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Abstract: Organometallic drug development is still in its early stage, but recent studies show that
organometallics having iron as the central atom have the possibility of becoming good drug candidates
because iron is an important micro-nutrient, and it is compatible with many biological systems,
including the human body. Being an eco-friendly Lewis acid, iron can accept the lone pair of
electrons from imino(sp2)-nitrogen, and the resultant iron–imine complexes with iron as a central
atom have the possibility of interacting with several proteins and enzymes in humans. Iron–imine
complexes have demonstrated significant potential with anticancer, bactericidal, fungicidal, and other
medicinal activities in recent years. This article systematically discusses major synthetic methods and
pharmacological potentials of iron–imine complexes having in vitro activity to significant clinical
performance from 2016 to date. In a nutshell, this manuscript offers a simplistic view of iron complexes
in medicinal inorganic chemistry: for instance, iron is presented as an “eco-friendly non-toxic” metal
(as opposed to platinum) that will lead to non-toxic pharmaceuticals. The abundant literature on iron
chelators shows that many iron complexes, particularly if redox-active in cells, can be quite cytotoxic,
which can be beneficial for future targeted therapies. While we made every effort to include all the
related papers, any omission is purely unintentional.

Keywords: imines; Schiff base; iron complex; anticancer; antimicrobial; antioxidant

1. Introduction

The terms ‘imine’ and ‘Schiff base’ were invented by Albert Ladenburg and Hugo
Schiff, respectively, and refer to the condensation products of carbonyl compounds (aldehy-
des and ketone) and amines. They are formed by the condensation of a primary amine with
a carbonyl (aldehyde or ketone) compound [1] and an azomethine (-RC=N-) linkage [2].
Imines have wide applicability in many fields, especially in drug development research,
because of their versatile characteristics that enable them to form a wide range of stable
products. Imines can be polarized to generate an electrophilic carbon center that makes the
nitrogen more nucleophilic. In mild acidic conditions, the nitrogen is protonated, making
the carbon significantly electrophilic. Since their discovery by Hugo Schiff in 1864, Schiff
bases have become the most important ligands in transition metal coordination chemistry
due to their ease of synthesis, electronic features, solubility in many solvents, structural
diversity, and abundance in biological systems [3–5].

The coordination of metals to organic ligands (organometallics) was not widely em-
ployed until the discovery of cisplatin and other metal-derived drugs. Many organometallic
drugs have effectively been used to treat several diseases, including cancer, diabetes, and
ulcers, and in imaging studies, etc. Metal–Schiff base complexes have improved antimicro-
bial, antioxidant, anti-inflammatory, antibacterial, and anticancer activity relative to their
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free Schiff base ligands [6,7]. Schiff base ligands coordinate with metal ions and stabilize
them in various oxidation states. Depending on their dipole moment, solubility, enzymatic
action, and cell permeability, they can increase biological activity [5]. The challenge, how-
ever, is that some of these therapeutics have raised concerns due to the fatal side effects
they confer on patients. The need for new, less toxic, and more potent organometallic
drugs has led to extensive research on iron–imine complex formation. So far, iron–imine
complexes have been found to exhibit effective biological activities [8]. For instance, Sarkar
et al. found a significant photocytotoxicity of an iron(III)–Schiff base complex (obtained
from thiosemicarbazide and vitamin B6) against cervical cancer cells (HeLa) through the
intracellular generation of ROS [9]. Also, some iron(III)–Schiff base complexes derived
from aminophenol/aminobenzene and salicylaldehyde have shown better antibacterial
and antifungal activity when compared to antibacterial and antifungal standard drugs,
chloramphenicol and terbinafine, respectively [10].

It is worth mentioning that iron is the fourth most abundant (5.6%) element in the
Earth’s crust [11]. It is important for the normal functioning of mammalian cells because
iron plays essential roles in many dynamic biological processes that occur in the human
body, like DNA synthesis, metabolism, respiration, electron transport, and erythropoiesis,
among others [12,13], making their participation in mammalian cells vital for appropriate
cellular function [14,15]. It is, therefore, a safer alternative for developing organometallic
drugs. This review outlines the syntheses and pharmacological potential of iron–imine
complexes.

2. Bioactivity of Imine–Iron Complexes

Imine–iron complexes provide an intriguing insight into the future of organometal-
lic chemistry. Limited attention was given to organometallic drugs until recently when
some metal-containing drugs were discovered to be useful in the battle against various
diseases like cancer, antimicrobial resistance diseases, oxidative stress [3], HIV [16], bac-
terial (malaria), fungal, and viral infections [17], tuberculosis [18], diabetes, rheumatoid
arthritis, and cardiovascular diseases [19]. Among the exciting tapestry of organometallic
compounds, imine–iron complexes stand out with their bright threads of fascination and
ability. These unique compounds attach iron atoms to ligands with the intriguing imine
functional group, which is a nitrogen–carbon double bond generated by an amine and
a carbonyl compound. Imine–iron complexes are adaptable building blocks with high
promise in catalysis, biomimicry, magnetic materials, and beyond. This distinguishing
trait endows them with an enticing combination of properties, making them the focus of
significant research and interest in the sector.

2.1. Imine–Iron Complexes as Anticancer Agents

The success of cisplatin as a potent anticancer drug led to researchers exploring and
discovering platinum-based drugs like carboplatin and oxaliplatin. The downside of these
platinum-based drugs is their adverse side effects and drug resistance. This shifted attention
to other metal-based anticancer drugs, particularly iron-based complexes, after the prolific
activity of naturally occurring iron–bleomycin and ferrocenium salts like trichloroacetate
and ferrocenium picrate was discovered. Their effectiveness was attributed to the oxidative
DNA damage they caused by upsetting the oxidative homeostasis in cancer cells [11].
Iron–imine complexes provide a unique and potential avenue for cancer therapy due to
their tailored delivery and different mechanisms of action, which include altering iron
metabolism, producing reactive oxygen species (ROS), and blocking key enzymes. They
additionally enhanced tumor penetration and retention and have the ability to overcome
drug resistance.

Iron–imine complexes and other organometallic complexes have been found to have
potent anticancer activity [20].

El-Lateef et al. synthesized two tetradentate dibasic chelating imine–iron complexes
(3 and 4, Scheme 1) from the reaction of 1 and 2 with Fe3+ salt. The free ligand (1 and 2)
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and its synthesized complexes (3 and 4) were investigated for their in vitro cytotoxic
effect against MCF-7, HepG-2, and HCT-116 cancer cell lines at different concentrations.
These tested compounds had activity on breast carcinoma cells, with the cytotoxicity of
the complexes being higher than that of their free ligands. Compound 4 showed the
highest cytotoxicity activity against MCF-7, HepG-2, and HCT-116 (5.14, 6.75, and 4.45 µM,
respectively), comparable to the standard drug doxorubicin, which had the activity of 4.10,
5.15, and 4.35 µM, respectively, and could be used as a tumor drug candidate (Table 1). The
cytotoxicity of metal complexes is assumed to be due to their ability to bind DNA, hence
disrupting its structure, causing replication and transcription processes to be inhibited, and
eventually damaging the cancer cells (Table 1) [21].
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Scheme 1. Synthesis of imine–iron complexes 3 and 4 with anticancer activity.

Nguyen et al. [22] synthesized unsymmetrical tetradentate imine–Fe(III) complexes
(5–9, Scheme 2) by coordinating the imine ligands with FeCl3·6H2O and tested them on
KB and Hep-G2 human cancer cell lines. The iron–imine complexes showed excellent
cytotoxicity for KB and Hep-G2 (IC50 < 20 µM). The presence of substituted groups in
the salicyl rings affects the electrical properties and bulk of the complexes. Complex 5,
which did not have the substituted group in the second salicyl ring, exhibited the best
cytotoxic activity for KB and Hep-G2 (0.68 and 0.83 µM, respectively), even better than the
standard compound ellipticine, which showed an activity of 1.14 and 2.11 µM, respectively
(Table 1) [22].
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Scheme 2. Synthesis of unsymmetrical tetradentate imine–Fe(III) complexes 5–9.

Nine iron(III) complexes (10–18, Figure 1) were synthesized by Kalındemirtaş et al.
The in vitro cytotoxicity activity of the iron complexes was investigated on P3HR1, K562,
JURKAT, HUVEC, and 3T3 cell lines. The complexes 11, 14, 16, and 17 showed a better
cytotoxicity effect (in the range of 4.81–14.05 µM) on the K562 cell line than the stan-
dard imatinib, which had an activity of 9.67 µM. Five complexes had significantly lower
IC50 values than the positive control (imatinib) for P3HR1 cells (Table 1). Complexes
12, 15, and 18, which had a 3,5-dichloro substituent, could not compete with imatinib. All
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the synthesized complexes were ineffective against the JURKAT cell line in the studied
concentrations. Different cells may die in different ways, and cancer cells of different types
might respond very differently to the same treatment. P3HR1 and JURKAT are lymphoid
cells with T- and B-lymphocytes of origin, respectively, whereas K562 is myeloid. T-cell
lineage-derived leukemia includes a diverse range of neoplasms. They are typically more
aggressive than their B-cell counterpart, differing in clinicopathological characteristics and
biological function, and are marked by resistance to conventional chemotherapy and a bad
prognosis for the patients [23]. Studies have also shown miRNAs to be critical regulators
in tumorigenesis [24,25]. When exposed to chemotherapeutic drugs that are commonly
used in T-cell leukemia/lymphoma treatment, like cisplatin, cytarabine, doxorubicin, and
cyclophosphamide, JURKAT cells’ expression of miR181a increased along with AKT ac-
tivation [26]. The different results obtained in the JURKAT cells may be due to these
differences [27].
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Figure 1. Some medicinally privileged iron–imine complexes.

Wongsuwan et al. synthesized a series of Fe(II) complexes (19–22, Scheme 3) and
Fe(III) complexes (23–26, Scheme 3) by coordinating imine derived from 8-aminoquinoline
and salicylaldehyde with Fe(II)/(III) chloride (Scheme 3). Imine complexes were screened
against the A549 human lung adenocarcinoma cell line. The imine ligand showed no
anticancer activity, but the complexes showed moderate-to-high anticancer activity against
A549 cells with IC50 values ranging from 10 to 34 µM. Complex 22 showed the highest
antiproliferative activity of 10 µM, which is higher than that of two well-known commercial
drugs, etoposide (19 µM) and cisplatin (16 µM) (Table 1). Transition metal complexes can
bind to DNA through both covalent and non-covalent interactions. Complex 6 showed
very high DNA affinity and induced high levels of ROS (hydroxyl and peroxyl radicals) in
A549 cancer cells. These two factors together contributed to the antiproliferative activity
of complex 6. Therefore, DNA binding and intracellular ROS that cause macromolecular
or DNA damage and cell death are potential mechanisms by which the complexes enter
A549 cells [28].
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Scheme 3. Synthesis of Fe(II) and Fe(III) complexes 19–26 with antitumor activity.

An iron(III) complex (30, Scheme 4) of novel imine ligand 29 was synthesized by Ismail
et al., and its cytotoxicity activity against the Hep-G2 cell line was evaluated. The Fe(III)
complex (30, Scheme 4) showed an enhanced antitumor activity (7.31 µg/mL) compared
to that of the solo Schiff base (IC50 = 27 µg/mL). Still, compared to the standard drug
vinblastine, which showed a value of 2.93 µg/mL, its antitumor activity was moderate
(Table 1) [29].
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Scheme 4. Synthesis of iron(III)–imine complex 30.

The ligand (33) and its metal complex (34, Scheme 5) were synthesized by Kavitha et al.
and studied over three cancer cell lines: human pancreatic carcinoma (MiaPaCa-2), human
cervical adenocarcinoma (HeLa), and murine melanoma cancer cells (B16F10), and one
normal cell N1H/3T3 (fibroblast cells). The IC50 value for the complex, 106.26 µg/mL, was
beyond 100 µg/mL, signifying very low anticancer activity against the selected cancer cell
lines (Table 1). DNA binding studies showed that the complex had a low binding affinity
for the DNA, which could have been responsible for its low antitumor potency [30].
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Abdelrahman et al. synthesized new nano-Fe(III) complexes (38–40) of pyridazinone-
acid hydrazone ligand 37 and new mixed-ligand complexes using 8-hydroxyquinoline or
1, 10-phenanthroline (Scheme 5) as an auxiliary ligand. The complexes and the imine ligand
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were tested against hepatocellular carcinoma cell lines (HepG-2 cells) for their antitumor ac-
tivity in vitro. The imine ligand showed strong antitumor activity against the HepG-2 cells,
but the activity of the synthesized iron complexes (38–40) was insignificant (Scheme 6,
Table 1). Complex 37 showed an antitumor activity of 3.80 µg/mL against HepG-2, whilst
the standard drug, Cisplatin, showed an activity of 3.27 µg/mL (Table 1) [31].

Farhan et al. synthesized two heterocyclic imine ligands (43 and 46) and prepared
complexes (44 and 47, Scheme 7) from the fusion of the imine ligands with Fe(III), resulting
in an octahedral geometry and paramagnetic complex (44 and 47). The ligands and imine
complexes were investigated for their anticancer potency against the L20B cell line at a
4000 µg/mL concentration. The iron complex 44 demonstrated a high anticancer activity of
8.7 µg/mL against the (L20B) cell line. The anticancer activity of 47 was comparatively low,
22.9µg/mL (Table 1). The results were not compared with a standard anticancer agent [32].
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Table 1. Cont.

Entry
No.

Complex
No. Structures Synthesis

Condition

Complex
and
Positive
Control

Cancer Cell Lines Ref.
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2.2. Imine–Iron Complexes as Antimicrobial Agents

Antimicrobial agents are compounds that can inhibit (stop or reduce) the growth of
microorganisms such as bacteria, fungi, protozoa, etc. Microbial resistance to antibiotics and
other antimicrobial drugs has become one of the major health concerns globally. Due to their
distinct characteristics and action methods, research has focused on imine–iron complexes
as promising agents [33]. Imine–iron complexes appear as possible game changers in the
fight against microorganisms, outperforming many traditional antimicrobials. They are
considered possible game changers because of the following:

1. Novel mechanism of action: Traditional antibiotics typically target specific bacterial
functions like cell wall synthesis or protein translation, which can lead to resistance
development as bacteria mutate those targets, imine–iron complexes employ diverse
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mechanisms, including iron starvation, DNA cleavage, and reactive oxygen species
(ROS) generation, making it harder for bacteria to develop resistance.

2. Broad-spectrum activity: Traditional antibiotics often have specific targets, limiting
their effectiveness against different types of bacteria, whilst imine–iron complexes
can exhibit activity against a wider range of bacteria, including multi-drug-resistant
strains, due to their multiple attacking mechanisms.

3. Biofilm disruption: Traditional antibiotics may struggle to penetrate bacterial biofilms,
protective communities are resistant to many drugs, whilst imine–iron complexes
show potential to disrupt biofilms, exposing bacteria within to attack further.

4. Reduced side effects: Traditional antibiotics can harm beneficial gut bacteria and
other healthy cells due to their broad targeting, whilst imine–iron complexes can be
designed to be more selective for bacterial targets, potentially reducing the side effects
on human cells.

In recent years, metal complex-based antibiotic compounds have become a promis-
ing avenue in drug development. According to research, 21% of the metal compounds
examined exhibited antibacterial action against typical strains of Candida and Cryptococcus
strains [34]. Therefore, there is an urgent need to develop next-generation antimicrobial
agents, and imine-iron complexes can be the right avenue to move forward because these
complexes are known for their antimicrobial activity. The observed microbial activity can
also be traced to (i) the concept of cell permeability and the chelation process which reduces
the polarity of a metal ion; (ii) the chelation process which increases electron delocalization
on the chelate ring and enhances the lipophilicity of the complex, granting it easy pene-
tration through microbial cells; (iii) the toxicity of metal ions [35]; (iv) the introduction of
an azomethine linkage improves the hydrophobicity and liposolubility of the molecules;
and additional factors that contribute to the improved biological activity are the solubility,
conductivity, and dipole moment of the metal ion [36–38]. The antimicrobial activities of
Schiff bases and their metal complexes have been studied against different bacterial and
fungal strains [39].

Rahmatabadi et al. synthesized the iron metal complex (51, Scheme 8) of imine
ligand (50), prepared by condensing 48 with 49. Imine–iron complex (51) was tested
for its in vitro antibacterial potency against Gram-negative Escherichia coli (E. coli) and
Pseudomonas aeruginosa (P. aeruginosa) bacteria and Gram-positive bacteria Bacillus cereus
(B. cereus) and Staphylococcus aureus (S. aureus) with tetracycline, gentamicin, chlorampheni-
col, and cephradine as a standard control. Complex 51 showed enhanced activity compared
to the free ligand (50). It had the highest antibacterial activity against B. cereus (29 mm)
and S. aureus (14 mm), which was higher than the activity of the standard drug tetracycline
against B. cereus (11 mm) and S. aureus (9 mm), but it showed moderate activity against
E. coli (14 mm) and P. aeruginosa (14 mm), which was for both bacteria (Table 2). These
recorded activities of the complexes are due to the more pronounced lipophilic nature of
the metal centers in the complexes [40,41].
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Shukla et al. synthesized imine ligand 54 by condensing 52 with 53 in a 1:2 molar ratio.
Imine ligand 54, 1,10-phenanthroline, and FeCl3 were combined to form a mixed-ligand
iron complex (55, Scheme 9) and analyzed for their antibacterial activity against Gram-
negative bacteria E. coli in comparison to amoxicillin and chloramphenicol standard drugs.
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Complex 55 exhibited enhanced activity against E. coli (29 mm) compared to 54 (23 mm).
Still, it showed moderate antibacterial activity compared with standards chloramphenicol
and amoxicillin, which showed inhibition zones of 39 mm and 41 mm, respectively (Table 2).
The action of metal ions on the normal cell membrane may cause the metal complex’s
increased activity. Either the microbes’ cells’ impermeability or variations in the ribosomes
of microbial cells determine the complex’s ability to combat E. coli. The outcome could be
explained by considering the chelation theory, which suggests that chelation could facilitate
a complex’s capacity to pass across a cell membrane [42,43].
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El-Lateef et al. explored 3 and 4 (Scheme 1) for their antibacterial potency against
three selected bacterial strains: S. marcescence, E. coli, and M. Luteus. Both complexes
showed high antibacterial activity against the selected bacteria, with 4 showing the highest
antibacterial activity against M. luteus (2.50 µg/mL) (Table 2). The values of the activity of
standard drugs were not provided. The activity of the complexes was high compared to
that of the free ligands (1 and 2) due to the chelation theory. The polarity of the metal ion
is greatly reduced during chelation due to electron delocalization throughout the entire
chelate ring system and partial sharing of its positive charge with the hetero-donor atoms
of the ligand [44,45]. The different activities displayed by the complexes against the various
microbes are due to the differences in the chemical makeup of the microorganisms’ cell
walls [21].

The iron complex 59 (Scheme 10) was synthesized by Karem et al., and its antibacterial
potency was evaluated against P. aeruginosa, E. coli, S. aureus, and B. subtilis. The iron
complex showed no activity for all the bacterial strains except for E. coli, against which it
showed an activity of 25 µg/mL. This value was higher than that of the free ligand, which
showed an inhibition of 2.5 µg/mL (Table 2). The observed increase in activity against
E. coli can be explained by Tweedy’s theory [46]. The results obtained were not compared
to a standard drug [47].

The imine ligand 62 synthesized by the condensation of 60 and 61 (Scheme 11) was
complexed with Fe(III) by Shukla et al. to form two imine–iron complexes, 63 and 64.
The complexes were tested against Gram-positive bacteria, B. subtilis, and Gram-negative
bacteria, E. coli, with amoxicillin as a standard. The complex 64 (14 mm and 18 mm,
respectively) showed enhanced activity compared to the free ligand (11 mm and 15 mm,
respectively) against B. subtilis and E. coli, and this activity of 64 was similar to that of the
standard amoxicillin (16 mm and 20 mm, respectively) against the same microbes. The
antimicrobial activity of complex 63 is similar to that of ligand 62 against the selected
microbes (Table 2). The result shows that chelation makes it easier for these complexes to
traverse the cell membrane, which is consistent with Tweedy’s chelation theory. Due to
the partial sharing of the metal ion’s positive charge with donor groups during chelation,
the metal ion’s polarity will be lowered, and the delocalization of π-electrons over the
entire chelate ring will be increased. This improves the complex’s lipophilicity, favoring
its passage through the lipid membrane, and interferes with the metal binding sites in the
microbes’ enzymes [48].
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The imine ligand 66, prepared by the condensation of 65 with 1,2-diaminobenzene
and its iron complex (67, Scheme 12), was synthesized by Anacona et al. and analyzed
for its antibacterial activity against pathogenic bacteria Gram-positive Enterococcus faecalis
(E. faecalis) ATCC 29212 and S. aureus ATCC 25923 and clinical isolates of Streptococcus
viridans (S. viridans), Enterococcus Sp., and methicillin-resistant S. aureus (MRSA). The iron
complex (67) showed enhanced activity against all the selected microbes compared to the
ligand 66. It exhibited very good antibacterial activity against methicillin-resistant S. aureus
(15 mm), whereas the standard drug and free ligand showed no activity at all. The complex
under study [49] showed moderate activity against the other bacterial strains (Table 2). The
moderate-to-high activity of the complex is attributed to not only the chelation theory but
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also other factors like the nature of the metal ion, the type and quantity of donor atoms,
stereochemistry, chelate stability, and pharmacokinetic factors [50].
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Pahontu et al. synthesized an Fe(III) complex (68, Figure 1) and tested its antimicrobial
activity against Gram-positive bacteria S. aureus, B. cereus, and E. faecalis and Gram-negative
bacteria E. coli and A. baumannii, as well as fungal strains Candida albicans (C. albicans),
Candida krusei (C. krusei), and Cryptococcus neoformans (C. neoformans). The MIC values of the
iron–Schiff base complex obtained correlated with very low antibacterial activity against
all the bacterial strains selected compared to the standards used (furacilin, ciprofloxacin,
and amikacin). The complex showed improved antifungal activity against C. albicans
and C. neoformans, with values of 0.0156 and 0.0078µg/mL, respectively, compared to the
standard drugs nystatin (C. albicans = 0.032 µg/mL, C. neoformans = 0.032 µg/mL) and
miconazole (C. albicans = 0.016 µg/mL, C. neoformans = 0.0162 µg/mL) used in studies
(Table 2) [6]. The lack of activity of the synthesized complex against the bacterial strain is
unclear. Still, its impressive antifungal activity against C. albicans can be attributed to the
metal ion’s ability to reduce binding energy while increasing the binding affinity of the
microbe protein, hence interrupting its biological processes [10].

Mumtaz et al. complexed iron(II) with an imine ligand to form the iron(II) metal
complex 69 (Figure 1), which was investigated for its antimicrobial activity against E. coli,
Enterobacter aerogenes (E. aerogenes), S. aureus, B. pumilus, K. oxytoca, and C. butyrium. The iron
complex’s zone of inhibition of the various bacterial strains was quite small, demonstrating
low antibacterial activity towards the bacteria. Still, these values were higher than those
of the free imine ligand. Complex 69 showed an activity of 12, 10, and 9 (mm) against
E. coli, E. aerogenes, and C. barium, respectively, and the ligand showed an activity of
14, 12, and 12 (mm), respectively (Table 2). The complex’s enhanced activity compared to
the ligand can be explained by chelation theory [46,51].

Al-Wasidi et al. synthesized an iron–Schiff base complex by complexing imine
ligand 72 with Fe(III) to form an octahedral iron complex (73, Scheme 13) which was
investigated for its antibacterial and antifungal activity against Gram-positive B. subtilis,
S. pneumonia, and S. aureus, Gram-negative E. coli Sp. and Pseudomonas Sp., and fungal
strains Aspergillus niger (A. niger) and Penicillium Sp. The iron–imine complex 73 showed
enhanced antibacterial activity relative to the free ligand 72 with a great zone of inhibition
against S. pneumonia (7–10 mm) and S. aureus (7–10 mm). It demonstrated low inhibition
against the selected fungal strains (Table 2). The results obtained were not compared to any
standard drug [52].
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El-Sonbati et al. synthesized imine–iron complex 76 with ligand 75 (Scheme 14)
and evaluated its antimicrobial activity against Gram-positive bacteria B. subtilis and
S. aureus; Gram-negative bacteria such as Salmonella sp, P. aeruginosa, and E. coli; and
fungal strains A. fumigatus and C. albicans. For all the bacterial strains selected, complex 76
showed similar antibacterial activity to the free imine ligand and low antibacterial activity
when compared with the selected standard drugs ampicillin and gentamycin (Table 2).
Against the fungal strains C. albicans and A. fumigatus, the complex showed improved
inhibition of 16 mm and 18 mm, respectively, compared to the free imine ligand (13 mm and
15 mm, respectively). This inhibition was low compared to the standard antifungal drug
amphotericin, which had an activity of 25 mm and 23 mm zones of inhibition, respectively.
The improved antifungal activity of complex 76 in relation to the free ligand (75) can be
explained by the chelation theory, where the chelation of the ligand causes an increase in
the lipophilicity properties of the metal chelate, enhancing its ability to permeate the lipoid
layers of the microbe membrane blocking the metal binding site [4,46].
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Scheme 14. Synthesis of imine–iron complex 76.

Kumar et al. synthesized the imine–iron complex 79 (Scheme 15) of imine ligand 78
and evaluated its antibacterial activity against Gram-positive P. aeruginosa and Gram-
negative S. aureus bacteria. The complex (79) showed an improved antibacterial activity
compared to the free ligand (78) against S. aureus and P. aeruginosa with a zone of inhibition
of 14 mm and 11 mm, respectively, whereas the ligand showed an inhibition of 8 mm and
6 mm, respectively. Complex 79 had a comparable zone of inhibition to that of the standard
drugs ampicillin against S. aureus (14 mm) and chloramphenicol against P. aeruginosa (8 mm)
(Table 2) and can be further investigated as an antibacterial drug candidate. The improved
antibacterial activity of the complex can be attributed to the chelation theory [46,53].

Fe(II) complex 82 (Scheme 16) of compound 81 was synthesized by Shinde et al.,
and upon investigating its antimicrobial activity against Gram-positive bacteria S. aureus
(ATCC 29737), Gram-negative bacteria E. coli (ATCC 25922), and fungal strains C. albi-
cans (MTCC 277) and A. niger (MCIM 545), it was found to possess high activity against
E. coli (ATCC25922) and S. aureus with an MIC value of 10 µg/mL against both bacteria.
This value is the same for the standard drug gentamicin, which also showed an activity
of 10 µg/mL. Complex 82 also showed improved activity against both fungal strains
C. albicans (MTCC 277) and A. niger (MCIM 545) with an MIC value of 10 µg/mL when
compared with the standard drug fluconazole, which showed an activity of 20 µg/mL
against both strains (Table 2) [2]. The reason for the exceptional antimicrobial potency of
the synthesized complex (82) was not stated, but it could be due to chelation theory [46]
and the good binding interaction of 82 with the proteins of the selected strains.
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Mukhtar et al. synthesized an imine–iron metal complex (83, Figure 1), and its antimi-
crobial activity was investigated against five bacterial isolates, E. coli, S. aureus, P. aureginosa,
K. Pneumoniae, and S. aureus, and three fungal species, F. solani, A. fumigate, and C. albicans.
The results of these studies revealed that the complex showed the highest antibacterial ac-
tivity against E. coli (14 mm) at a concentration of 1000 µg/mL but moderate activity against
the other bacterial isolates (Table 2). Its antifungal activity was quite low. It inhibited the
growth of C. albicans and F. solani by 7 mm at a concentration of 2000 µg/mL and 12 mm
at a concentration of 4000 µg/mL, respectively. It showed no antifungal activity against
A. fumigate at the studied concentrations. The ligand showed no zone of inhibition against
E. coli and P. aeruginosa at the given concentrations. It, however, showed similar activity to
the complex against S. aureus (12 mm) at a concentration of 1000 µg/mL. It also showed no
activity against all the selected fungal strains (Table 2). The results obtained in this study
were not compared to any standard drug [54]. The reason for the improved antimicrobial
activity of the synthesized complex can be attributed to the chelation theory [46].
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The synthesis of a chromone imine nano-complex of Fe(III) (87, Scheme 17) was
conducted by Shebl et al., and its antimicrobial activity was tested against microorganisms
such as E. coli, P. vulgaris, K. pneumonia, S. aureus, and C. albicans. The results showed that the
iron complex (87) has moderate activity against fungal species C. albicans (8 µg/mL) when
compared to free ligand 86 (4 µg/mL) and a standard (2 µg/mL); it, however, exhibited
very low activity (>50 µg/mL) toward all the selected bacterial stains in comparison to the
standard drug doximycin which showed activity in the range of 2–4 µg/mL (Table 2) [3].

Knittl et al. synthesized two different iron–imine complexes (88 and 89, Figure 1) and
evaluated them for their antimicrobial activity against Gram-positive bacteria S. aureus
(ATCC25923), Gram-negative P. phaseolicol (S97), and fungal species F. oxysporium using
cephalothin, chloramphenicol, and cycloheximide, respectively, as standard antibiotics.
The results indicate that 88 exhibits higher antibacterial and antifungal activity against the
selected microbes, S. aureus (37 mm), P. phaseolicol (26 mm), and F. oxysporium (31 mm),
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in comparison to 89, which showed an inhibition of 32 mm, 23 mm, and 30 mm against
S. aureus, P. phaseolicol, and F. oxysporium, respectively. These values suggest moderate
antibacterial and antifungal activities of the complexes compared to the standard antibiotic
and antifungal drugs cephalothin, chloramphenicol, and cycloheximide. Both synthesized
complexes showed improved antimicrobial activity against the selected microbes compared
to the free ligand (Table 2). Chelation tends to increase the ligand’s effectiveness as a potent
antibacterial agent. From the results obtained, there is evidence for the relationship between
the structure of the complexes and their activity. Antimicrobial activity is enhanced by
binuclear complexes rather than acyclic complexes, revealing that these complexes are
biologically more efficient and, therefore, can be useful as new drugs. It is also discussed
that the chemical geometry of compounds is important in explaining the biological activity
of the complexes [55].
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Alosaimi et al. synthesized two symmetrical imine ligands (94 and 95) and reacted each
with FeCl3·6H2O to form mononuclear octahedral Fe(III) complexes 96 and 97 (Scheme 18).
The complexes were screened for their antibacterial activity against Gram-positive bacterial
strains S. epidermidis, S. aureus, and E. faecalis and Gram-negative bacterial strains P. aerugi-
nosa, E. coli, and P. mirabilis. Antifungal activity was also determined against the common
pathogenic fungal strain C. albicans. The tested Schiff base ligands (94 and 95) exhibited
negligible antibacterial action against Gram-positive bacterial species with growth-limiting
diameters of 15 mm. They also showed no antifungal activity against C. albicans. Iron
complex 96 showed higher antibacterial activity against the Gram-positive bacterial strain
S. epidermidis (14 mm) than iron complex 97 (with a zone of inhibition of 12 mm). The
Gram-negative bacterial strain P. mirabilis was slightly inhibited by both iron complexes,
96 (8 mm) and 97 (22 mm), but all the other strains were resistant to both complexes. The
complexes exhibited low antibacterial activity compared to the standard antibiotic agent,
amoxicillin. The antibiotic agent inhibited S. epidermidis and P. mirabilis with zones of inhi-
bition of 28 mm and 44 mm, respectively. The fungus C. albicans was resistant to both iron
complexes and showed no significant antifungal activity (Table 2). Overtone’s permeability
concept and Tweedy’s chelation theory can both be used to explain why coordination
compounds have more activity than their parent ligands [46,56]. The complexes become
more permeable when a metal ion is present because they dissolve in lipids and enter the
cell more readily, causing negative changes in the cell environment and its enzymes, further
hindering the microbe’s growth. Additionally, the metal complexes impede the production
of proteins by impeding the cell’s respiration process, further inhibiting the organism’s
growth. Additionally, the probability of hydrogen bonds forming between the azomethine
linkage and the cell components will negatively impact the cell’s normal functions [57,58].



Int. J. Mol. Sci. 2024, 25, 2263 17 of 40

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 18 of 42 
 

 

coordination compounds have more activity than their parent ligands [46,56]. The com-
plexes become more permeable when a metal ion is present because they dissolve in lipids 
and enter the cell more readily, causing negative changes in the cell environment and its 
enzymes, further hindering the microbe’s growth. Additionally, the metal complexes im-
pede the production of proteins by impeding the cell’s respiration process, further inhib-
iting the organism’s growth. Additionally, the probability of hydrogen bonds forming be-
tween the azomethine linkage and the cell components will negatively impact the cell’s 
normal functions [57,58]. 

 
Scheme 18. Synthesis of complexes 96 and 97. 

Iron(III) was complexed with two imine ligands (98 and 99, Scheme 19) by Naureen 
et al. to form iron complexes 100 and 101. The ligands and their complexes were evaluated 
for their antibacterial activity against Gram-positive P. aeruginosa and Gram-negative E. 
coli and S. aureus using tetracycline as the standard drug. Their antifungal activity was 
also evaluated against C. albicans and C. glabrata with nystatin as the standard drug. The 
antimicrobial activity of the synthesized complexes was enhanced when compared to 
their free Schiff ligands. Both complexes showed similar inhibition against all the bacterial 
strains used in this research, but 101 showed better activity against S. aureus (20 mm) and 
C. albicans (24 mm) compared to 100, which showed a zone of inhibition of 16 mm and 20 
mm, respectively. The complexes showed low antibacterial activity when compared with 
the standard drug tetracycline. Both complexes showed higher antifungal activity against 
C. albicans than the standard drug nystatin (19 mm) and could be investigated as promis-
ing antifungal drug candidates (Table 2) [59]. The chelation theory can explain the im-
proved activity of the complexes compared to their free Schiff ligands [46]. 

Scheme 18. Synthesis of complexes 96 and 97.

Iron(III) was complexed with two imine ligands (98 and 99, Scheme 19) by Naureen et al.
to form iron complexes 100 and 101. The ligands and their complexes were evaluated for
their antibacterial activity against Gram-positive P. aeruginosa and Gram-negative E. coli and
S. aureus using tetracycline as the standard drug. Their antifungal activity was also evaluated
against C. albicans and C. glabrata with nystatin as the standard drug. The antimicrobial
activity of the synthesized complexes was enhanced when compared to their free Schiff
ligands. Both complexes showed similar inhibition against all the bacterial strains used in
this research, but 101 showed better activity against S. aureus (20 mm) and C. albicans (24 mm)
compared to 100, which showed a zone of inhibition of 16 mm and 20 mm, respectively.
The complexes showed low antibacterial activity when compared with the standard drug
tetracycline. Both complexes showed higher antifungal activity against C. albicans than the
standard drug nystatin (19 mm) and could be investigated as promising antifungal drug
candidates (Table 2) [59]. The chelation theory can explain the improved activity of the
complexes compared to their free Schiff ligands [46].
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Singh et al. synthesized an imine ligand by the condensation of compounds 102 and 103
in the molar ratio of 2:1, respectively. The synthesized ligand (104) was complexed with iron
to form an octahedral 105 (Scheme 20) and tested against S. epidermidis, E. coli, A. flavus, A.
niger, and C. lunata to validate its antibacterial and antifungal potentials. The complex showed
better antibacterial activity against the selected bacterial and fungal strains than the Schiff base
ligand. The complex showed the highest activity against A. niger (16 mm) and low activity
against E. coli fungal strains (15 mm) (Table 2) [60]. The improved activity of the complexes in
relation to their ligands can be explained based on Overtone’s concept and Tweedy’s chelation
theory [46,56].
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Kavitha et al. evaluated 34 (Scheme 5) for its antibacterial and antifungal activity
against Gram-positive Staphylococcus Sp. and Bacillus Sp. as well as Gram-negative E. coli
and Pseudomonas bacterial strains and fungal strains Macrophamina phaseolina (M. phaseolina)
and Sclerotium rolfsii (S. rolfsii). The iron complex 34 showed enhanced biological activity
against the bacterial and fungal strains, B. subtilis (4 mm), E. coli (4 mm), and M. phaseolina
(14 mm) compared to the ligand (33), which showed an activity of 1, 1, and 8 mm, respec-
tively. However, these activities of the complex are low when compared to the standard
antibiotic streptomycin and the standard antifungal agent mancozeb (Table 2). The concept
of Overtone explains the increased activity of complexes [51].

Borase et al. synthesized a pyridine imine transition metal complex of Fe(III) (109,
Scheme 21) by reacting metal salts (FeCl3) with compound 108. The complex was evaluated
for its antibacterial and antifungal potency against Gram-positive bacteria S. aureus and Gram-
negative bacteria E. coli, as well as three fungal strains, C. albicans, A. niger, and F. moniliforme.
The iron complex (109) showed potent antifungal activity against A. niger (15.80 mm) when
compared to the standard amphotericin-B (15.78 mm). Complex 109 showed low antifungal
and antibacterial activity against C. albicans (7.44 mm) and S. aureus (3.02 mm). The complex
was resisted by E. coli and F. moniliforme (Table 2). The antimicrobial activities of the ligand
were not provided in this study, so a comparison could not be made [61].
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Deshmukh et al. reported an imine ligand and used it to synthesize the Fe(III)
complex 110 (Figure 1) and analyzed its antimicrobial activity against Gram-positive
S. aureus and S. pyrogenes and Gram-negative E. coli and S. typhi pathogens. The com-
plex showed the highest activity against S. aureus (22 mm) and the least activity against
E. coli (16 mm) (Table 2). The results of antibacterial activity were not compared with
ligands or standard drugs, and hence a comparison could not be made [62].

Savcı et al. synthesized a Schiff base ligand (112) and complexed it with FeCl2·4H2O
to form the transition metal imine–iron complex 113 (Scheme 22). Compounds 111, 112,
and 113 were evaluated for their antimicrobial activity against Gram-positive B. subtilis,
S. aureus, and B. megaterium and Gram-negative E. aerogenes, E. coli, P. aeroginosa, and
K. pneumonia bacterial strains and fungal strains C. albicans, Y. lipolytica, and S. cerevisiae.
The results indicate that both 111 and 112 show better antibacterial activity against B. subtilis
ATCC 6633 (zone of inhibition of 40 mm and 30 mm, respectively) than the synthesized iron
complex 113 (21 mm) at a concentration of 0.2 mg/mL. The complex showed antibacterial
activity against E. aerogenes (30 mm) and P. aeruginosa (36 mm) only at an elevated concentra-
tion of 1 mg/mL but did not show significant antifungal activity against the selected fungal
strains (Table 2). Only 111 showed activities against K. pneumonia (36 mm) at a 0.2 mg/mL
concentration. Compounds 111 and 112 were found to have superior antibacterial activity
compared to all the standard antibiotic drugs against B. subtilis, B. megaterium, E. aerogenes,
and P. aeruginosa. The sizes and load distributions of the metal ions, the shape of the metal
chelate, and the potential for redox, as well as the increased lipophobicity of the molecules,
may all affect the impact of the metal complexes on microbes [63]. However, it does not
appear to be possible to simply attribute the bactericidal activity to the metal complex
structure [64,65].
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Kumar et al. synthesized an imine ligand and complexed it with FeCl3·6H2O, Fe(NO3)3·
9H2O, and Fe(OAc)3·2H2O to form iron complexes 120, 121, and 122 (Scheme 23), respectively.
The synthesized complexes were screened for their antimicrobial activity against S. aureus
and B. subtilis (as Gram-positive bacteria), P. aeruginosa, E. coli, and Salmonella typhi (as Gram-
negative bacteria), and fungi Rizoctonia sp., Aspergillus sp., and Penicillium Sp. Complex 122
demonstrated the highest antibacterial activity against S. aureus (62 mm) and P. aeruginosa
(65 mm). Complex 120 showed the highest activity against E. coli (41 mm) and S. typhi (42 mm).
The antibacterial activity of complexes 121 and 122 was higher against the Gram-positive
bacteria than against the Gram-negative bacteria (Table 2), and this is due to the difference in
the structure of the cell walls. Gram-negative cells have more complex cell walls than Gram-
positive ones (Table 2). The results for antifungal screening show that 122 has high antifungal
potency against Aspergillus sp (80 mm) and Penicillium Sp. (66 mm), even better than that
of the standard drug miconazole with an inhibition of 57 mm and 65 mm, respectively, at a
concentration of 1.0 mg/mL. Complexes 120 and 121 showed moderate antifungal activity
toward the selected strains (Table 2). Generally, the ligand demonstrated moderate activity
and the complexes displayed moderate-to-high activity toward all the organisms compared
to standard drugs. This could be due to the presence of the -NH group, which is believed to
impart the biological system’s transformation reaction and plays a significant role in biological
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activity. Chelation theory also explains the enhanced activity of the complexes compared to
the ligand [46,66].
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Mohamed et al. synthesized the novel octahedral iron–imine complex 123 (Figure 1)
and evaluated its antimicrobial potential on the bacterial strains Clavibacter michiganensis,
Xanthomonas campestris, and Bacillus megaterium and fungal strains Monilinia fructicola,
Penicillium digitatum, and Colletotrichum acutatum. The free Schiff base ligand showed better
antibacterial activity against all the selected bacterial strains than its iron complex. The
ligand exhibited higher antibacterial activity against C. michiganensis (32 mm) than the
standard drug tetracycline (30 mm). It also showed similar activity to tetracycline against
B. megaterium and X. campestris (Table 2). Also, complex 123 (Figure 1) showed enhanced
antifungal activity against M. fructicola, (62.5 mm) and P. digitatum (62.5 mm) compared to
both the free Schiff base ligand (36.0 and 28.0 mm, respectively) and the standard antifungal
agent azoxystrobin (45.3 and 58.1 mm, respectively) and can be considered as an antifungal
drug candidate. The microbicide impact of the investigated compounds may result from
the chemical structure of the free ligand as well as the toxicity of the investigated metal
ions [67,68]. The increased antimicrobial activity of freshly synthesized metal chelates was
explained by the principle of cell permeability of the microbes [35].

The imine–iron complex 124 (Figure 1) was synthesized by Elshafie et al., and its
biological activity was evaluated against both human and phytopathogens. Antimicrobial
analysis was conducted on pathogenic bacterial strains E. coli, B. cereus, Pseudomonas
fluorescens, and P. aeruginosa and phytopathogenic fungi Monilinia fructicola, Aspergillus
flavus, Penicillium italicum, and Botrytis cinerea. The antibacterial activity of 124 was dose-
dependent. It showed the highest antibacterial activity against B. cereus with a measured
zone of inhibition of 14 mm at a concentration of 100 µg/mL, higher than that of both
the ligand (12 mm) and tetracycline (12 mm). Complex 124 inhibited the growth of P.
aeruginosa (8 mm) and P. fluorescens (12 mm) only at a higher concentration of 200 µg/mL.
Generally, the free imine showed better antibacterial activity than the metal complex 124.
Complex 124 exhibited no antifungal activity against M. fructicola. Still, it showed enhanced
activity against B. cinerea (6.7 mm) at a concentration of 400 µg/mL, whereas at the same
concentration, it was resisted by the free ligand. The activity of both the Schiff base
ligand and the complex was low when compared to the standard natural antifungal drug
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cycloheximide (Table 2). The acquired antimicrobial test findings demonstrated that the
tested ligands and their metal complexes have the capacity to suppress the growth of all
strains under study in a dose-dependent manner. In particular, the chemical structure of the
free ligand itself and the toxicity of the metal ions under study could both contribute to the
fungicidal effects of the compounds under study [63,64]. Chelation theory can also explain
the enhanced activity of the complex. Also, the investigated gemifloxacin ligand and its
metal complexes’ capacity to block the DNA gyrase and DNA topoisomerase IV enzymes
may potentially be related to their antifungal and antibacterial action [69,70].

Ismail et al. synthesized an imine–iron complex (30, Scheme 4) and evaluated it for
its in vitro antibacterial activity against Gram-positive bacteria S. aureus and B. subtilis,
Gram-negative bacteria P. vulgaris and E. coli, and fungi A. flavus and C. albicans. The imine
ligand exhibited better antibacterial and antifungal activity against all the microbial strains
studied than 30. Complex 30 showed lower antibacterial and antifungal activity against
S. aureus, E. coli, and C. albicans with a zone of inhibition of 17, 19, and 15 mm, respectively,
compared to the selected antibacterial standard drugs gentamycin (S. aureus = 24 mm and
E. coli = 30 mm) and ketoconazole (C. albicans = 20 mm). The ligand had high action against
C. albicans, displaying antimicrobial activity (25 mm) superior to that of the ketoconazole
standard (20 mm). Additionally, the ligand’s inhibition zone value against B. subtilis is
25 mm, which is comparable to the standard gentamycin (26 mm) (Table 2). The reason for
the reduced antimicrobial efficiency of the complex was not stated [29].

Abdelrahman et al. evaluated complexes 38, 39, and 40 (Scheme 6) for their antimi-
crobial activity against Gram-positive bacteria S. aureus and B. subtilis, Gram-negative S.
typhimurium and E. coli bacteria, and unicellular C. albicans and multicellular A. fumigatus
fungi. The free ligand was ineffective against all the studied microbes except for C. albicans,
which had an inhibition zone of 8 mm. Iron complexes 38 and 40 showed no activity against
the selected bacterial strains. Complexes 38 and 39 showed moderate antifungal activity
against C. albicans with an inhibition zone of 14 mm and 22 mm, respectively; these values
were high when compared to the free ligand, which showed an inhibition of 8 mm. The
lipophilicity of compounds significantly influences the antimicrobial activity. The enhanced
antimicrobial activity of the complexes in relation to the ligand is due to chelation theory.
Chelation results in an increase in the lipophilicity of the metal complexes, causing the
concentration of complexes in the lipid membrane to increase and reducing microorganism
multiplicity. It is hypothesized that the complexes’ antifungal effects result from either
killing the bacteria or preventing their growth by obstructing their active sites [31,71].

Ahmed et al. synthesized the imine–iron complex 125 (Figure 1) in a 1:1 ratio with the
ligand. The synthesized compounds were tested for their antimicrobial activity against
the Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli, as well as fungal
strains C. albicans and A. flavus. All the selected microbes resisted the ligand except E. coli,
against which it showed an inhibition zone of 9 mm, a value higher than that of the
antibacterial drug amikacin (6 mm). Complex 125 showed the same zone of inhibition
(10 mm) as the standard drug amikacin against S. aureus and enhanced activity against
E. coli (10 mm) compared to the same standard drug. Several factors could be responsible
for the remarkable antibacterial activity of the complex, including interference with the
creation of the cell wall, harm because of which the permeability of the cell may be changed,
or disorganization of the lipoprotein, resulting in cell death. Also, different cellular enzymes,
essential in the metabolic pathways of microbes, could be deactivated. Another factor could
be the formation of a hydrogen bond between the azomethine group and the active center
of the cell’s components, interfering with proper cell function [72].

A mononuclear chelate of iron(III) was synthesized by Mohamed et al. by condensing
a new tridentate Schiff base ligand (128) with iron chloride (FeCl3·H2O) in a 1:1 ratio. The
complex formed (129) had an octahedral geometry. The in vitro antimicrobial potency of
the synthesized complex (129) was evaluated against Gram-negative bacteria E. coli and
Gram-positive bacteria S. aureus and fungal strains C. albicans and A. flavus. Complex 129
showed a broad zone of inhibition (14 mm/mg sample) against A. flavus, whereas the free
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Schiff base ligand demonstrated zero activity. This activity was much higher than that of
ketoconazole (8 mm/mg sample), the selected standard antifungal agent. The enhanced
microbial activity of the complex can be attributed to the increased lipophilicity of the metal
complex upon coordination with the free ligand. This ensures the easy movement of the
metal chelate into the fungal cell membrane, inhibiting microbial growth or distorting its
active site [73,74]. For the other microbial strains, the Schiff base ligand showed activity
similar to its free ligand (Table 2). The reason for the reduced activity of the Schiff base
against E. coli, S. aureus, and C. albicans was not stated [75].

Hidayati et al. synthesized an N-(2-hydroxybenzylidene) chitosan Schiff base and its
iron(II) complex and evaluated them for their antibacterial potency. Chitosan (poly-β-(1→4)-
glucosamine) is a very abundant non-toxic natural biopolymer, and its metal complexes are
known to exhibit very good biological activities. Hidayati et al. evaluated chitosan, the
synthesized chitosan Schiff base ligand, and its imine complex for their ability to inhibit the
growth of E. coli and S. aureus and found—at a concentration of 1000 ppm—the complex being
most active against both bacterial strains (9.86 mm and 10.16 mm, respectively), followed by the
chitosan Schiff base (9.50 mm and 9.33 mm, respectively) and lastly the chitosan itself (8.75 mm
and 9.25 mm, respectively). The observed improvement in the antibacterial activity of the
chitosan Schiff base–iron complex can be explained by chelation, which enhanced the lipophilic
nature of the complex, ensuring its faster diffusion across bacterial cell membranes [9,76].
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Table 2. Product, synthesis conditions, and in vitro antimicrobial activity of imine–iron complexes compared to the respective positive controls †.

No. Complex No. Structures of Synthesized
Complexes

Reaction
Conditions Antimicrobial Biological Activity Ref.

1. 51
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nia E. aerogenes 

111 40±0.47(0.2) 
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0.81(0.2) 
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Erythromycin 20 ± 0.00 25±0.47 19±0.47 19±0.00  27 ± 1.24 

23. 
120 
121 
122 

 

Reflux, 8 h 

Zone of inhibition, mm 

[66] 

 S. au-
reus 

P. aure-
ginosa 
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21. 110

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 29 of 42 
 

 

 

109 3.02 ** R 15.80 7.44 ** R 
Chloramphenicol 

15.11 25.44 

 

23.23 

 

Amphotericin 15.78 12.58 

21. 110 

  

Reflux, 15–16 h 

Zone of inhibition, mm 

[62] 

 S. pyrogenes E. coli S. typhi 

110 25 16 19 

22. 113 

 

Reflux, 6 h Zone of inhibition, mm (concentration, mg/mL) 

[64] 
 

 B. subtilis 
B. mega-
terium P. aeroginosa 

K. pneumo-
nia E. aerogenes 

111 40±0.47(0.2) 
34±0.81(0.
2) 42±1.24(1) 36±0.47(0.2) 45 ± 0.00 

112 
30 ± 
0.81(0.2) 

22±0.81(0.
5) 33±0.81(0.2) ** R 28 ± 0.00 

113 
21 ± 
0.00(0.2) ** R 36±1.24(1) ** R ** R 

Erythromycin 20 ± 0.00 25±0.47 19±0.47 19±0.00  27 ± 1.24 

23. 
120 
121 
122 

 

Reflux, 8 h 

Zone of inhibition, mm 

[66] 

 S. au-
reus 

P. aure-
ginosa 

E. coli S. typhii Aspergillus 
sp. 

Penicillium 
sp. 

119 36 08 10 10 48 29 
120 30 36 41 42 68 61 
121 24 25 22 28 51 54 
122 62 65 33 35 80 66 
Imipenem 

100 100 
100 

100 
57 65 

Miconazole    

Reflux, 15–16 h

Zone of inhibition, mm

[62]

S. pyrogenes E. coli S. typhi

110 25 16 19

22. 113

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 29 of 42 
 

 

 

109 3.02 ** R 15.80 7.44 ** R 
Chloramphenicol 

15.11 25.44 

 

23.23 

 

Amphotericin 15.78 12.58 

21. 110 

  

Reflux, 15–16 h 

Zone of inhibition, mm 

[62] 

 S. pyrogenes E. coli S. typhi 

110 25 16 19 

22. 113 

 

Reflux, 6 h Zone of inhibition, mm (concentration, mg/mL) 

[64] 
 

 B. subtilis 
B. mega-
terium P. aeroginosa 

K. pneumo-
nia E. aerogenes 

111 40±0.47(0.2) 
34±0.81(0.
2) 42±1.24(1) 36±0.47(0.2) 45 ± 0.00 

112 
30 ± 
0.81(0.2) 

22±0.81(0.
5) 33±0.81(0.2) ** R 28 ± 0.00 

113 
21 ± 
0.00(0.2) ** R 36±1.24(1) ** R ** R 

Erythromycin 20 ± 0.00 25±0.47 19±0.47 19±0.00  27 ± 1.24 

23. 
120 
121 
122 

 

Reflux, 8 h 

Zone of inhibition, mm 

[66] 

 S. au-
reus 

P. aure-
ginosa 

E. coli S. typhii Aspergillus 
sp. 

Penicillium 
sp. 

119 36 08 10 10 48 29 
120 30 36 41 42 68 61 
121 24 25 22 28 51 54 
122 62 65 33 35 80 66 
Imipenem 

100 100 
100 

100 
57 65 

Miconazole    

Reflux, 6 h

Zone of inhibition, mm (concentration, mg/mL)

[64]

B. subtilis B. megaterium P. aeroginosa K. pneumonia E. aerogenes

111 40±0.47(0.2) 34±0.81(0.2) 42±1.24(1) 36±0.47(0.2) 45 ± 0.00

112 30 ± 0.81(0.2) 22±0.81(0.5) 33±0.81(0.2) ** R 28 ± 0.00

113 21 ± 0.00(0.2) ** R 36±1.24(1) ** R ** R

Erythromycin 20 ± 0.00 25±0.47 19±0.47 19±0.00 27 ± 1.24
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34 28 30 
  

Azoxystrobin 45.3 ± 2.1 58.1 ± 1.2 
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2.3. Imine–Iron Complexes as Antioxidants

Oxidative metabolism is one of the crucial factors for cell survival. Free radicals and
other reactive oxygen species (ROS) are produced because of this reliance, which leads to
oxidative alterations. When too many free radicals are produced, the ROS concentration
becomes above average, which can overwhelm protective enzymes and have detrimen-
tal and fatal effects on cells by oxidizing membrane lipids, cellular proteins, DNA, and
enzymes, which stops cellular respiration [18]. The way to counter the reaction of these
free radicals is to introduce an antioxidant, which can be experimentally carried out using
assays such as DPPH [77]. Compounds of metal chelates like iron–imine complexes offer
advantages over conventional synthetic antioxidants because of the different geometry,
oxidation states, and coordination numbers of metal chelates that support and promote
the redox processes linked to antioxidant action. In its high oxidation state, the metal ion’s
ability to extract electrons influences the antioxidant activity of the resultant complex by
moving the ligand’s electron density to the metal center, where it functions as a modulator
agent. When the metal is in its low oxidation state, it behaves in the opposite way. These
actions significantly alter the ligand’s electrical charge distribution, facilitating the loss of
electrons and raising the complex’s capacity to scavenge radicals. A metal ion like iron (Fe),
which is found in many biologically privileged structures and essential to an organism’s
ability to function, is useful in constructing novel chelate antioxidants because it lowers
toxicity [78].

Turan et al. synthesized an imine ligand and its octahedral imine–iron(II) complex 126
(Figure 1) and evaluated their in vitro antioxidant activity using 2,2-diphenyl-1-picryl-
hydrazyl-hydrate (DPPH) radical scavenging, 2,2’-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS) cation radical scavenging, and the ferric reducing ability of plasma
(FRAP). In the ABTS assay, a compound’s antioxidant ability is measured based on the
reduction of ABTS•+ cation radicals [79]. Complex 126 (0.6) demonstrated weak ABTS•+
radical scavenging activity, while the parent ligand exhibited no discernible ABTS•+ radical
scavenging activity. The molecule’s structure and single electron transfer potential influence
the results. The complex showed a more enhanced DPPH radical scavenging ability (1.25)
than the ligand (1.35) itself, but this activity was moderate when compared with the
standard drugs (0.10–0.31). The FRAP method measures a compound’s ability to cause the
reduction of ferric ions (Fe3+) to ferrous ions (Fe2+). The ligand (0.5) showed an antioxidant
ability similar to that of 126 (0.4) in this assay (Table 3). The antioxidant potency of a series
of compounds has been studied for the potential that they can be influenced by the aromatic
ring and the number of hydroxyl groups present in a compound [80,81].

El-Lateef et al. explored imine–iron complexes 3 and 4 (Scheme 1) for their antiox-
idant activity using the DPPH assay. The results revealed that the free ligand and its
metal complexes have better antioxidant activity than the standard antioxidant agent
vitamin C (55 µg/mL). The complexes showed enhanced activity compared to the free
ligands (1 = 45 µg/mL, 2 = 32 µg/mL), with 3 possessing the highest DPPH free radical
scavenging ability with an IC50 value of 22 µg/mL (Table 3). The results indicate that the
complexes had greater antioxidant effects against the DPPH free radical than standard
vitamin C and can be considered antioxidant drug candidates. This study did not state the
reason for the exceptional activities of the ligands and complexes [21].

Naureen et al. explored the antioxidant activity of 100 and 101 (Scheme 19) using the
DPPH assay. The free imine ligands 98 and 99 demonstrated better antioxidant activity
(1.23 and 1.02 µg/mL, respectively) than their iron complexes, 100 (1.70 µg/mL) and 101
(1.41 µg/mL). The free ligand 99 showed better antioxidant activity (1.02 µg/mL) than
the standard vitamin C (1.14 µg/mL). Generally, both the free ligand and iron complexes
exhibited good free radical scavenging abilities (Table 3). The modes of action of the ligands
and their complexes were not outlined [59].

The tetradentate Schiff base 129 was synthesized along with its Fe complex 130
(Scheme 24) by Said et al. An in vitro antioxidant activity was determined using the
DPPH radical scavenging, ferric thiocyanate (FTC), hydroxyl radical scavenging activity
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(HRSA), and hydrogen peroxide scavenging activity methods. Complex 129 demonstrated
a better free radical scavenging ability than the synthesized complex 130 in the DPPH
radical scavenging, FTC, and HRSA methods with IC50 values of 53.55, 48.81, and 63.43, re-
spectively, whereas those of 130 were 44.65, 9.47, and 30.29. The complex showed moderate
activity compared to the standard Trolox and BHA in the DPPH radical scavenging, FTC,
and HRSA methods (Table 3). It, however, demonstrated a better ability (93.74 µg/mL)
to remove H2O2 from the reaction mixture than 129 (92.52 µg/mL) and the standards
Trolox (91.80 µg/mL) and BHA (92.97 µg/mL) when the hydrogen peroxide scavenging
activity method was employed (Table 3). Due to the presence of the hydroxyl group on the
ligand, its antioxidant activity was expected to be higher than that observed in this study,
and this may be due to the steric hindrance or the presence of bulky donating groups (or
both), making it challenging for the ligand to supply the hydrogen atom (H) to the DPPH
radical [82].
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Hayder et al. synthesized the new imine ligand 135 and its octahedral imine–iron
complex 136 (Scheme 25). The antioxidant activity of 135 and 136 was evaluated using
the DPPH radical scavenging activity method. The iron complex showed an enhanced
ability to scavenge DPPH· radicals (49% scavenging) than the free ligand (24% scavenging).
Compared to the standard ascorbic acid (82% scavenging), the complex showed a moderate
ability to scavenge the free radicals in the reaction mixture (Table 3) [16].

Elshafie et al. evaluated complex 124 (Figure 1) for its in vitro antioxidant activity. The
free imine ligand and complex 124 both showed a high antioxidant activity (164.6%), with
the iron complex being slightly higher than the ligand (169.7%). Complex 124 can donate
hydrogen to scavenge the free radicals, hence reducing the oxidation process (Table 3) [69].
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Borase et al. conducted an antioxidant assay on the metal complex 109 (Scheme 21) to
determine its free radical scavenging ability, and it proved to have moderate antioxidant
activity (1615.22 µg/mL) (Table 3). The results of the antioxidant activity of ligands were
not given, and subsequent comparisons could not be made [61].

Savcı et al. investigated 111, imine ligand 112, and its imine–iron complex 113
(Scheme 22) for their antioxidant activity using DPPH radical scavenging, total antioxidant
activity, FRAP, and CUPRAC activity. The results obtained revealed that the iron complex
113 (0.7) had a high ability to remove DPPH from the reaction mixture when compared
to 111 (1.9), 112 (0.8), and the standard BHT (1.1). For the total antioxidant activity assay,
both 112 (0.62)) and 113 (0.61) showed a similar potential to the standard BHA (0.60) in
eliminating lipid peroxide from the reaction mixture and an enhanced potential compared
to the standard BHT (0.40). In the FRAP assay, 111 (0.06) showed the lowest reduction
capacity in reducing the Fe3+ ions, followed by the standard BHT (0.08), complex (0.11),
and BHA (0.2), and the ligand 112 (0.38) showed the highest activity. Finally, the CUPRAC
method confirmed the results of the other assays, with 111 indicating the lowest antiox-
idant activity (Table 3). Most of the inhibitor’s antioxidant effect comes from its ability
to donate one electron or hydrogen to the radical centers formed in biological systems,
thus neutralizing them. The inhibitor’s structure and characteristics are critical factors in
demonstrating activity [49]. Potential sites for biochemically active substances connected
to the balance of molecular proton transfer and hydrogen bonds can be found in the Schiff
bases. The biological activity of the Schiff base [83] is typically increased by complexes
formed with transition metals. Hence, the good antioxidant activity of both the ligand and
complex was achieved in this study [84].
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2.4. Other Pharmacological Activities of the Imine–Iron Complexes

Iron–imine complexes have been found to possess anti-inflammatory properties, and
their mechanism of action has been studied extensively. One of the primary mechanisms
by which these complexes exhibit anti-inflammatory activity is inhibiting the production of
pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. These cytokines play a crucial
role in the inflammatory response by recruiting immune cells to the site of inflammation
and activating them. By inhibiting the production of these cytokines, iron–imine complexes
can reduce the activity of immune cells and thus reduce inflammation. Additionally, iron–
imine complexes have been found to inhibit the activity of cyclooxygenase-2 (COX-2),
an enzyme that plays a key role in producing prostaglandins. Prostaglandins are lipid
mediators that are involved in the inflammatory response, and their production is increased
during inflammation. By inhibiting COX-2 activity, iron–imine complexes can reduce the
production of prostaglandins and thus reduce inflammation. Iron–imine complexes have
also been found to inhibit the activity of NF-κβ, a transcription factor that plays a crucial
role in regulating immune and inflammatory responses. NF-κβ is activated in response
to various stimuli, including pro-inflammatory cytokines, and its activation results in
the transcription of genes involved in the inflammatory response. By inhibiting NF-κβ
activity, iron–imine complexes can reduce the expression of inflammatory genes and thus
reduce inflammation.

Kumar et al. screened imine–iron complexes 120, 121, and 122 (Scheme 23) for
their in vivo anti-inflammatory activity using albino rats. All the complexes showed
anti-inflammatory activity higher than that of the standard drug phenyl butazone (18.2%
anti-inflammatory activity), with 122 (31.1%) exhibiting the highest activity at the same
concentration of 25 mg/kg. Complex 121 showed the least anti-inflammatory activity
(27.2%). Compared to the complexes, the ligand (9.0%) showed very low anti-inflammatory
activity (Table 4). Complex 122 can be explored further as an anti-inflammatory drug
candidate. The increased anti-inflammatory activity of the complex in relation to the ligand
can be explained by the chelation theory, which describes the increase in polarity and the
lipophilic nature of the complex due to chelation and how this causes it to efficiently cross
the lipid layer, affecting the desired anti-inflammatory action [66].

Imine–iron complexes have shown a few other medicinal activities. Ahmed et al.
screened complex 125 (Figure 1) on coronavirus (SARS-CoV-2) using molecular docking.
The molecular docking studies investigated the interaction that exists between the complex
and the crystal structure of the virus’s (SARS-CoV-2) main protease with unliganded active
site (2019-nCoV, coronavirus disease 2019, or COVID-19) (PDB ID: 6Y84) proteins. The
imine–iron complex 125 (Figure 1) had low energy, (−8.5 kcal/mol), which means it has a
strong binding affinity and can inhibit the biochemical processes of the proteins, inhibiting
viral capability (Table 4) [72].

Elkanzi et al. synthesized imine–iron complex 139 (Scheme 26) and screened its
in vitro anti-inflammatory activity using the anti-denaturation method of egg albumin.
Heat applied to the egg denatures the egg albumin, and the denatured protein produces
certain antigens. These antigens are linked to type-III hypersensitivity reactions, which
cause several diseases. The anti-inflammatory assay analyses test an agent’s ability to limit
the denaturation process. The result obtained from this study showed that 139 exhibited
a moderate percentage of inhibition (0.70) as compared to the ligand (0.13) and standard
anti-inflammatory drug ibuprofen (2.9) at a concentration of 100 µg/mL (Table 4). The
inverse relationship between the dipole moment of the complex and its activity explains the
reduced activity of the complex. The dipole moment of the complex (10.11) is higher than
that of the ligand (5.91), and this increases the polarity and decreases the lipophilic nature
of the complex, lowering its efficiency to passing through the lipid layer, hence making it
less efficient as an anti-inflammatory agent [83,84].
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† Values are written as reported in the literature. 

3. Conclusions 
While nitrogen is a vital macro-nutrient, iron is a significant micro-nutrient in the 

human body. Accordingly, the biocompatibility (possibility of being bioavailable) of iron–
imine complexes in the human body is higher than that of other organometallic com-
plexes. This article discusses the recent development of organo-iron compounds as me-
dicinally privileged compounds. As discussed herein, some of the iron–imine complexes 
demonstrated good-to-excellent pharmacological activity in several dreadful diseases like 
different types of cancers and microbial, oxidation, and inflammation-related diseases. 
The observed anticancer activity of iron–imine complexes is believed to be due to their 
tailored delivery and different mechanisms of action, which include altering iron metab-
olism, producing reactive oxygen species (ROS), and blocking key enzymes. As antimi-
crobial agents, they outperform many conventional antimicrobial agents due to novel 
mechanisms of action, broad-spectrum activity, and biofilm disruption, which can be 
traced to the chelation process, the toxicity of metal ions against bacteria, and the improve-
ment in the hydrophobicity and liposolubility of the molecules due to the presence of an 
azomethine linkage in the complex. The different geometry, oxidation states, and coordi-
nation numbers of metal chelates like iron complexes support and promote the redox pro-
cesses linked to antioxidant action. One of the primary mechanisms by which these com-
plexes exhibit anti-inflammatory activity is inhibiting the production of pro-inflammatory 
cytokines such as TNF-α, IL-1β, and IL-6. They also inhibit the activity of cyclooxygenase-
2 (COX-2). This enzyme plays a key role in the production of prostaglandins (lipid medi-
ators that are involved in the inflammatory response, and their production is increased 
during inflammation). 

Iron (Fe), complex in many biological structures and essential to an organism’s ability 
to function, can be useful in constructing novel chelate drugs because it can possibly lower 
toxicity. The chemistry and biology of iron is still under investigation. Quite recently, a 
unique version of an iron-dependent non-apoptotic cell death procedure was reported 
[85,86]. Iron–imine complexes can be developed as a valuable probe for antimicrobial, an-
tifungal, anti-inflammatory, and antioxidant drug development. Accordingly, iron–imine 
complexes can play a crucial role in future drug development research. In a nutshell, iron, 
the fourth most abundant element in the Earth’s crust, can form various non-toxic com-
plexes with imines. Iron–imine complexes have demonstrated diverse medicinal activi-
ties, and some of these derivatives have shown promise in becoming commercial drugs in 
the future. 
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human body. Accordingly, the biocompatibility (possibility of being bioavailable) of iron–
imine complexes in the human body is higher than that of other organometallic complexes.
This article discusses the recent development of organo-iron compounds as medicinally
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strated good-to-excellent pharmacological activity in several dreadful diseases like different
types of cancers and microbial, oxidation, and inflammation-related diseases. The observed
anticancer activity of iron–imine complexes is believed to be due to their tailored delivery
and different mechanisms of action, which include altering iron metabolism, producing
reactive oxygen species (ROS), and blocking key enzymes. As antimicrobial agents, they
outperform many conventional antimicrobial agents due to novel mechanisms of action,
broad-spectrum activity, and biofilm disruption, which can be traced to the chelation pro-
cess, the toxicity of metal ions against bacteria, and the improvement in the hydrophobicity
and liposolubility of the molecules due to the presence of an azomethine linkage in the com-
plex. The different geometry, oxidation states, and coordination numbers of metal chelates
like iron complexes support and promote the redox processes linked to antioxidant action.
One of the primary mechanisms by which these complexes exhibit anti-inflammatory
activity is inhibiting the production of pro-inflammatory cytokines such as TNF-α, IL-1β,
and IL-6. They also inhibit the activity of cyclooxygenase-2 (COX-2). This enzyme plays
a key role in the production of prostaglandins (lipid mediators that are involved in the
inflammatory response, and their production is increased during inflammation).

Iron (Fe), complex in many biological structures and essential to an organism’s abil-
ity to function, can be useful in constructing novel chelate drugs because it can possibly
lower toxicity. The chemistry and biology of iron is still under investigation. Quite re-
cently, a unique version of an iron-dependent non-apoptotic cell death procedure was
reported [85,86]. Iron–imine complexes can be developed as a valuable probe for antimi-
crobial, antifungal, anti-inflammatory, and antioxidant drug development. Accordingly,
iron–imine complexes can play a crucial role in future drug development research. In a
nutshell, iron, the fourth most abundant element in the Earth’s crust, can form various
non-toxic complexes with imines. Iron–imine complexes have demonstrated diverse medic-
inal activities, and some of these derivatives have shown promise in becoming commercial
drugs in the future.
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