
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Electrical and Computer Engineering Faculty 
Publications and Presentations College of Engineering and Computer Science 

2001 

An efficient instruction cache scheme for object-oriented An efficient instruction cache scheme for object-oriented 

languages languages 

Yul Chu 
The University of Texas Rio Grande Valley 

M. R. Ito 

Follow this and additional works at: https://scholarworks.utrgv.edu/ece_fac 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Yul Chu and M. R. Ito, "An efficient instruction cache scheme for object-oriented languages," Conference 
Proceedings of the 2001 IEEE International Performance, Computing, and Communications Conference 
(Cat. No.01CH37210), Phoenix, AZ, USA, 2001, pp. 329-336, doi: 10.1109/IPCCC.2001.918670. 

This Conference Proceeding is brought to you for free and open access by the College of Engineering and 
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Electrical and Computer 
Engineering Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For 
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/ece_fac?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


 
   

    

 
 
 

An Efficient Instruction Cache Scheme for Object-Oriented Languages 
 
 

Yul Chu and M. R. Ito 
Electrical and Computer Engineering Department, University of British Columbia 

2356 Main Mall, Vancouver, BC V6T1Z4, Canada 
{yulc, mito} @ece.ubc.ca 

 
 

 
 

Abstract 
 

In this paper, we present an efficient cache scheme, 
which can considerably reduce instruction cache misses 
caused by procedure call/returns. This scheme employs 
N-way banks and XOR mapping functions. The main 
function of this scheme is to place a group of instructions 
separated by a call instruction into a bank according to 
the initial and final bank selection mechanisms. After the 
initial bank selection mechanism selects a bank on an 
instruction cache miss, the final bank selection 
mechanism will determine the final bank for updating a 
cache line as a correction mechanism. These two 
mechanisms can guarantee that recent groups of 
instructions exist in each bank safely. We have developed 
a simulation program by using Shade and Spixtools, 
provided by SUN Microsystems, on an ultra SPARC/10 
processor. Our experimental results show that these 
schemes reduce conflict misses more effectively than 
skewed-associative caches in both C (up to 9.29% 
improvement) and C++ (up to 30.71% improvement) 
programs on L1 caches. In addition, they also allow for a 
significant miss reduction on Branch Target Buffers 
(BTB).   
 
 
1. Introduction 
 

For current microprocessors, multi-instruction issue 
is a popular method of increasing system performance. 
Therefore, instruction cache misses can severely limit the 
performance of high-speed microprocessors.  

Previous research has shown that instruction cache 
misses are one of the most critical factors in degrading 
system performance for object-oriented application 
programs. Calder et al (’94) showed that object-oriented 
(C++) programs execute almost seven times more calls 
(4.6 % versus 0.7 %) and have smaller function sizes 
(48.7 versus 152.8 instructions/function) than traditional 
programs (C). While C programs execute large 

monolithic functions to perform a task, C++ programs 
tend to perform many calls to small functions. Thus, C++ 
programs benefit less from the spatial locality of larger 
cache blocks (C++: C = 8.0: 4.9), and suffer more from 
function call overhead. The smaller function size of C++ 
programs is another cause of poor instruction cache 
misses. According to Calder et al (’94), programs 
executing a small number of instructions in each function, 
such as C++, suffer from instruction cache conflicts.  

Holzle & Ungar (’94) also showed that for 
instruction cache behavior the miss ratios of object-
oriented programs are significantly higher for most cache 
sizes and that the median miss ratio is 2 – 3 times higher 
than traditional programs. However, Calder et al (’94) 
and Holzle & Ungar (’94) observed that the data cache 
misses for both programs were seen to be similar. So we 
focused on developing an effective cache scheme to 
reduce the instruction cache misses of object-oriented 
programs, which can be much higher than traditional 
programs because of the frequent call/returns.  

In general, if a cache size is less than 32KB, conflict 
misses can degrade system performance significantly. For 
example, for a direct-mapped cache, conflict misses are 
about 60% of the total cache misses of a small-sized 
cache of 8KB [Gonzalez et al ’97]. In this paper, we 
present a new cache scheme, which can effectively reduce 
instruction cache misses caused by call/returns. 

This paper is organized as follows: Section 2 
explains cache misses and skewed-associative caches; 
section 3 presents a new instruction cache scheme; 
section 4 describes simulation methodology and 
benchmark programs; section 5 presents our simulation 
results; and section 6 provides our conclusions. 
 
2. Cache Misses 
 
2.1 Total cache miss vs. Conflict Miss Ratios 
 

Gonzalez et al (’97) generated the miss ratios for 
several cache schemes as shown in Figure 1: direct-



 
   

    

mapped, 2-way set-associative, 4-way set-associative, 
hash-rehash, column-associative, victim, and 2-way 
skewed-associative. They obtained the results in Figure 1 
by using the SPEC95 benchmark suite by implementing a 
cache memory (8 kilobytes capacity and 32 bytes per 
line). 
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Figure 1. Cache Miss Ratios (%) of several cache schemes

 
For comparison, the miss ratio of a fully-associative 

cache is shown in the last column. For each organization, 
the difference between its miss ratio and that of a fully-
associative cache represents the conflict miss ratio. For 
example, the ‘direct-mapped’ cache has a miss ratio of 
‘21.32’ in Figure 1. Here, ‘21.32’ means the total miss 
ratio (compulsory + capacity + conflict) while ‘12.61’ is 
the conflict miss ratio which is computed as (total miss 
ratio for a particular scheme – total miss ratio for the 
fully-associative scheme). 

The 2-way skewed-associative cache offers the 
lowest miss ratio of the existing schemes and is 
significantly lower than a 4-way set-associative cache 
[Gonzalez et al ‘97]. 

 

2.2 Skewed-associative caches  

address

Replacement 
Policy 

(Pseudo LRU)

Flag in Bank 0

1. On a Cache Miss

2. Bank Selection

Bank 0 Bank 1

If Flag = 0, replace data in 
Bank 0 and set the Flagà1. 
Otherwise, replace data in 

Bank 1 and set the Flag à0.

Figure 2. Bank selection of a 2-way skewed-associative cache.
 

Skewed associative caches have been previously 
proposed [Seznec ‘97]. An N-way skewed-associative 
cache consists of N distinct banks that are accessed 

simultaneously with different mapping functions. Figure 
2 shows a 2-way skewed-associative cache using a 
pseudo-LRU replacement policy by associating a one-bit 
flag to each line in bank 0 on a cache miss. 

Bodin & Seznec (’95) presented skewing functions 
that are obtained by XORing a few bits in the address of 
a memory block.  
 
3. N-Way Thrashing-Avoidance Cache 
(TAC) 
 

There are two main reasons why we need to design a 
new instruction cache memory: 
• As technology changes, smaller on-chip caches (less 

than 32 Kbytes) have replaced large external caches 
(greater than 256 Kbytes);  

• As object-oriented languages become more widely 
used, procedure calls tend to increase in application 
programs, causing an increasing number of conflict 
misses. 
Thus, we need a new cache memory scheme to 

reduce instruction cache misses and focus on reducing 
thrashing conflict misses (i.e., a commonly used location 
is displaced by another commonly used location in a 
cycle).  

 
3.1 An Overview of an N-Way TAC Scheme  

address

Bank Selection 
Logic (BSL)

Counter

1. On a Cache Miss

2. Initial Bank Selection

BoPLRU 
Replacement 

Policy

Flag in a 
Selected Bank

Bank 1Bank 0

Bank 0 Bank 1

3. Final Bank Selection

data     flag

Bank 0

Bank 1

Figure 3. The basic operation of a 2-way TAC scheme
 

An N-way TAC scheme is built with N distinct 
banks. Since Gonzales et al (’97) showed that XOR 
mapping functions work well for reducing conflict 
misses; the N-way TAC employs XOR mapping 
functions for accessing the instruction cache memory. 

On a cache miss, the initial bank selection 
mechanism selects a bank according to the BSL (Bank 
Selection Logic) and the final bank selection mechanism 
determines the bank to update according to the BoPLRU 
(Bank-originated Pseudo LRU replacement policy) 
replacement policy (Figure 3).   



 
   

    

Each cache line in a bank consists of tag, data, and 
flag. The tag word consists of an address tag and some 
other status tags. The bit length of the flag is determined 
by the N distinct banks; that is, an n-bit flag represents 

n2  banks or an N-Way (N = n2 ) cache scheme. For 
convenience, we represent a cache line of a TAC scheme 
as just a data and flag throughout this paper and omit the 
tag part.  

 
3.2 Initial bank selection mechanism  

 
The function of the Bank Selection Logic (BSL) is to 

select a bank initially on a cache miss according to a 
fixed frequency of the procedure call instructions. The 
BSL employs a x-bit counter for counting the frequency 
of call instructions. The x-bit counter will be increased by 
one whenever a fetched instruction proves to be a call 
instruction. The n most significant bits of the x-bit 
counter represent the selected bank for each instruction. 
Each bank can be selected on every nx −2 procedural calls. 
For example, if x = 2 and n = 1, then there are two banks 

( n2  = 2) and a bank is switched every two procedure 
calls ( nx−2  = 2). A group of instructions terminated by a 
procedure call can be placed into the same bank through 
the BSL (Bank Selection Logic) and XOR mapping 
functions.  

The goal of the BSL is to help each bank to share 
instructions equally according to the occurrence of 
procedure call instructions. 

Figure 4 shows how a 2-bit counter (x = 2 and n = 1) 
in the BSL works with the flow of example instructions. 
In Figure 4(a), each call instruction works as a separator 
for grouping instructions. For a group of instructions, the 
next call instruction becomes the last one in the group.  

The detailed operations of the 2-bit counter in the 
BSL, in Figure 4(b), are:   
• Instruction A is fetched. On a cache miss, the flag of 

the selected line in bank 0 is read. A is not a call 
instruction, so there is no change in the 2-bit counter 
(+ 0); 

• Instruction B is fetched. On a cache miss, the flag of 
the selected line in bank 0 is read. B is a call 
instruction, so one is added to the 2-bit counter (+ 
1); 

• Instruction H is fetched. On a cache miss, the flag of 
the selected line in bank 0 is read. H is not a call 
instruction, so there’s no change in the 2-bit counter 
(+ 0) and so on. 
In Figure 4(c), on a cache miss, the BSL initially 

selects a bank according to the value of the counter. If the 
MSB (Most Significant Bit) of the counter is 0, then bank 
0 is selected. Otherwise, bank 1 is selected.  
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Figure 4. The operation of the BSL according to a flow 
of instructions (2-bit counter). 
 
3.3 Final bank selection mechanism  

 
After a bank is initially selected, the BoPLRU 

(Bank-originated Pseudo LRU replacement policy) 
determines the final bank for updating a line as a 
correction mechanism by checking the flag for the 
selected cache line.  

Figure 5 shows the Pseudo code for the BoPLRU. 
For the 2-way TAC scheme, if ‘the flag = 0’ of the 
selected bank by the BSL, data in the initial bank will 
remain while data of the other bank is replaced with new 
data fetched from memory. After that, the flag of the 
initial bank will change from 0 to 1. Meanwhile, if ‘the 
flag = 1’ for the initial bank, data in the initial bank will 
be replaced with new data and the flag for the initial 
bank will change to 0. By doing this, we expect any 
conflicting data remains in a bank safely for a while. 

Figure 5 also shows the pseudo code for the BoPLRU 
replacement policy for the N-way (N = n2 ) TAC scheme 
[Chu ‘00].  

The BoPLRU is a kind of modified pseudo-LRU 
replacement policy that guarantees that recent groups of 
instructions can be retained in each bank safely.  

As an example, the BoPLRU operation of the 1-bit 
flag, 2-way TAC scheme, is shown in Figure 6: We 
assumed that the BSL initially selects bank 0 on a cache 
miss. Therefore, a flag of the selected line in bank 0 is 
read. If the flag is 1, it is set to 0 and the data fetched 
from memory is written into bank 0. Otherwise, the flag 
is set to ‘1’ and the data is written into bank 1. 



 
   

    

 
The BSL selects a bank initially (say, initial bank).
If a 2-way TAC scheme, which has two banks

If ‘the flag = 0’ of the initial bank

Replace data of the other bank.

Set the flag of the initial bank to 1.

If’ the flag = 1’ of the initial bank

Replace data of the initial bank.

Set the flag of the initial bank to 0.

If an N-way TAC scheme, which has N banks

If ‘the flag < (N-1)’ of the initial bank

Find the highest value of the flag through 

other banks (say, final bank).

Replace data of the final bank.

Set the flag of the final bank to 0.

For other banks apart from the final bank

Increase the value of the flags by one.

If ‘the flag = (N-1)’ of the initial bank (say, final bank)

Replace data of the final bank.

Set the flag of the final bank to 0.

For other banks apart from the final bank

If ‘the flag < (N-1)’

Increase the value of the flags by one.

Else

Keep the value of the flags.

Figure 5. Pseudo code for the BoPLRU Replacement 
Policy 

BoPLRU 
Replacement 

Policy
Flag in a Selected Bank

Bank 1Bank 0

Bank 0 Bank 1Initially 
selected

Finally 
selected

flag=0, 

replace data in bank 1

and set the flag of 
bank 0 to ‘1’

flag=1, 

replace data in bank 0

and set the flag of 
bank 0 to ‘0’

We assumed that flag = 0 for the 
selected bank 0 in this diagram.

Figure 6. Final bank selection of BoPLRU replacement 
policy for a 2-way TAC scheme.  
3.4 Placement of instructions in a TAC Scheme  

X
Y
J
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Y
J
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ƒ0

I

A

B

Group A: A, B
Group H: H, I
Group X: X, Y, J
where {B & H} are conflicting in Bank 0 

Group AGroup H Group X

• Guarantees the coexistence of instructions within a group.
• Guarantees the retention of recently used groups of instructions

in different banks.

Different Group
& Different Bank

Figure 7. Placement of instructions in a 2-way TAC scheme.

       Figure 7 shows how the instructions from Figure 4 
are written into each bank (2-way) on a cache miss. We 
assume that BSL selects bank 0 for Group A and H, and 
bank 1 for Group X initially: 
• Instruction A and B of Group A are written into 

bank 0. We assume that the flags for each cache line 
for Group A are set to ‘0’ (initial condition). 

• Instruction H of Group H is written into bank 1 since 
it conflicts with instruction B of Group A. Therefore, 
the flag of the cache line for instruction B in bank 0 
is set to ‘1’. 

• Instruction I of Group H is written into bank 0. We 
assume that the flag is set to ‘0’ (initial condition). 

• The instructions X, Y, and J of Group X are written 
into bank 1. We assume that the flags of each cache 
line for Group X are set to ‘0’. 

 
4. Experimental Environment 

 
Figure 8 shows an overview of our simulation 

methodology: 
• First, SPEC95INT and C++ programs were compiled 

by using a compiler (GNU gcc 2.6.3 and 2.7.2).  
• Second, the TACSim (cache simulator) is used to 

run each executable benchmark with its input data. 
TACSim was developed by using the Shade, 
SpixTools, and CAHCESKEW simulator. Shade and 
SpixTools are tracing and profiling tools developed 
by Sun Microsystems. Shade executes all the 
program instructions and passes them on to the 
cache simulator, TACSim. SpixTools is used for 
collecting information for static instructions. 
CACHESKEW is a cache simulator developed by 
Seznec and Hedouin [8] that not only simulates most 



 
   

    

cache schemes such as direct, n-way set-associative, 
and skewed-associative schemes, but also runs 
several XOR mapping functions and replacement 
policies such as LRU (Least Recently Used) and 
Pseudo LRU, etc. The TAC scheme simulator is 
added into TACSim along with the BoPLRU 
replacement policy. 

• Finally, outputs such as cache miss rates, the number 
of instructions and data references, simulation time, 
etc. were collected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Experimental Methodology 
 
In Figure 8, Shade is a tool that dynamically 

executes and traces SPARC v9 executables. Using Shade, 
the desired trace information can be specified. This 
means that the trace information can be dynamically 
handled in any manner. Detailed information for every 
instruction and opcode can be collected dynamically. For 
example, the data for the total number of call instructions, 
program counter, opcode fields, etc can be obtained. This 
information is used for our simulation tool, TACSim.  
 
4.1 Benchmarks 

 
Table 1 provides a description of the run-time 

characteristics of the benchmarks. Five of the SPEC95 
integer programs were used for our simulation – gcc, go, 
m88ksim, compress, and li. These are the same programs 
used by Radhakrishnan & John (’98). The next suite of 
programs is written in C++ and has been used for 
investigating the behavior between C and C++ [Calder et 
al ‘94] [Holzle & Ungar ‘94]. These programs are 
deltablue, ixx, and eqn. Dynamic instructions represent 
the number of instructions executed by each program. It 
also shows that the number of instructions (function size) 
per call in the C programs is two times larger (as a 
harmonic mean) than that of the C++ programs.  
 

Benchmark 
Program 

Input Dynamic 
instructions 

# of 
Procedure 
calls 

Instructions 
/call 

SPEC95 CINT: C Programs 
go 2stone9.in 584,163K 1,610K 362.65 
gcc amptjp.i 250,494K 5,203K   48.13 
m88ksim ctl.raw 850K 16K   50.66 
compress test.in 41,765K 1,355K 30.81 
perl scrabble.pl 

scrabble.in 
63,028K 2,611K 24.14 

li train.lsp 189,184K 7,971K 23.73 

Suite of C++ Programs 
deltablue 3000 42,148K   1,478K 28.52 
ixx object.h 

som_plus_fre
sco.idl 

31,829K   1,404K 22.65 

eqn Eqn.input.all 58,401K 1,999K 29.21 

C  Harmonic mean 4,894K 97K 37.67 
C++ Harmonic mean 41,513K 1,588K 26.45 

Table 1.Benchmark Programs Characteristics 
 

5. Experimental Results 
 

The performance metrics used for comparison of 
different cache schemes are the instruction cache miss 
rates and branch prediction rates.  
 
5.1 Cache Misses vs. Cache Sizes   
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Figure 9.Comparisons for cache misses according to the cache sizes.
 

Much previous research has been done to determine 
the relationship between the cache size and cache miss 
rates. To examine the relationship for ourselves, we 
simulated 4 cache schemes with C and C++ benchmark 
programs in Figure 9: The 4 schemes are direct-mapped, 
2-way set-associative, 4-way set-associative, and 2-way 
skewed-associative; The C programs include go, gcc, 
m88ksim, li, and compress; The C++ programs are 
deltablue, ixx, and eqn. The range for the simulated 
cache sizes is from 2Kbytes to 128 Kbytes with a 16byte 
cache line size. The bars in Figure 9 represent the 

CACHESKEW 
Simulator 

    Input Data Executables 

Benchmark Programs 
- SPEC95INT 
- Suite of C++ 

Cache 
Simulator  + 

Shade 

I References, D References, Execution time, Cache 
miss rates, # of procedure calls 



 
   

    

difference between the highest and the lowest miss rates 
for each cache size. 

In Figure 9, results for the C programs show that if 
cache sizes are 4 Kbytes to 16 Kbytes, a more efficient 
cache scheme is needed since cache miss rates are 
significant. In the case of the C++ programs, if cache 
sizes are 4 Kbytes to 32 Kbytes, again a more efficient 
scheme for reducing cache misses is needed. 

 In general, if cache sizes are less than 2 Kbytes or 
larger than 32 Kbytes, the cache misses are similar 
whatever cache schemes are used. From the Figure 8, we 
can conclude that it is quite reasonable to develop a 
more sophisticated cache scheme for reducing cache 
misses between 4 Kbytes and 32 Kbytes of cache sizes.  
 
5.2 Bank Switching vs. Procedure Calls 
 

In this section, we determine the most efficient size 
of x-bit counter, which BSL employs for selecting banks. 
As we discussed in section 5.1, we primarily investigate 
for cache sizes which are less than 32 Kbytes. We 
simulated 2-Way TAC schemes with 7 benchmark 
programs to determine the most effective x-bit counter.  

Figure 10. Cache miss rates according to the sizes of the n-bit counter.
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     In Figure 10, TAC_k means that BSL selects a bank 
for every k occurrences of call instructions on a cache 
miss. For example, if k=2, then every two calls change 
the bank on a miss. As we discussed in section 3, the n 
most significant bits of a x-bit counter represents a bank 
for the current instruction. Therefore, if k=2 and n=1, 
then we need a 2-bit counter because {00, 01} à bank 0 
and {10, 11) à bank 1.  

In Figure 10, we used four benchmark programs 
(gcc, m88ksim, li, and compress) and three C++ 
programs (deltablue, ixx, and eqn) to determine the most 
effective counter size. The results show that TAC_2 

works slightly better than the others. Therefore, we 
recommend a small-size counter, less than 2-bit for the 
case of k=2 and n=1, for the BSL of a TAC scheme if a 
cache size is less than 32 Kbytes. 
 
5.3 Skewed-associative caches vs. TAC schemes 
 

In this section, we compare cache miss rates between 
skewed-associative and TAC schemes. Since there is 
little benefit in increasing cache associativity over four 
[Hill and Smith ‘89], experimental results from 2-way 
and 4-way associativity for the TAC and skewed-
associative caches were collected. The BSL was 
implemented with a 2-bit counter. 

In order to compare cache miss rates between the 
TAC and skewed-associative caches, we used a formula 
called IRC, Improvement Ratio for Cache, such that: 

Cache miss rates of a 2-way skewed-associative  = a; 
Cache miss rates of a TAC scheme = b; 
a/b = 1 + n/100 à ‘b’ has n% less cache miss rates   
than ‘a’.  
If n = IRC, IRC = ((a – b) / b) * 100 %  ------------ (1) 
For example, if the cache miss rate of a 2-way 

skewed-associative is 5%, and that of a TAC scheme is 
4%, then, the IRC for this case is ((5-4)/4) * 100 = 25%. 
An IRC of 25% means that the TAC reduced the cache 
miss rate by 25% more than the 2-way skewed-
associative cache.   

Figure 11. Comparisons for IRC between 2-way skewed associative and 2-way TAC.
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       Therefore, if we use IRC for comparing two cache 
schemes, we can easily get the improved result with 
regard to cache miss rates.  In Figure 11 and 12, 4 C 
programs (gcc, m88ksim, li, and compress) and 3 C++ 
programs were used for determining IRC between 
skewed-associative and TAC schemes.  



 
   

    

The results of Figure 11 show that: If the cache size 
is 8 Kbytes or 16 Kbytes (for C programs) or 16 Kbytes 
(for C++ programs), the 2-way TAC schemes can reduce 
cache misses much better than 2-way skewed-associative 
caches for cache line sizes of 16 and 32 bytes; If cache 
sizes are bigger than 32 Kbytes or less than 4 Kbytes, 
there is only a slight difference between 2-way TAC and 
2-way skewed-associative schemes. 

 

Figure 12. Comparisons for IRC between 4-way skewed associative and 4-way TAC.
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      The results of Figure 12 show that: If the cache size 
is 4 Kbytes (for C and C++ programs), the 4-way TAC 
schemes reduces cache misses much better than 4-way 
skewed-associative caches for cache line sizes of 16 and 
32 bytes; If cache sizes are larger than 16 Kbytes, the 
difference between 4-way TAC and 4-way skewed-
associative schemes is reduced significantly since most 
conflict misses disappear for both the 4-way TAC and 4-
way skewed-associative caches in C++ (16 bytes of line 
size) and C (32 bytes of line size). 
 
5.4 Three cache schemes for the Branch Target 
Buffer 

 
The Branch Target Buffer (BTB) is a small cache 

that contains the address of the branch instructions and 
their target addresses. The BTB is accessed in the fetch 
stage to predict the state of a branch instruction. If a hit 
occurs, then the current instruction is a taken branch. 
The Program Counter (PC) is loaded with the target 
address from BTB and fetching starts from the new PC. 
It has been popular to employ a 4-way set-associative 
cache for a small-size BTB table that has less than 512 
entries.  

Figure 13. Comparisons for Misprediction rates among three cache schemes.
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(a) Misprediction rates vs. Entries of BTB Tables for C Programs.
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(b) Misprediction rates vs. Entries of BTB Tables for C++ Programs.

 
In this section, we determined the most effective 

cache scheme for BTB. We simulated the BTB with three 
cache schemes by using C and C++ benchmark programs 
in Figure 13. They are a 4-way set-associative, 2-way 
skewed-associative and 2-way TAC scheme. The C 
programs include go, gcc, m88ksim, li, and perl. The 
C++ programs are deltablue, ixx, and eqn. The range for 
the simulated BTB table sizes is from 64 entries to 1024 
entries. 

The results of Figure 13 show that: 
• For C programs, as shown in Figure 13(a), the 2-way 

TAC scheme for the 256-entry table of BTB works 
better than other sizes of the BTB tables. 

• For C++ programs, as shown in Figure 13(b), the 2-
way TAC scheme for the 512-entry table of BTB 
works better than other sizes of the BTB tables. 
In order to compare branch misprediction rates 

between 2-way TAC and 4-way set-associative caches, 
and between 2-way TAC and 2-way skewed-associative 
caches, we used a formula called IRB, Improvement 
Ratio for Branch which is similar to IRC, such that: 

Branch Misprediction Rates of a 2-way skewed-
associative or a 4-way set-associative caches = a; 

Branch Misprediction Rates of a 2-way TAC scheme 
= b; 

Then, IRB = ((a – b) / b) * 100 %  ------------------ (2) 
For Figure 14, the 2-way TAC schemes works better 

than 4-way set-associative caches for all table entries, 
from 64 entries to 1024 entries, for both C and C++ 
programs.



 
   

    

Figure 14. Comparisons for Improvement Ratios for Branch  for cache schemes.
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(a) 2-way TAC scheme vs. 4-way set-associative cache.

(b) 2-way TAC scheme vs. 2-way skewed-associative cache.
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The results in Figure 14 show that 2-way skewed-

associative cache and 2-way TAC schemes reduce branch 
misprediction rates much better than the 4-way set-
associative caches. In addition, 2-way TAC schemes 
work considerably better than 2-way skewed-associative 
caches for all table entries, from 64 entries to 1024 
entries. However, if a BTB table is greater than 1K 
entries, our results showed the same results as Driesen 
and Holzle (’98). Therefore, if the BTB table size is less 
than 512 entries, the 2-way TAC scheme is a good 
solution for reducing branch mispredictions.    
 
6. Conclusions 
 

This paper presents a new cache scheme called TAC 
(Thrashing-Avoidance Cache), which can effectively 
reduce instruction cache misses caused by frequent 
procedural call/returns. 

In the conventional cache schemes described in 
section 2, the 2-way skewed-associative cache offers the 
lowest miss ratio, which is significantly lower than a 4-
way set-associative cache. However, a skewed-associative 
cache has a limitation in the handling of conflict misses 
in object-oriented programs due to the problem of 
frequent access to a large number of small functions. The 
main reason for this is that a skewed-associative cache is 
designed to reduce conflict misses for individual 
instructions only. The TAC scheme works for group 
instructions separated by a call instruction. 

Our simulation results show that: 
• TAC schemes (on L1 cache) improve instruction 

cache miss rates by up to 9.29% for C programs and 
30.71% for C++ programs over skewed-associative 
caches.  

• TAC schemes (on BTB, 2-way) also reduce branch 
misprediction rates better than skewed-associative 
(2-way) caches by up to 4% for C programs and 
6.5% for C++ programs. 
Future work involves combining TAC schemes with 

more efficient mapping functions, more effective 
replacement policies, etc.    
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