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Abstract: A new constitutive model for Q235B structural steel is proposed, incorporating the effect
of dynamic strain aging. Dynamic strain aging hugely affects the microstructural behavior of
metallic compounds, in turn leading to significant alterations in their macroscopic mechanical
response. Therefore, a constitutive model must incorporate the effect of dynamic strain aging
to accurately predict thermo-mechanical deformation processes. The proposed model assumes
the overall response of the material as a combination of three contributions: athermal, thermally
activated, and dynamic strain aging stress components. The dynamic strain aging is approached
by two alternative mathematical expressions: (i) model I: rate-independent model; (ii) model II:
rate-dependent model. The proposed model is finally used to study the mechanical response of
Q235B steel for a wide range of loading conditions, from quasi-static loading (
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1. Introduction 

From the macroscopic point of view, dynamic strain aging (DSA) can be described as an 
unexpected strengthening in the flow stress at a specific temperature range. The third-type strain 
aging effect (bell-shaped stress peak in stress-temperature graphs) and the Portevin–Le Chatelier 
(PLC) effect (related to serrated plastic flow stress) are different manifestations of DSA. In general, 
DSA is associated with spatio-temporal instabilities (as shown through serrated yielding and PLC 
bands), which implies that stress state is not homogeneous in the uniaxial experiment. Although 
serrated stresses were observed in some cases of the experiments in Wang et al. [1], the amplitude of 
the oscillation was small and Nemat-Nasser et al. [2] stated that it is only of second-order importance 

= 0.001 s−1 and
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1. Introduction 

From the macroscopic point of view, dynamic strain aging (DSA) can be described as an 
unexpected strengthening in the flow stress at a specific temperature range. The third-type strain 
aging effect (bell-shaped stress peak in stress-temperature graphs) and the Portevin–Le Chatelier 
(PLC) effect (related to serrated plastic flow stress) are different manifestations of DSA. In general, 
DSA is associated with spatio-temporal instabilities (as shown through serrated yielding and PLC 
bands), which implies that stress state is not homogeneous in the uniaxial experiment. Although 
serrated stresses were observed in some cases of the experiments in Wang et al. [1], the amplitude of 
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= 7000 s−1), and across a broad range of temperatures
(93 K − 1173 K). The results from this work highlight the importance of considering strain-rate
dependences (model II) to provide reliable predictions under dynamic loading scenarios. In this
regard, rate-independent approaches (model I) are rather limited to quasi-static loading.
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1. Introduction

From the macroscopic point of view, dynamic strain aging (DSA) can be described as an unexpected
strengthening in the flow stress at a specific temperature range. The third-type strain aging effect
(bell-shaped stress peak in stress-temperature graphs) and the Portevin–Le Chatelier (PLC) effect
(related to serrated plastic flow stress) are different manifestations of DSA. In general, DSA is associated
with spatio-temporal instabilities (as shown through serrated yielding and PLC bands), which implies
that stress state is not homogeneous in the uniaxial experiment. Although serrated stresses were
observed in some cases of the experiments in Wang et al. [1], the amplitude of the oscillation was small
and Nemat-Nasser et al. [2] stated that it is only of second-order importance compared to the flow
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stress that is a measure of the total resistance force on moving dislocations. Therefore, in this work,
only third-type strain aging (referred to as DSA hereafter for convenience) will be considered while
building a constitutive model, and the PLC effect is not considered.

Generally, flow stress declines as temperature rises. However, at some combinations of strain
rate and temperature, declining flow stress turns to an increase with temperature. In addition, further
increase of temperature leads to another change of flow stress declining again after a peak is reached
(see Figure 1). The height of this bell-shaped stress depends on the applied strain rate and strain level
as shown in Figure 1. Moreover, the range of temperature where DSA becomes active is strongly
dependent on the strain rate. DSA is hugely influenced by the crystal structure and even varies between
metals with identical crystalline structure. Nemat-Nasser and coworkers have extensively studied
the thermomechanical behaviors of body-centered cubic (bcc) and face-centered cubic (fcc) crystal
structures focusing on DSA across a broad range of temperature and strain rate [3–6]. When it comes to
niobium (bcc), DSA was detected only at quasi-static loading

.
ε � 0.001/s within a temperature range of

T � 450 K− 700 K. On the contrary, no DSA was observed at higher strain rates
.
ε � 0.001 s−1

− 10000 s−1

for a wide temperature range T � 77 K − 1000 K in tantalum (bcc), vanadium (bcc), and oxygen-free
high thermal conductivity (OFHC) copper (fcc). DSA was also observed in various steel alloys, e.g.,
C45 [7], DH36 [8], and inconel 718 [9].
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Figure 1. Experimental stress-temperature graphs for Q235B steel for different strain rates (
.
ε) and strain

levels: (a)
.
ε = 0.001 s−1, (b)

.
ε = 0.02 s−1, (c)

.
ε = 800 s−1, and (d)

.
ε = 7000 s−1 [1]. Dynamic strain aging

(DSA) is observed in all cases.

Q235B steel is used for a wide variety of applications due to its advanced characteristic in
terms of strength, toughness, plasticity, and weldability. A systematic experimental DSA study on
Q235B steel was conducted by [1] under quasi-static (

.
ε = 0.001 s−1 and

.
ε = 0.02 s−1) and dynamic
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loading (
.
ε = 800 s−1 and

.
ε = 7000 s−1) along with a wide range of temperature (93 K − 1173 K) to

address its plastic deformation mechanisms. Furthermore, the effect of strain rate on the DSA-induced
hardening was discussed and incorporated in their constitutive model. Figure 1 shows the experimental
stress-temperature responses presented by [1] for different strain rates and levels of strain. Note that
DSA only becomes active when a specific range of temperature meets a specific range of strain rate.
In their work, DSA was detected at 330 K . T . 800 K for quasi-static loading and at 660 K . T . 1300 K
for dynamic loading.

In general, the interaction between diffusing solute atoms and mobile dislocations is identified as
a key source of DSA [10]. From a physical point of view, DSA occurs when solute atoms are diffused
to mobile dislocations that are temporarily trapped at the obstacle for a certain period before mobile
dislocations travel to adjacent obstacles. DSA becomes active when the waiting time (tw) of mobile
dislocations corresponds with the aging time (ta), which implies the effective time for the dislocation is
aged. The waiting and the aging times are related to each other as follows: dta/dt = 1− ta/tw [11].

Generally, dislocation density tends to decline as temperature increases. However, the reverse
was noted in the experiments published by [12], as well as the model predictions by [13] (see Figure 2).
Following [13], the dislocation density can be given as a function of the equivalent plastic strain.
The decomposition into athermal and thermal processes was also employed successfully by [14].
In addition, both experimental and analytical results show that the terms U −A and Ω are largely
affected by the temperature variation during DSA (Figure 2). The term U represents the dislocation
immobilization or annihilation rate, the term A represents the annihilation rate of the mobile dislocations,
and the term Ω represents the probability of annihilation or re-mobilization of immobile dislocations.
More details about these terms are presented in Section 2.2. This leads to the unpredicted result shown
in Figure 2 where the dislocation densities at T = 200 °C are larger than those at T = 25 °C.
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Figure 2. Dislocation density versus deformation graphs at different strain and temperature
levels [12,13].

The new constitutive model for Q235B steel developed in this work accounts, in a coupled
formulation, for: thermal activation mechanics, dislocation interaction mechanics, decomposition of
flow stress, and a mathematical description of the probability function. The model proposed is then
calibrated and validated using available experimental data. All the derivations of the DSA (σD), thermal
(σth), and athermal (σath) components of the total flow stress (σ) rely on physical bases. To model the
DSA phenomenon more accurately, the component σD is assumed as a probability density-shaped
function of the temperature T, the equivalent plastic strain εp, and its rate

.
εp (refer to Section 2.2 for

more details). This assumption is motivated on the dependences of the density of dislocations on
the levels of temperature and plastic deformation, as shown in Figure 2. The Weibull distribution
probability density function is used in this work to describe the DSA stress, σD.

The term ‘Voyiadjis–Abed (VA) model’ will be employed hereafter to indicate the constitutive
model merely including the athermal and thermal components without DSA, i.e., σVA = σath + σth [15].
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On the other hand, two mathematical models will be introduced for the variables in the DSA component
σD, and they will be referred to as ‘proposed model I (or PM I)’ and ‘proposed model II (or PM II)’.
The difference between these two models will be described in Section 2.2. The proposed models include
all three elements, i.e., σPM I, II = σath + σth + σD. PM I was originally proposed by [16] and PM II is
newly proposed in this work. The VA model and PM I are expected to present some limitations to
capture the DSA effect accurately. The main purpose of this work is to show the ability of PM II to
overcome such limitations.

The DSA, thermal, and athermal components of the flow stress in the proposed models are
formulated in Section 2. In Section 3, calibration is conducted taking the experimental data performed
by [1] to obtain the material properties used in PM I and PM II. The stress-strain behaviors presented
in Figure 2 will be reconsidered to investigate the DSA phenomenon in Section 4. The strain-rate
sensitivity is discussed in Section 5.

2. Constitutive Models

A constitutive model without the DSA element naturally underestimates flow-stress values at
the range of active DSA. This underestimation is even worse in dynamic manufacturing processes
which may involve an increase in temperature. To construct a physically based constitutive model
including physical characteristics of DSA, it is crucial to take into account the microstructural features
of the materials as well as the dislocation dynamics, as was done by Klepaczko [17], Rusinek and
Klepaczko [14], Voyiadjis, Song and Rusinek [16], Voyiadjis and Song [18], and Rusinek et al. [19].
In Section 2.1, the microstructurally/physically based formulation of the flow stress is derived in
terms of athermal and thermal components. The DSA component is discussed in Section 2.2 based
on [1,16,18].

The chemical composition (wt. %) of Q235B steel is as follows [1]: Mn (≤1.4), Si (≤0.35), C
(0.17–0.22), S (≤0.045), P (≤0.045), Cu (≤0.03), Ni (≤0.03), Cr (≤0.03), and Fe (Bal.). Q235B steel is an
alloy of these various elements with iron as the most dominant one. Therefore, the constitutive model
developed in this work will combine both fcc and bcc approaches to define the plastic deformation
behavior of Q235B steel in a wide range of strain rates and temperature. Iron has a characteristic phase
transformation between bcc and fcc crystal structures according to the temperature range, however
this will be ignored in this work.

In fcc metallic crystalline structures, the thermally activated mechanism is controlled and
dominated by the long-range interactions related to heterogeneous microstructural occurrence and
evolution of dislocations, which suggests a strong dependence on plastic strain. Strain rate and
temperature do not affect the initial yield stress in fcc metals. It implies that the yielding points will be
the same in the stress-strain graphs regardless of strain rate and temperature. In bcc metallic crystalline
structures, on the other hand, the deformation mechanism is attributed to resistance of the dislocation
motions by the short-range interactions (Peierls barriers) provided by the lattice itself. Therefore,
the thermal yield stress in bcc metals is highly dependent on temperature and strain rate whereas
hardening is hardly affected by either temperature or strain rate. These mechanisms will be reflected
in the development of the proposed model.

2.1. Athermal and Thermal Stresses

Characteristics of metals during plastic deformation can be accurately modeled by investigating
their dislocation dynamics including interaction, multiplication, and motion of dislocations.

The plastic shear strain rate
.
γ

p is given as follows using Orowan’s equation:

.
γ

p
= bρmv (1)

where b denotes the Burgers vector, ρm denotes the density of mobile dislocations, and v denotes the
average velocity of mobile dislocations.



Materials 2020, 13, 1794 5 of 24

From [20], the following relation is assumed:

.
ε

p
ij =

.
γ

pMi j (2)

where
.
ε

p
ij indicates the macroscale plastic strain rate tensor. The term Mi j denotes the symmetric

Schmidt orientation tensor, which is defined as follows:

Mi j =
1
2

(
ni ⊗ s j + si ⊗ n j

)
(3)

where the terms s and n are the unit vector in the slip direction and the unit normal vector on the slip
plane, respectively.

Substituting Equation (1) into Equation (2) gives the following expression for the equivalent
plastic strain rate

.
εp.

.
εp =

√
2
3

.
ε

p
ij

.
ε

p
ij = mbρmv (4)

where m =
√

2Mi jMi j/3 represents the Schmidt orientation factor.
Following [21], the variation of the dislocation density with respect to the equivalent plastic strain

is given as follows:
∂ρ

∂εp
= M− ka(ρ− ρi) (5)

where the term ka represents the dislocation annihilation factor which depends on the strain rate and
temperature. The term M is the multiplication factor defined as M = 1/bl, where l is the dislocation
mean free path. The terms ρi and ρ represent the initial and total dislocation densities, respectively.

The average dislocation velocity v can be determined using the thermally activated mechanism [18].
Using the well-known Arrhenius equation [22], the following expression is used in this work for this
term [20]:

v = v0 exp
(
−

G
kT

)
(6)

where the term v0 = d/tw denotes the referential velocity of a dislocation where d denotes the average
traveling distance of a dislocation from obstacle to obstacle. The terms k and T denote the Boltzmann
constant and temperature in Kelvin, respectively. The activation free energy G may be dependent on
the internal structure as well as the shear stress. Following [23], one can relate the activation energy G
to the thermal flow stress σth as follows:

G = G0

(
1−

(
σth
σ̂

)p)q
(7)

where the superscripts p and q denote the thermal hardening parameters and the shape of the
short-range barriers. The term σ̂ represents the threshold stress (σ̂ = σth when G = 0) and G0 represents
the referential Gibbs energy.

Substituting Equations (5) and (6) into Equation (4) and using Equation (7), the thermal part σth
can be calculated as follows:

σth = σ̂

1−

β1T − β2T ln
.
εp
.
ε

0
p


1
q


1
p

(8)

where
.
ε

0
p denotes the referential equivalent plastic strain rate.
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Meanwhile, the terms β1 and β2 are defined, respectively, as follows:

β1 =
k

G0
ln

 mb2ρmv0

b−md
(
λ1 − b2λ2ρm − bλ3ρ0.5

f

)
 (9)

β2 =
k

G0
(10)

where ρ f denotes the forest dislocation density. The coefficients λi (i = 1− 3) are related to the
immobilization [18]. Note that the parameter β1 is assumed as a fixed value in this work and
Equation (9) does not apply.

Broadly, there exists two kinds of barriers blocking the dislocations’ movement in the crystal
lattice: the short-range barrier caused by the forest dislocations and the long-range barrier caused by
the material structure. The former can be overcome using the thermal activation energy, whereas the
latter cannot. As a result, the total flow stress (σ) is additively decomposed into the thermal (σth) and
athermal (σath) components as follows:

σ = σath + σth. (11)

Several works have demonstrated that the assumption of additive decomposition is valid [2,6,24].
The athermal component σath

(
εp

)
is given as a function of the equivalent plastic strain εp. The

thermal component σth
(
εp,

.
εp, T

)
is composed of the bcc part and the fcc part as mentioned earlier in

this work, i.e., σth = σbcc
th + σ

f cc
th . The bcc part (σbcc

th ) is given as a function of
.
εp and T and the fcc part

(σ f cc
th ) is given as a function of εp,

.
εp, and T as follows:

σath
(
εp

)
= Ya + B1ε

n1
p . (12)

For bcc

σbcc
th

( .
εp, T

)
= Yd

1−

β1T − β2T ln
.
εp
.
ε

0
p


1
q


1
p

(13)

and for fcc

σ
f cc
th

(
εp,

.
εp, T

)
= B2ε

n2
p

1−

β1T − β2T ln
.
εp
.
ε

0
p


1
q


1
p

(14)

where Ya denotes the athermal yield stress and the parameters B1 and n1 denote the athermal hardening
parameters. The parameter Yd denotes the thermal yield stress and the terms B2, n2, p, and q denote
the thermal hardening parameters.

The combination of the two parts gives the total thermally activated flow stress component
as follows:

σth
(
εp,

.
εp, T

)
= Yd

1−

βY
1 T − βY

2 T ln
.
εp
.
ε

0
p


1
q


1
p

+ B2ε
n2
p

1−

βH
1 T − βH

2 T ln
.
εp
.
ε

0
p


1
q


1
p

. (15)

The material parameters for Q235B to define σath and σth are determined in Section 3. In addition,
high deformation rates can result in inelastic dissipation leading to local temperature increment
by means of adiabatic heating. In such dynamic scenarios, the effect of thermal softening due to
temperature evolution during the deformation process is considered in the thermal component in
Equation (15). Note that, at quasi-static loading conditions, inelastic heating is dissipated by conduction
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and convection terms and, therefore, isothermal conditions can be assumed during the deformation
process. The increment in temperature during dynamic deformation arising from adiabatic heating
can be computed as follows [15]:

∆T =
β

cpρ

∫ εp

0
σdεp (16)

where ρ represents the material density and cp represents the specific heat at constant pressure. In this
work, the Taylor–Quinney empirical coefficient β is defined as 0.9, as commonly assumed for most
metals [25]. Making use of Equation (16), the temperature is updated during the plastic deformation
process to account for adiabatic heating. Note that the effect of thermal softening on the flow stress is
only considered for dynamic loading (

.
ε = 800 s−1 and 7000 s−1). On the contrary, isothermal conditions

are assumed for quasi-static loading (
.
ε = 0.001 s−1 and 0.02 s−1).

2.2. DSA-Induced Stress

The relationship between the dislocation density and the equivalent plastic strain is given as
follows [13]:

dρ
dεp

= U −A−Ωρ. (17)

From Equation (17), the dislocation density ρ can be obtained by:

ρ =
U −A

Ω

[
1− exp

(
−Ωεp

)]
+ ρ0 exp

(
−Ωεp

)
(18)

where ρ0 denotes the initial dislocation density.
Bergstrom and Roberts [13] demonstrated the existence of the DSA phenomenon through

experiments and model predictions as shown in Figure 3. It was observed that the level of yield stress
(σ = αµb

√
ρ with α being a material constant and µ the shear modulus) in the dislocation model of

Taylor [26] increases at a certain range of temperature due to the large value of U −A and the low value
of Ω. Substituting Equation (18) into σ = αµb

√
ρ results in the following flow stress:

σ = σ0 + αµb
{U −A

Ω

[
1− exp

(
−Ωεp

)]
+ ρ0 exp

(
−Ωεp

)}1/2
(19)

where σ0 denotes the strain-independent friction stress. Consequently, one can conclude that
DSA may be characterized using a probability function capturing the probabilistic nature of the
physical phenomenon.
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An extra term σD in the form of probability function is introduced to model the bell-shaped
hardening due to DSA. By assuming σD

(
εp,

.
εp, T

)
, the proposed model is formed as follows:

σPM I, II
(
εp,

.
εp, T

)
= σath

(
εp

)
+ σth

(
εp,

.
εp, T

)
+ σD

(
εp,

.
εp, T

)
(20)

where the two components σath and σth are shown, respectively, by Equations (12) and (15).
In this work, two mathematical models are examined for σD. In the first model (proposed model,

PM I), the strain-rate effect on the magnitude of DSA-induced hardening (i.e., height of bell-shaped
stress) is not included. This model was used in the authors’ previous works [16,18]. However, in [1] it
was observed that the temperature range of active DSA shifts to more elevated temperatures and the
magnitude of DSA decreases with strain rate, which implies that strain rate strongly affects the height
of DSA-induced hardening. This observation is incorporated in the second model (proposed model II,
PM II), whose comparison with the first approach (PM I) will be presented.

2.2.1. Proposed Model I (PM I)

To characterize σD, the following standard parametrization formulation of the Weibull distribution
probability density function was used in [16,18]:

σD
(
εp,

.
εp, T

)
= aD

(
εp

)
exp

−
{
T −W

( .
εp

)}2

bD
(
εp

)
 (21)

where both the shape and scale of σD are determined by the terms aD > 0 and bD > 0. The term
W denotes the temperature corresponding to the flow stress peak at which the interaction between
dislocations and solute atoms becomes the strongest. The term bD reflects the temperature range of
DSA. In this work, a power-law form is employed for the functional expressions of aD, bD, andW, i.e.,
aD

(
εp

)
= kaε

na
p , bD

(
εp

)
= kbε

nb
p , andW

( .
εp

)
= kW

.
ε

nW
p , although other types of functional expression

are also applicable as done by [16] and [18]. The constants (ka, kb, and kW) and the law’s exponents (na,
nb, and nW) are determined in Section 3 using the experimental data.

2.2.2. Proposed Model II (PM II)

Wang, Guo, Gao, and Su [1] also used the identical form of the function presented in Equation (21)
to model the DSA effect. However, the difference is made in the terms aD, bD, andW. They are all
defined as functions of not only εp but also

.
εp, i.e., aD

(
εp,

.
εp

)
, bD

(
εp,

.
εp

)
, andW

(
εp,

.
εp

)
, as follows:

aD
(
εp,

.
εp

)
=

aD ln
.
εp
.
ζ
+

=
aD

εn3
p (22)

bD
(
εp,

.
εp

)
=

 T2

ln
.
εp
.
ζ
− ηln

εp

ε0
p


2

(23)

W

(
εp,

.
εp

)
=

T1

ln
.
εp
.
ζ
− ηln

εp

ε0
p

(24)

where the material constants aD,
=
aD,

.
ζ, n3, T1, T2, η, and ε0

p are calibrated using experimental data.
Derivation of Equations (22)–(24) are given in detail by [1].
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3. Model Validation and Calibration

3.1. Athermal and Thermal Stressesl

As a first step for the model calibration, the stress-temperature curves for different plastic
strain-level and strain-rate conditions are used. The general tendency consists of firstly a decrease of
flow stress with temperature up to a critical temperature value. From this point, the flow stress keeps
almost constant with temperature. The constant level of stress at that specific temperature indicates the
athermal flow stress, σath. The material parameters (Ya, B1, and n1) in Equation (12) can be determined
using the experimental data provided by [1]. The parameter Ya indicates the athermal flow stress at
the initial yield (εp = 0), in other words, the elastic part. In this work, this parameter is set as zero
since the efforts of the current study aim to address the plastic model. Figure 4 shows a comparison
between experimental data and model predictions (after calibration of material parameters) by means
of athermal stress-strain curves.Materials 2020, 13, x FOR PEER REVIEW 9 of 24 
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Meanwhile, the thermal flow stress σth is computed using the relation σth = σ− σath excluding
the DSA component. The thermal degradation mechanism can be suitably captured by choosing
the appropriate values of p and q. The following range of values are used for this purpose:
0 ≤ p ≤ 1 and 1 ≤ q ≤ 2. In this work, the values of p = 0.51 and q = 1.65 are used.
To obtain the thermal yield stress Yd, the flow stress at initial yield point σεp=0 is employed. Using

Equations (12) and (15), Yd can be obtained by plotting
(
σεp=0 −Ya

)p
versus T

1
q for each strain rate.

The
(
1−

((
σεp=0 −Ya

)
/Yd

)p)q
versus

.
εp graphs at certain temperatures are used to determine βY

1

and βY
2 . Similarly, the

σ−Yd

1−
(
βY

1 T − βY
2 T

.
εp
.
ε

0
p

)1/q1/p

−Ya − B1ε
n1
p


p

versus T
1
q graphs at different

levels of plastic strain along with certain strain rate are plotted to determine B2 and n2. Lastly,

the

1−


σ−Yd

1−
(
βY

1 T − βY
2 T

.
εp
.
ε

0
p

)1/q1/p

−Ya − B1ε
n1
p

/B2ε
n2
p


p

q

versus
.
εp graphs at certain plastic

strain and temperature are plotted to determine βH
1 and βH

2 .
Following the above mentioned procedure, the material parameters associated to the thermal

flow stresses σth are calibrated by comparison with experimental data. In this regard, Figure 5 gives
the comparison between the experimental data and the model predictions accounting for temperature,
strain, and strain-rate dependences. These results show a good predictive capability of the model, given
by Equation (15), to describe the thermally activated component of the flow stress. The experimental
data in these figures were obtained by subtracting the athermal stress (Figure 4) from the total stress
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(Figure 1). The athermal- and thermal-related material parameters for Q235B steel used in the VA
model are summarized in Table 1.

Table 1. Material parameters used in the Voyiadjis–Abed (VA) model for Q235B.

Ya (MPa) B1 (MPa) n1 (−) Yd (MPa) B2 (MPa) n2 (−)
.
ε

0
p

(
s−1

)
0 166 0.18 100 1800 0.15 1.0

βY
1 (1/K) βY

2 (1/K) βH
1 (1/K) βH

2 (1/K) p (−) q (−)

5.0× 10−4 4.7× 10−5 9.0× 10−4 5.5× 10−5 0.51 1.65Materials 2020, 13, x FOR PEER REVIEW 10 of 24 
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Figure 5. The thermal flow stress versus temperature curves from the experiments [1] and the VA
model (Equation (15)) with (a)

.
ε = 0.001 s−1, (b)

.
ε = 0.02 s−1, (c)

.
ε = 800 s−1, and (d)

.
ε = 7000 s−1.

3.2. DSA-Induced Stress

Next, one needs to define the proper expressions for aD, bD, andW to capture the DSA-induced
flow stress. The bell-shaped DSA-induced flow stresses observed in a series of experiments with
.
ε = 0.001 s−1, 0.02 s−1, 800 s−1, and 7000 s−1 conducted by [1] (Figure 1) are used to define these
expressions. A negligibly small elastic range is assumed in this work (ε = εp). Therefore, the following
assumption is made:

.
ε =

.
εp.

3.2.1. Proposed Model I (PM I)

From the comparison between the experimental data and the DSA component of flow stress
computed by Equation (21), the parameters aD and bD are easily determined, as revealed in Figure 6.
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More details about how to determine their functional form are provided in the authors’ previous
works [16,18]. The expressions for aD and bD are given, respectively, as a function of the equivalent
plastic strain by:

aD
(
εp

)
= 831ε0.204

p (MPa) (25)

and bD
(
εp

)
= 11390ε−0.232

p

(
K2

)
. (26)
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Meanwhile, the functionW depends on the strain rate. Following a similar procedure to obtain
aD and bD, the following expression forW is determined (see Figure 7):

W

( .
εp

)
= 684

.
ε

0.0411
p (K) (27)

Materials 2020, 13, x FOR PEER REVIEW 11 of 24 

 

 
Figure 6. The plots of ܽ and ܾ versus ߝ. Dots for both of the parameters are obtained from the 
experimental data [1]. The corresponding trend lines are displayed using a power law form. 

Meanwhile, the function ࣱ depends on the strain rate. Following a similar procedure to obtain ܽ and ܾ, the following expression for ࣱ is determined (see Figure 7): ࣱ൫ߝሶ൯ =  (27) (ܭ)	ሶ.ସଵଵߝ684

 
Figure 7. The plot of ࣱ  versus ߝሶ . Dots for both of the parameters are obtained from the 
experimental data [1]. The corresponding trend lines are displayed using a power law form. 

Substituting Equations (25)–(27) into Equation (21) gives the following formulation of the DSA-
induced flow stress ߪ for PM I. ߪெ	ூ൫ߝ, ,ሶߝ ܶ൯ = .ଶସexpߝ831 ቈ− ൛்ି଼ସఌሶబ.బరభభൟమଵଵଷଽఌషబ.మయమ . (28) 

The bell-shaped DSA-induced hardening versus temperature graphs are shown in Figure 8 at 
the designated strain levels. PM I is found able to capture the experimental measurements under 
quasi-static loading, cases (a) and (b). However, this model does not provide reliable predictions 
under dynamic loading, cases (c) and (d). This predictive limitation of the PM I can be explained by 
the lack of strain-rate effect consideration on the magnitude of DSA-induced hardening. In addition, 
the inversion of the bell-shaped hardening is detected in all cases in the initial and final stages of 
DSA, which is physically unreasonable. 

Figure 7. The plot ofW versus
.
εp. Dots for both of the parameters are obtained from the experimental

data [1]. The corresponding trend lines are displayed using a power law form.

Substituting Equations (25)–(27) into Equation (21) gives the following formulation of the
DSA-induced flow stress σD for PM I.

σDPM I
(
εp,

.
εp, T

)
= 831ε0.204

p exp

−
{
T − 684

.
ε

0.0411
p

}2

11390ε−0.232
p

. (28)
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The bell-shaped DSA-induced hardening versus temperature graphs are shown in Figure 8 at
the designated strain levels. PM I is found able to capture the experimental measurements under
quasi-static loading, cases (a) and (b). However, this model does not provide reliable predictions under
dynamic loading, cases (c) and (d). This predictive limitation of the PM I can be explained by the
lack of strain-rate effect consideration on the magnitude of DSA-induced hardening. In addition, the
inversion of the bell-shaped hardening is detected in all cases in the initial and final stages of DSA,
which is physically unreasonable.Materials 2020, 13, x FOR PEER REVIEW 12 of 24 
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ε = 7000 s−1.

Materials 2020, 13, x FOR PEER REVIEW 12 of 24 

 

(a) (b) 

(c) (d) 

Figure 8. The DSA-induced flow stress versus temperature curves from the experiments [1] and the 
proposed model I with (a) ߝሶ = ሶߝ ଵ, (b)ିݏ	0.001 = ሶߝ ଵ, (c)ିݏ	0.02 = ሶߝ ଵ, and (d)ିݏ	800 =  .ଵିݏ	7000

Figures 9–12 show the true stress-temperature responses calculated by the VA model and PM I 
and their comparison with experimental results for the corresponding levels strain and applied strain 
rate. The VA model fails to predict (bell-shaped) hardening caused by DSA in all cases, whereas the 
PM I demonstrates its ability to capture the DSA effect in quasi-static loading cases (Figures 9 and 
10). When it comes to dynamic loading cases (Figures 11 and 12), the PM I also fails to capture the 
bell-shaped hardening. 

(a) (b) 

Figure 9. Cont.



Materials 2020, 13, 1794 13 of 24
Materials 2020, 13, x FOR PEER REVIEW 13 of 24 

 

(c) (d) 

Figure 9. Comparisons between model predictions from the VA and proposed model I and 
experimental data from [1] on the total true stress versus temperature responses at (a) ߝ = 0.1, (b) ߝ = 0.2, (c) ߝ = 0.3, and (d) ߝ = 0.4. Quasi-static loading with ߝሶ =  .ଵ is appliedିݏ	0.001

(a) (b) 

(c) (d) 

Figure 10. Comparisons between model predictions from the VA and proposed model I and 
experimental data from [1] on the total true stress versus temperature responses at (a) ߝ = 0.1, (b) ߝ = 0.2, (c) ߝ = 0.3. and (d) ߝ = 0.4. Quasi-static loading with ߝሶ =  .ଵ is appliedିݏ	0.02

Figure 9. Comparisons between model predictions from the VA and proposed model I and experimental
data from [1] on the total true stress versus temperature responses at (a) ε = 0.1, (b) ε = 0.2, (c) ε = 0.3,
and (d) ε = 0.4. Quasi-static loading with

.
ε = 0.001 s−1 is applied.

Figures 9–12 show the true stress-temperature responses calculated by the VA model and PM I
and their comparison with experimental results for the corresponding levels strain and applied strain
rate. The VA model fails to predict (bell-shaped) hardening caused by DSA in all cases, whereas
the PM I demonstrates its ability to capture the DSA effect in quasi-static loading cases (Figures 9
and 10). When it comes to dynamic loading cases (Figures 11 and 12), the PM I also fails to capture the
bell-shaped hardening.
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ε = 0.02 s−1 is applied.
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Materials 2020, 13, 1794 15 of 24

3.2.2. Proposed Model II (PM II)

The function presented in Equation (21), along with Equations (22)–(24), is used for the PM II to
model the DSA effect. The material parameters used for the PM II are summarized in Table 2.

Table 2. Material parameters used in PM II for Q235B.

aD (MPa) =
aD (MPa) n3 (−)

.
ζ
(
s−1

)
T1 (K) T2 (K) η (−) ε0

p (−)

−27 10 0.20 6.5× 1010 −17, 000 −4100 −0.35 1.0

The final form of the DSA-induced flow stress σD for PM II can be expressed as follows:

σDPM II
(
εp,

.
εp, T

)
=

aD ln
.
εp
.
ζ
+

=
aD

εn3
p

 exp

−


T − T1

ln
.
εp
.
ζ
−η ln

εp
ε0
p

T2

ln
.
εp
.
ζ
−η ln

εp
ε0
p



2. (29)

The bell-shaped DSA-induced hardening versus temperature graphs are shown in Figure 13 at
the designated strain levels. PM II is found able to capture the experimental measurements under
quasi-static loading, cases (a) and (b), and dynamic loading, cases (c) and (d). In addition, unlike the
PM I, the inversion point is not observed.
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Figure 13. The DSA-induced flow stress versus temperature curves from the experiments [1] and the
proposed model II with (a)

.
ε = 0.001 s−1, (b)

.
ε = 0.02 s−1, (c)

.
ε = 800 s−1, and (d)

.
ε = 7000 s−1.



Materials 2020, 13, 1794 16 of 24

Figures 14–17 show the total true stress-temperature responses calculated by the VA and PM II
models along with the experimental results for the corresponding strain levels and applied strain
rate. Unlike PM I, PM II demonstrates its ability to capture the DSA effect in all cases including
dynamics loading.
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3.2.3. Strain Rate Effect on the DSA Stress

As revealed in the experiments published by [1] (Figures 8, 13 and 18), the height of bell-shaped
DSA stress (referred to as DSA peak stress in this section) decreases with strain rate for all strain levels.
This observation is consistent with previous works by Nandy et al. [27] and Peng et al. [28].

The variations of the DSA peak stress with strain rate at different levels of strain are plotted in
Figure 18. PM I and PM II are compared with the experimental measurements. As mentioned earlier,
the height of the DSA stress is determined by the term aD. In PM I, this term is independent of the
strain rate, i.e., aD = kεn

p , therefore it is unable to capture the trend of decreasing as shown in Figure 18.
PM II, on the other hand, can describe this trend and capture the experimental data due to the linear
dependence of aD on the logarithmic strain rate, i.e., aD = aD ln

.
ε.
ζ
+

=
aD.
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4. Comparison between the Model Predictions (VA Model, Proposed Model I, and Proposed
Model II) and the Experimental Measurements

The experimental true stress-true strain data are investigated in this section. The model proposed
by [15] is not expected to capture the stress-strain curves when DSA is active. To prove the ability of
PM II to accurately predict DSA, it is compared to experimental measurements. PM I is also considered
here for comparison.
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Figures 19–22 compare the true stress-true strain curves predicted by the different models
considered with the experimental data measured by [1] for four different strain rates:

.
ε = 0.001 s−1,

.
ε = 0.02 s−1,

.
ε = 800 s−1, and

.
ε = 7000 s−1. The VA model is not able to capture the stress-strain

responses when DSA is active. The next noticeable thing is that PM I overestimates the stress values
under the active DSA at dynamic loading, for instance

(
T,

.
ε
)
=

(
873 K, 800 s−1

)
,
(
973 K, 800 s−1

)
,(

973 K, 7000 s−1
)
. The reason is that the strain-rate effect is not considered in PM I when describing

the magnitude of DSA-induced hardening. Moreover, PM II shows a good agreement with the
experimental data in all cases.
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Figure 20. True stress-true strain curves from experimental measurement [1], predictions by the VA 
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Figure 20. True stress-true strain curves from experimental measurement [1], predictions by the VA
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ε = 0.02 s−1: (a) T = 93, 153, 289 and 373 K (b) T = 473, 573 and 673 K.
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Figure 22. True stress-true strain curves from experimental measurement [1], predictions by the VA
model, PM I, and PM II with

.
ε = 7000 s−1: (a) T = 300, 573 and 773 K (b) T = 873, 973 and 1073 K.

The total flow stress surfaces from PM I and PM II for four different strain rates (
.
ε = 0.001 s−1,

0.02 s−1, 800 s−1, and 7000 s−1) are shown in Figures 23 and 24 ranging in temperatures from 0 K to
1200 K and in strains from 0.05 to 0.4. Dots indicate the experimental results and they are shown to be
located mostly near the surfaces in both models when quasi-static loading is applied. Under dynamic
loading, PM II shows a good agreement with experiments, whereas PM I provides overestimated
values, especially near the peak of DSA-induced stress.
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ε = 7000 s−1. The experimental data are
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5. Strain Rate Sensitivity

In general, DSA is associated with spatio-temporal instabilities, and the strain rate sensitivity,
quantified by the strain rate sensitivity exponent (m = ∂ log σ/∂ log

.
ε) is a key point to study instabilities

as reported in [29]. The negative strain rate sensitivity due to DSA may trigger instabilities more
quickly in comparison with a material having a positive strain rate sensitivity. In general, the process
is related to a competition between strain rate sensitivity, hardening, and temperature sensitivity as
discussed in [29].

The variation of the total true stress with strain rate from PM II with and without DSA is plotted
in Figure 25. PM II without the DSA component (i.e., VA model) always results in a positive strain-rate
sensitivity (m > 0) while PM II causes a negative strain-rate sensitivity acting only in some ranges
of

(
T,

.
ε
)
. For this reason, the material will behave in two different ways, with a positive or negative

strain-rate sensitivity, depending on the domain.
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6. Conclusions

In this work, a systematic theoretical modeling of the plastic flow behavior of Q235B steel was
performed over a wide range of strain rates and temperature. The characteristics of the bell-shaped
hardening due to DSA in stress-temperature curves were investigated. In this work, a new mathematical
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expression along with a probability function was developed to accurately capture the experimental
results. Findings of this study can be summarized as follows:

• Dynamic strain aging, which is characterized by the bell-shaped hardening in stress-temperature
curves, appears under both quasi-static and dynamic loadings. As the strain rate increases, this
bell-shaped hardening moves to elevated temperature region and the magnitude of hardening reduces.

• The VA model is not able to predict the bell-shaped hardening.
• The proposed model II shows an excellent agreement with the experimental results at both low

and high strain rates, whereas the proposed model I fails to capture them at high strain rates.
• The negative strain rate sensitivity due to DSA is well captured by the proposed model II unlike

the VA model.
• To be noted is the ease of incorporating the model formulation into existing algorithms for its use

in finite element solvers [30–37].
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