shared memory space that holds incoming data 
packets in a computer network. This paper investigates 
four packet buffer management algorithms for a 
protocol processor including Dynamic Algorithm with 
Different Thresholds (DADT), which is proposed to 
reduce the packet loss ratio efficiently. The proposed 
algorithm takes the advantage of different packet sizes 
for each application by allocating buffer space for 
each queue proportionally. According to our 
simulation results, the DADT algorithm works well in 
reducing packet loss ratio compared to other three 
algorithms. 
 
1. Introduction 
 

Data is transmitted over the computer network as 
the form of data packets [1]. Each packet consists of 
necessary data for an application associated with 
headers (control information). Packets coming into the 
computer network terminal are processed and 
classified based on its destination application by the 
protocol processor [2]. The processed application 
(payload) data is stored in a packet buffer until the host 
application retrieves it [3]. 

The packet buffer is a large dual ported memory 
shared by all output queues. Packets for each 
application are multiplexed into a single stream and 
fed into the packet buffer for storage. In a packet 
buffer, the packets are organized into logical FIFO 
queues (output queues), one for each application 
[2][4]. 

Each application has a logical FIFO queue inside 
the packet buffer associated with it [3]. Packets coming 
in for different applications at different data rates can 
fill up the large FIFO-based packet buffer. Once the 
packet buffer is full, further incoming packets will be 
dropped. This packet dropping (or loss) happens 
whenever the buffer is full. Therefore, it is important 

to reduce packet loss ratio to support any end-to-end 
application over the computer network [5][6]. Packet 
loss ratio can be improved by using buffer 
management algorithms. Buffer management 
algorithms determine how the total buffer space is 
distributed among the various output queues. 
Therefore, the design of a buffer management 
algorithm needs to consider the following two factors 
[2]: 1) Packet loss ratio: It is defined as the ratio of 
number of packets dropped to the total number of 
packets received [8]; and 2) Hardware complexity: The 
amount of hardware that is required to implement a 
given buffer management algorithm. 

There have been many proposed buffer 
management algorithms since a packet buffer without 
an algorithm could not perform well under overload 
conditions [9 -16]. In this paper, we introduced three 
popular buffer algorithms; Completely Partitioned 
algorithm, Completely Shared algorithm, and Dynamic 
algorithm [11][14].  

The purpose of these algorithms is to provide an 
even packet loss ratio for all output queues in a buffer. 
However, when these algorithms are applied to a 
packet buffer, they have an uneven packet loss ratio 
for the various output queues. This is due to the 
different packet sizes for each output queue (refer to 
section 3). In addition, queues with large packet sizes 
tend to fill up the buffer space at a much faster rate, 
resulting in excessive packet losses for other output 
queues. Therefore, we propose an efficient buffer 
management algorithm called DADT to develop: 1) a 
dynamic buffer management algorithm intended for 
protocol processors, which reduces the packet loss 
ratio by using different threshold values for the 
queues; and 2) a simulation model of the packet buffer 
intended for a protocol processor. 

This paper is set out as follows: Section 2 discusses 
the background information for a protocol processor 
and related works regarding buffer management 
algorithms; section 3 introduces the proposed DADT 
algorithm; section 4 discusses our simulation model to 
measure the performance metrics for buffer 



management algorithms; section 5 provides and 
analyzes the simulation results; and section 6 gives the 
conclusions. 

 
2. Background and Related Works 
 

To reduce the bottleneck, Henrikkson et. al 
[2][4][7] proposed off-loading the host processor for 
handling the protocol tasks. The idea is to move a 
processor (protocol processor for handling layers 3-4) 
to Network Interface Card (NIC).  They showed 
significant reduction processing time spent by the host 
processor in 3-4 layers.  

The memory organization using a protocol 
processor is shown in Figure 1. The protocol processor 
consists of three major components: 1) General 
Purpose Micro-controller (µC) to control the slow path 
operations; 2) Programmable Protocol Processor (PPP) 
to process the data at a wire speed; and 3) Packet 
Buffer Memory (PBMEM) to hold incoming packets 
[5]. 

As shown in Figure 1, incoming packets will stream 
through the protocol processor and the payload 
(application) data will be stored in the packet buffer 
until the host application retrieves it [5]. Packets are 
classified based on the application (per-flow). Once the 
packet is classified, it is stored in an output queue in 
the buffer [5].  
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Figure 1. Major components of a protocol processor 

 
Different applications have different sizes of packet 

associated with it [5]. The packets for different 
applications at different data rates can fill up the large 
FIFO-based packet buffer. To reduce the packet losses, 
a sophisticated algorithm is required to manage the 
buffer efficiently. 

There are various buffer management algorithms 
that exist for managing a packet buffer [8-10][12-13]. 
Some of the popular algorithms are: 1) Completely 
Partitioned: The entire buffer is completely partitioned 
with a constant buffer size for each queue; 2) 
Completely Shared: the entire buffer is shared among 
the various queues; and 3) Dynamic: This algorithm 

varies the size of each queue dynamically based on the 
remaining space in the buffer. 

Kamoun and Kleinrock [11] proposed Completely 
Partitioned algorithm; the total buffer space ‘M’ is 
divided equally among the queues. Since the number 
of output queues are known, the buffer space allocated 
to each and every queue can be pre-determined. Since 
the buffer space for every queue is decided statically, 
this is known as static threshold scheme. Packet loss 
for a queue occurs when the buffer space allocated to 
the particular queue becomes full. If it cannot 
accommodate any more packets, the incoming packet 
is dropped. If ki, i= 1…n, represents the size of queues 
i=1…n, and M is the total buffer space, then: 

 
(1) 

 
(2) 

 
 

The advantage of this algorithm is that it works well 
when all the output queues are competing for the 
buffer space [6]. It can be implemented easily in 
hardware [6]. The drawback is that it sometimes rejects 
incoming packets (or cells) even though there is a 
space left in the buffer [6].  

Completely Shared algorithm allows the output 
queues to completely share all the available space in 
the buffer. If there is a memory space available in the 
buffer, the corresponding incoming packet will be 
accommodated in the buffer [11]. In other words, 
individual buffer allocations may run up to the total 
buffer memory. 

Packet loss occurs only when the entire buffer is 
full. Unlike the Completely Partitioned case, the 
individual queues do not have any static thresholds 
placed on them. If ki, i= 1…n, represents the size of 
queues i=1…n, and M is the total buffer space, then: 

                              ki = M, i =1,2,.…,N        
The advantage of this algorithm is that it is well 

suited for balanced traffic since it allows complete 
sharing of the buffer space [6]. It is easy to implement 
in hardware [6]. The drawback is that a single output 
queue can monopolize most of the buffer space if load 
on its corresponding input port is very high.  

For the Dynamic algorithm, the amount of buffer 
space each queue is decided by a threshold placed on 
each queue [14]. This threshold is called as the control 
threshold. The main idea is that the control threshold 
of each queue is proportional to the remaining space in 
the buffer. 
  

      
         (3) 

Mkkk n =+++ ...21

∑
=

=
N

i
i Mk

1











−=−= ∑

i

i tQBftQBftT )())(()(



 
Where T(t) is the control threshold, B is the total 

buffer space, Q(t) is the sum of all the output queue 
lengths and f is a proportionality constant. When an 
incoming packet to the output queue ‘i’ finds that the 
current queue length (Qi(t)) is greater than the current 
threshold value (T(t)), then the incoming packet is 
dropped. Since then, no further packets are accepted 
into the queue unless the existing packets in queue i 
are drained out or else T(t) increases beyond Qi(t) [14]. 
The simplest scheme based on the above theory is the 
Dynamic algorithm [14]. Dynamic algorithm chooses 
the control threshold to be a multiple ‘α (alpha)’ of the 
remaining buffer space. 

   
               (4) 

 
3. Proposed Dynamic Algorithm 

 
The DADT algorithm is similar to the dynamic 

algorithm except that it has multiple threshold values 
as opposed to a single control threshold value in the 
Dynamic algorithm.  
 ( ))()( tQBitiT −⋅=α               (5) 

where αi is the proportionality constant and varies 
for each and every queue.  

The Dynamic and DADT algorithms have two 
major advantages over the static threshold schemes: 1) 
It is adaptive to change according to traffic conditions 
[14]. Once an output queue becomes active, it starts 
receiving packets and its queue length increases. This 
increases the total buffer occupancy, and the control 
threshold decreases correspondingly. If the current 
queue length is greater than the control threshold 
value, the incoming packets will be dropped until the 
output queues naturally drain out [14]; and 2) It is easy 
to implement in hardware. The only requirements are 
queue length counters and comparators with a shift 
register [6][14]. 

DADT algorithm has similar properties like the 
Dynamic algorithm (i.e. the control threshold value of 
the queues is directly proportional to the remaining 
space in the buffer) except different thresholds for 
each queue. The DADT algorithm is specially 
developed for the packet buffer, while the Dynamic 
algorithm was initially developed for an ATM switch 
[6]. The ATM switch has a fixed size of incoming 
ATM packets [6]. That is why the behavior of all the 
output queues is similar when experiencing uniform 
traffic. Hence, one queue cannot monopolize the buffer 
space when experiencing uniform traffic. However, for 
the case of the packet buffer on a NIC, there are 
various incoming packet sizes for output queues [5]. 

With different packet sizes for each queue, having a 
single threshold value for all the queues may let one 
queue monopolize the entire buffer space. Queues with 
large incoming packet sizes tend to fill the buffer space 
at a much faster rate. Having a single threshold value 
for all the queues results in excessive packet loss for 
other output queues. According to our simulation 
results, by controlling the threshold values of each 
queue separately, the proposed DADT algorithm can 
decrease the packet loss at other queues efficiently. 
 
4. Simulation Model 

 
We developed the simulation model for a packet 

buffer by using VHDL as shown in Figure 2. Most of 
the blocks in Figure 2 resemble the blocks in a shared 
memory switch model [6]. In Figure 2, the Traffic 
Generator block produces output (packets) according 
to two inputs (Traffic Model and Load on each port) 
[6]. 
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Figure 2. Simulation model for the packet buffer 
 
For the first input, there are three kinds of Traffic 

Model that are available for selection. Those are 
[6][16]:  
• Bursty Uniform Traffic Model: Burst of packets in 

busy-idle periods with destinations uniformly 
distributed packet-by-packet or burst-by-burst 
over all the output ports. The number of packets in 
the busy and idle periods can be specified; and 

•    Bursty Non-Uniform Traffic Model: Burst of 
packets in busy-idle periods with destinations non-
uniformly distributed packet-by-packet or burst-
by-burst over all the output ports; and 

• Bernoulli Uniform Traffic Model: Bernoulli 
arrivals, destinations uniformly distributed over all 
the output ports. 

 The second input, Load on each port (ρ), is 
determined by the ratio of the number of packets in the 
busy-idle periods [14] and is given by the equation: 
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where Lb = mean burst length and Lidle= mean idle 
length. 
For example: For a given load of ρ= 0.7 and a mean 
burst length of 20 packets, the mean idle length is 10 

packets such as 
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Based on the two inputs, Traffic Generator 
produces packets (trace file) in a serial fashion with a 
randomly distributed output destination request. The 
packets are produced with a mean inter-arrival time 
and mean burst length [6]. The ‘SIM’ simulator in [15] 
is used for producing the trace of packets. 

In Figure 2, once the packet is generated and arrives 
at the packet buffer, the headers from the Traffic 
Generator activate the Controller. The Controller then 
decides to accept or drop the packet based on the 
buffer management algorithm used. If the packet is 
accepted into the buffer, the Controller specifies the 
write address (WA) based on the output queue to 
which the packet is destined. Irrespective of whether 
the packet is accepted or dropped, the Controller 
updates its state variables (number of packets received, 
dropped, etc.).  

The Packet Buffer (shared memory) in Figure 2 is 
arranged in terms of First In-First Out (FIFO) queues 
[6]. Depending on the memory (buffer) size and the 
number of output queues, the memory can be 
partitioned among the different output queues.  

The primary task of the Output Link in Figure 2 is 
to remove the packets from the memory after a certain 
dequeue time [6]. Dequeue time, for the simulations 
shown in [6], is one unit of time, which matches the 
inter-packet time [6]. For simulations of the packet 
buffer memories on the NIC (where the packets stay 
for a specified amount of time), we model dequeue 
time as a Poisson random variable with a fixed mean 
[5].  
 
5. Simulation Results and Analysis 

 
We implemented a traffic mix with average network 

traffic loads according to [5]. With this traffic mix, we 
determined the optimum value of α (alpha) and then 
compared the performance between the DADT and 
Dynamic algorithm. 

Figure 3 explains the properties of six output 
queues of our simulation model, which are based on 
the average network traffic load flow in [5]. 

Figure 3 shows that Queue 5 has the largest buffer 
size (512 bytes), and Queues 0, 2, and 5 can manage 
more incoming packets than other Queues. 

 
 Q0 Q1 Q2 Q3 Q4 Q5 
Size in bytes 256 64 256 32 128 512 
packet unit # 
(32 bytes/unit) 

8 2 8 1 4 16 

 ** Queue i = Queue i (e.g., Queue 1 = Q1)  
 

Figure 3. Queue properties for average traffic load 
 

Figure 4 shows the variation of packet loss ratio (# 
of dropped packets / # of received packets) with alpha 
for the Dynamic algorithm through the traffic mix. In 
Figure 4, we implemented the buffer with 600 
incoming packets, six output queues, bursty uniform 
traffic model with the load of 70% on each of the 
queues and the average dequeue time of 14 clock 
cycles for the burst of 10 packets. In Figure 4, the loss 
ratio first decreases till alpha = 10.0 and then increases 
afterwards because larger alpha values can increase 
the control threshold of the queues with large packet 
sizes. 
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Figure 4. Packet loss ratio vs. Alpha for Dynamic 
 

The increase in control threshold prevents them 
from being dropped even though they have a large 
queue length. Therefore, we determined the optimum 
value of alpha for the Dynamic algorithm as 10. Our 
results show that this is the best packet loss ratio that 
Dynamic algorithms can achieve.  

As discussed in section 3, for the DADT algorithm, 
each queue has different threshold values since the 
alpha can be varied for each queue. Therefore, the 
optimum value of alpha for a given queue depends 
upon the packet size it receives. As different queues 
receive different sizes of packet, the optimum value of 
alpha is dependent on the traffic mix. Our simulation 
results show that the optimum value of alpha is 
determined between 6 and 16. Table 1 shows the best 

idleLbL
bL

+
=ρ



optimum alpha values for each Queue based on our 
simulation results and also shows the improvement 
ratio (%) for DADT over Dynamic algorithm. 
According to Table 1, we found that DADT would 
work better (> 6%) than Dynamic algorithm. 

 
Table 1. Optimum alpha value for DADT 

 Q0 Q1 Q2 Q3 Q4 Q5 Improvement 
ratio (%) 
(DADT/Dynamic) 

1st  16 14 16 14 14 6 6.7% 
2nd  15 12 15 12 12 6 6.1% 
3rd  16 14 16 14 16 8 5.5% 
** Qi = Queue i (ex: Queue 1) 
 

The performance comparison for other buffer 
management algorithms for the traffic mix is shown in 
Figure 5. Figure 5 shows the performance of the four 
algorithms (Completely Shared, Completely 
Partitioned, Dynamic, and DADT) for varying loads. 
As seen in Figure 5, the DADT algorithm has the most 
efficient packet loss ratio for all the loads. The packet 
loss ratio increases for all the algorithms with 
increasing load on the queues. Notice that the 
performance difference decreases somewhat at higher 
loads. The Completely Shared and Completely 
Partitioned algorithms have higher packet loss ratio 
than Dynamic and DADT algorithm. Figure 5 shows 
that DADT algorithm works better than Dynamic just 
like Dynamic works well than Completely Shared or 
Completely Partitioned [14]. 
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Figure 5. Packet loss ratio vs. Load for algorithms 
 
 The performance of DADT and Dynamic algorithm 
are compared when the buffer size is increased. Figure 
6 shows the variation of packet loss ratio for increase 
in buffer sizes. Increasing the number of packets in the 

buffer increases the buffer size. In Figure 6, the packet 
loss ratio decreases by an average of 18.5% and 18 % 
for an increase of 100 packets for both the Dynamic 
and DADT algorithm respectively. With an increase in 
buffer size, since each queue has a much bigger space, 
it is reasonable for a queue to accommodate more 
number of packets. This results in an improvement of 
packet loss ratio as well. 
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6. Conclusions 

 
This paper proposes the Dynamic Algorithm with 
Dynamic Thresholds (DADT) to reduce the number of 
packets being dropped at the packet buffer. Packets 
coming into the packet buffer can be dropped if the 
output queue in a buffer is full and each packet size 
can be different.  
 Packets with the same size will be stored in the same 
queue of the buffer. A buffer management algorithm 
will decide the amount of space for each output queue 
in the packet buffer. Four buffer management 
algorithms are implemented for our simulations: 1) 
Completely Partitioned algorithm; 2) Completely 
Shared algorithm; 3) Dynamic algorithm; and 4) 
DADT algorithm. 
 The DADT algorithm has different threshold values 
for each queue, which is different from other 
algorithms such as the Dynamic algorithm. The DADT 
algorithm takes advantage of the different size of 
packets coming into each output queue. By observing 
the packet size for a particular queue, we can 
determine an optimum value of threshold for the 
queue. With the optimum threshold value for a queue, 
the DADT algorithm can reduce the number of packets 
dropped significantly. 



 The optimum threshold value for a queue depends 
upon the size of a packet it receives. Different-sized 
packets were used to determine the optimum value of 
threshold during simulations. The simulations 
considered a buffer of size as 600 packets, 6 output 
queues (0-5), bursty uniform traffic model, dequeue 
time of 14 clock cycles for a burst of 10 packets and 
uniform load for all output queues. For the traffic mix 
with average network traffic loads [5], the DADT 
algorithm improves the packet loss ratio by 6.7% 
compared to the Dynamic algorithm and more than 
10% for other algorithms.  
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