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Abstract: Electromagnetic radiation from communication and electronic devices, networks, systems and 

base stations has drawn concern due to excessive global usage with increasing power and operating 

frequency level. Numerous previous researches only focus on how the radiation from certain frequency 

ranges of particular devices could harm specific human organs and tissues, resulting in 

distinct symptoms. In this research, electromagnetic propagation and properties in fourteen human 

organs and tissues were analyzed and investigated based on the organs and tissues’ electromagnetic and 

mechanical parameters, and chemical composition. Counting the organs and tissues as electromagnetic 

materials, their permittivity and conductivity, computed by a 4-Cole-Cole mode, directly respective to the 

operating frequency, are interrelated to wave behavior and hence influence the organs’ response.  

Tests were conducted in 1GHz to 105GHz system settings, covering most microwave frequency uses: 

2.4GHz of 4G-LTE, WiFi, Bluetooth, ZigBee, and the 5G ranges: 28GHz of 5G-mmW and 95GHz of 5G-

IoT. Trial human organs and tissues were placed in the wave propagation direction of 2.4GHz and 28GHz 

dipole antennas, and a waveguide port operating from 95-105GHz. The quantitative data on the effects of 

5G penetration and dissipation within human tissues are presented. The absorbance in all organs and 

tissues is significantly higher as frequency increases. As the wave enters the organ-tissue model, the 

wavelength is shortened due to the high organ-tissue permittivity. Skin-Bone-Brain layer simulation 

results demonstrate that both electric and magnetic fields vanish before passing the brain layer at all three 

focal frequencies of 2.4GHz, 28GHz, and 100GHz.  

Keywords: electromagnetic; microwave; radiation; pollution; absorption; human organs; tissues; 5G. 

 

1. Introduction 

Electromagnetic (EM) spectrum in the radio frequency (RF) and microwave frequency ranges have 

been utilized for wireless communications since World War II (1939-1945). The radar frequency bands 

covering the EM spectrum according to IEEE standards are classified from High Frequency (HF), in the 

range of 0.003-0.03GHz (or 3-30MHz), to Millimeter (mm) in the range of 110-300GHz [1]. The frequency 

band usage is strictly regulated by each country’s national laws and coordinated by the International 

Telecommunication Union (ITU) [2]. ITU regulations focus on the prevention of user, generation, and 

transmission interferences. Based on a global mobile data traffic forecast [3], by 2022, there will be 5.7 billion 

global mobile users, with the average smartphone generating 11GB of mobile traffic per month, and the 

video streaming accounting for 79% of the total mobile data traffic.  
Based on their free-space radiation characteristics to serve numerous users in a wide-open space, 

wireless technologies require far more energy than wire technologies do. Although the energy efficiency of 

wireless access networks has been improving significantly, it still cannot keep up with rapidly increasing 

data usage and new functionalities at network level [4]. The available estimates of the internet energy 

intensity ranges from 136 kW/GB to 0.0064 kW/GB [5]. Setting the mid-point at 78kW/GB, we could 

consume circa 4.89 MW monthly worldwide in 2022 by mobile usage alone. Energy consumption of 
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wireless devices is directly connected to the device efficiency in both radiated or transmitter power and 

data speed. The transmitter power is rated based on a 0-dB antenna load of the receiving device or the 

portable transmitters, e.g. cell phones, internet of thing (IoT) wireless wearable units, smart home 

accessories, walkie-talkies, where the resistance and output of the received antenna are assumed to be 

exactly the same as those of the transmitter feeding it [6]. These portable transmitters can have a high 

radiated power when they are located close to their susceptible or broadcasting equipment. Typical field 

strengths from a handheld transmitter are 5V/m to 7V/m at 0.5m distance [7]. 

At a cellular tower or a cell site, an effective radiated power (ERP) of up to 500 watts per radio channel 

or transmitter, depending on the tower height, was permitted by the Federal Communications Commission 

(FCC) [8]. The majority of cellular or Personal Communications Services (PCS) cell sites in urban and 

suburban areas operate at an ERP of 100 watts per channel or less. An ERP of 100 watts corresponds to an 

actual radiated power of 5-10 watts, depending on the type of antenna used [9]. As with all forms of EM 

energy, the power density from a cellular or PCS transmitter decays proportionally to 1/R2 as the distance 

from the cell site increases. Therefore, for a common 40W of power density of about 10mW/m2 at 100m 

from the antenna tower, the power density will be 1mW/m2, as the distance increases to 300m away from 

the base station and the device will receive 1W, based on the effective antenna area of 0.001m2. Having 

several mobile phones active in the same area, the total EM radiation can get close to 2W, the same level as 

the maximum power radiation of 5mW/cm2 at 2 inches from the microwave oven surface permitted by 

federal regulations [10]. Besides the aforementioned cellular emission, there is also EM radiation from 

wireless networks, smart and wearable devices, unceasingly scattering around, whether or not you are 

connected to their networks. Take for example the myriads of Wi-Fi connections in urban areas, or the in-

flight Wi-Fi where anyone can video stream with a high data rate passing through their body. A few aircraft 

Wireless Local Area Network (WLAN) units, typically with a power of 30-50W per unit [11], are designed 

to deliver a good RF propagation within the aircraft cabins. Information on WLAN performance inside 

aircraft passenger cabins was initially studied by NASA in 2005 [12]. Moreover, according to the forecasts, 

in 2021 there will be 928 million connected wearable units worldwide [13]. These multi-millions of wireless 

devices and their enormous power consumption generate plenty of unused residual EM radiations all 

around us. In this research, we tag these unwanted and unnecessary EM radiations as ‘Electromagnetic 

Pollution’ [14-17].  

Radiated power varies with respect to the operating frequency and its system, depending mainly on 

different communication states, antenna types and RF circuits/networks. Figure 1 (a) presents the power 

consumption of different mobile phone parts [18-20]. The data communication measurements were 

focusing on Bluetooth (BT), WiFi and cellular with 3G technology. BT is widely used for short range 

communications and is commonly integrated in smart phones. The power value of 6 states: off, on, 

connected and idle, discovery, receiving and sending, were investigated [19]. While having the BT on, the 

power consumption increases by 3mW, from 12mW to 15mW. However, the power is close to 500mW when 

the BT is either in receiving or sending stage. Airpods and wireless headsets use BT for data 

communication. The power consumption of WiFi IEEE802.11 for infrastructure and ad hoc mode were 

measured in the range of 3-5m between the WLAN access point and a testing cellphone (Nokia N95). For 

the ad hoc mode, the power is about 1W with the phone in idle mode. Making or receiving video calls 

requires slightly more than 2W. It was shown that WiFi consumes 1.79 and 5.40 times more power than 3G 

while downloading and uploading with 1Mbps data speed, respectively [18]. The power consumption of 

devices used to access the internet is listed at 2.5W (tablet), 3W (mobile phone 4G LTE), 70W (Mid-range 

PC), 15W (Laptop) and 11W (Netbook) [20]. With the 5G technology, the data rate and capacity can be 

delivered up to 1000 times more than the 4G-LTE; however, in order to support the extra number of small 

cells and massive multiple-input multiple-output (MIMO) antennas, its energy consumption is rated 

approximately 1,000 times higher.  
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(a) 

 (b) 

Figure 1. (a) Power consumption of different mobile phone parts [19]. (b) Communication system 

operating frequency of different band class indices. 

Most commercial wireless RF communications operate within 2.5GHz, e.g. 2G: up to 1.9GHz, 3G: up 

to 2.1GHz, 4G: up to 2.5GHz, WiFi (IEEE 802.11 b/g): 2.4-2.497GHz, BT: 2.402-2.483GHz, ZigBee: up to 

2.4GHz, etc. The maximum RF power of personal devices varies depending on the type of RF power class 

and the type of the over-the-air protocols, specified by device manufacturers, for example, 29-39dBm 

(power class 2-5) for GSM900, 23dBm (power class 3) for LTE. Although different technologies operate at 

the same frequency, their power consumption and radiation power can be diverse, depending on the 

communication range or distance, for example, less power consumption, BT (e.g. wireless headsets) covers 

less distance than ZigBee (e.g. wireless smart home accessories). The range of BT depends on its class, 

specified by its transmitting power. Primarily there are three classes of BT, Class 1-3, transmitting at 

100mW, 2.5mW, and 1mW with a range of 100m, 10m, and fewer than 10m, respectively [21]. The ZigBee 

is designed to carry small amounts of data, with a maximum speed of 250kbps (WiFi has a max speed of 

54Mbps), hence it consumes very little power, over a short distance with an average of 10-30m. As opposed 

to WiFi, with its mesh networking standard, each node in the network is connected to others, equalizing 

the coverage. It is important to stress that as the operating frequency gets higher, the power consumption 

is typically higher.  

Figure 1 (b) presents the operating frequency of different band class indices. Besides the WiFi (IEEE 

802.11a/n) which operates at 5.725-5.875GHz, all the 5G technologies work at much higher frequencies: 
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High Frequency 1 (HF1) at 3.1-3.55GHz, High Frequency 2 (HF2) at 3.7-4.2GHz, Millimeter Wave (mmW) 

Hot Spots at 27.5-28.35GHz, and Internet of Things (IOT) up to 95GHz. 
According to Planck’s equation: 𝐸 = ℎ𝑣, the energy (E) of a photon particle is directly proportional to 

the frequency level (v), where the Planck constant (h) is fixed at 6.62607004 × 10-34m2kg/s. At lower operating 

frequency, for instance in the MHz range, the energy at the 10-6eV produces only an induced current, hence 

there is non-ionizing radiation, yet it is not recommended to be exposed to machines operating in this range 

(e.g. magnetic resonance imaging (MRI) at 1-300MHz) too long and often [22]. Non-ionizing radiation is 

generated at frequencies below the ultraviolet regime, where 𝑓 < 1015Hz and E < 10eV. This non-ionizing 

radiation corresponding to the energy level creates different elements and effects, i.e. 1) low currents (f < 

Microwave), 2) high currents (f: Microwave-Infrared), and 3) electron excitations (f > infrared). There are 

numerous applications operating within these frequency ranges, where non-ionizing radiation is 

unavoidably polluting. The thermal effects of RF radiation focusing on the absorption range and 

temperature elevation, from various mobile phone frequencies and different usage patterns, in the human 

head [23] and different human organs [24-25] were studied. It normally takes an extended time to track any 

long-term effects of these non-ionizing radiation on humans. Several short-term or even immediate side 

effects have been reported, including psychiatric effects (depression, anxiety, neurodegenerative issues), 

cardiac arrhythmias, tachycardia, fertility, affected eyesight or changed cell development, to name a few 

[26-43]. Similar to some serious diseases, where the symptoms do not show until they have already reached 

a certain stage, when the stray cells are completely saturated, the EM pollution has to be taken much more 

seriously, until it becomes irreparable. At ETHz, or 1018Hz of the X-ray radiation, the energy can be as high 

as 104eV, considered as ionizing radiation, which can easily damage human DNA. To protect from this 

extreme harmful radiation, special materials, composed of high atomic mass elements, e.g. lead, bismuth, 

etc. [44] are used as shielding.  

In this research we numerically analyze how human tissues, organs and fluids react with these EM 

pollutants, focusing primarily on the EM propagation and absorption. We do not draw a conclusion on the 

extent of human related damage [26-43]. We investigate how human organs, tissues, and fluids react, while 

resonated by the EM excitation or radiation in the microwave ranges from 1GHz to 105GHz, focusing on 

the communication frequencies of 2.4GHz (4G-LTE, Wi-Fi, ZigBee, Bluetooth, etc.), 28GHz (5G-mmW) and 

95GHz (5G-IoT). Dispersive EM parameters, including thermal and mechanical parameters, and chemical 

element contents of human organs and tissues are discussed. The EM propagation properties and 

absorbance of the organs, tissues, and fluids from the EM emission are also closely observed. A commonly 

used antenna type, 2.4GHz and 28GHz dipole, is employed to launch the EM source to investigate electric 

(E) and magnetic (H) fields propagating inside human organs and tissues. The organs and tissues are also 

tested with a 95-100GHz waveguide port. Three broad frequency ranges of 1-4GHz, 23-33GHz, and 95-

105GHz are set up to further investigate the absorbance, transmittance, and reflectance in studied organ 

and tissue models including far-field radiation. An example of layered structure: skin-bone-brain, is 

studied focusing on E-field and H-field intensity propagating and absorbing in each layer. CST Microwave 

Studio [45] is implemented for the real-time simulations. 

 

2. Water Content, Elemental Composition and Electromagnetic Properties of Human Tissues 

All human tissues, organs and fluids, except bones, contain more than 70% water. What they have in 

common is the high percentage of Hydrogen (H), Oxygen (O), and C (Carbon), with Nitrogen (N), Sodium 

(Na), and Magnesium (Mg) found in most organs. Human organs and tissues, % water content [46-47], % 

element composition, thermal conductivity, heat transfer rate, and heat generation rate are listed in Table 

1 [48].  
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Table 1. Water content, elemental composition, thermal conductivity, heat transfer/generation rates of 

different human organs and tissues [46-48]. 

Human Organs and 
Tissues 

Water 
Content 

(%) 

Elemental Composition (%) Thermal 

Conductivity 

(W/m/°C) 

Heat Transfer 
Rate 

(ml/min./kg) 

Heat 
Generation 
Rate (W/kg) H C N O Na Mg 

Blood 93.33 60 10 1.3 28 0.037 0.0005 0.52 10000 0 

Bone (Cancellous) 31.81 43 14 3.3 30 0.025 0.094 0.31 30 0.46 

Brain 

(including Spinal Cord 
and Nerve Trunks) 

73.33 

 

65 6.2 0.57 27 0.048 0.0037 0.51 559 11.37 

Breast NA 50 37 0.30 13 0.018 0 0.21 47 0.73 

Eye (Lens) NA 61 10 2.5 26 0.014 0 0.43 0 0 

Eye (Retina) NA - - - - - - 0.55 240 4.89 

Gallbladder  NA - - - - - - 0.52 30 0.46 

Heart Lumen 73.69 60 10 1.3 28 0.037 0.0005 0.52 10000 0 

Heart Muscle NA 64 7.2 1.3 28 0.027 0 0.56 1026 39.45 

Kidneys 79.47 63 6.9 1.3 28 0.054 0 0.53 3795 18.05 

Large Intestine NA 64 7.1 1.3 28 0.027 0 0.54 765 11.85 

Liver 71.46 63 7.3 1.3 28 0.054 0 0.52 860 9.93 

Lungs (Inflated) 83.74 64 5.3 0.71 30 0.053 0.0095 0.39 401 6.21 

Muscle 79.52 63 6.9 1.5 28 0.025 0.0020 0.49 37 0.91 

Skin 64.68 62 1.1 1.9 25 0.041 0.0003
8 

0.37 106 1.65 

Spleen 78.69 64 5.9 1.4 29 0.027 0 0.53 1557 24.11 

Urinary Bladder Wall NA 64 4.9 1.1 29 0.054 0 0.52 78 1.21 

Air NA 0 0.01
5 

78 21 0 0 0.026  

(at 30C) 

0 0 

Water NA 67 0 0 33 0 0 0.60 0 0 

 

The water content of 93.33% in liquid tissues (blood) is the highest, followed by lungs (83.74%), 

kidneys (79.47%), and muscles (79.52%). The brain has the highest content of H, while C, N, and O, are 

found highest in breast, bone, and lungs, respectively. Thermal conductivity, heat transfer rate, and heat 

generation rate are the highest in the heart. The correlation between these parameters and the EM 

propagation and absorbance is investigated. 
EM materials can be fundamentally classified as conductor, dielectric and magnetic materials, and 

free-space, based on their EM properties, i.e. complex permittivity (𝜀 = 𝜀′ + 𝑗𝜀′′) and complex permeability 

(𝜇 = 𝜇′ + 𝑗𝜇′′), specified at their operating frequency (𝑓 =
𝜔

2𝜋
). Loss tangent, the ratio of the real part of the 

permittivity and the imaginary part of the permittivity is connected to the material’s conductivity: 𝑡𝑎𝑛𝜃 =
𝜀′′

𝜀′ =
𝜎

𝜔𝜀
 . The conductivity value (𝜎, S/m) is commonly used to discern if the material is either a lossless 
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(𝜎 ≪ 𝜔𝜀 or small 𝜃) or a lossy (𝜎 ≫ 𝜔𝜀 or large 𝜃) dielectric. Due to conductors extreme conductivity and 

hence high dielectric loss (𝜀′′), waves almost totally reflect back when reaching the conductor surface, while 

some can penetrate inside the conductor with the distance, 𝛿 =
1

√𝜋𝑓𝜇𝜎
 , defined as skin depth or penetration 

depth. At 𝛿, the wave amplitude is attenuated by the factor 𝑒−1or about 37% of its original peak. Contrasting 

to conductors, waves can always propagate passing dielectric materials, depending on the attenuation 

constant, 𝛼. Figure 2. presents the real part of the permittivity (𝜀′) and conductivity (𝜎) of human 

organs and tissues at radio and microwave frequencies, from 100MHz to 100GHz, computed by a 4-Cole-

Cole model [47-48], where the spectrum extends from Hz to GHz and shows 4 dispersion regions. The 

complex permittivity of the model, described in Equation (1), was specifically derived for the frequency 

dependence of the dielectric properties of the investigated tissues [48].  

 

𝜀(𝜔) = 𝜀′ + 𝑗𝜀" = 𝜀∞ + ∑
∆𝜀𝑛

1+(𝑗𝜔𝜏𝑛)(1−𝛼𝑛)
4
𝑛=1 −

𝑗𝜎𝑖

𝜔𝜀0
       (1) 

in which, 𝜀∞ is the permittivity in the THz range, and 𝜎𝑖 is the ionic conductivity, for each dispersion region. 

𝜏 is the relaxation time and ∆𝜀 is the drop in permittivity in the frequency range corresponding to 1 ≫ 𝜔𝜏 ≫

1. With a choice of parameters appropriate for each tissue, Equation (1) corresponding to the whole 

spectrum, could be used to predict its dielectric behavior over the desired frequency range. 

It is important to stress that in order to improve the accuracy of the complex permittivity values of any 

water-based materials, the ionic conduction should be applied to the Cole-Cole model [49], as the dielectric 

properties are strongly related to the molecular dynamics of dipoles and charges, for both ions and 

electrons, under any oscillating EM fields. Here, the dielectric losses were assumed to be induced by 

conduction processes. This simplifying hypothesis is valid, as biological media such as tissues contain 

many ions, unlike pure water in which dielectric relaxation is the predominant mode of dissipation around 

18GHz. Hence, both the molecular dynamics of dipoles and charges under EM fields, as well as the degree 

of the EM wave susceptibility of the material, are taken into account while obtaining the dielectric 

properties of a material [49-53].  

Based on the aforementioned 4-Cole-Cole model, the relative permittivity of all listed organs and 

tissues decreases exponentially with an 𝑒−𝑥 function, below 10, at 100GHz. The top 5 permittivity values, 

from high to low, come from: gall bladder, heart lumen, breast (gland), heart muscle, and muscles. The 

lowest values are seen in breast (fat), bones (cancellous), urinary bladder wall, lungs, and eye retina. On 

the other hand, the conductivity increases exponentially with a −𝑒−𝑥 function. The imaginary part of the 

permittivity is linked to the conductivity: 𝜀′′ =
𝜎(𝜔)

𝜔𝜀0
. The order of organs and tissues regarding to their 

conductivity values is almost identical to the organ order, considering the permittivity values. At higher 

frequency, the permittivity and conductivity of all organs and tissues is lower and higher, respectively, 

resulting in a higher attenuation constant, which leads to less transmission and more absorption. These EM 

parameters are added in the CST material database, where only the values up to 3GHz are provided. 



7 
 

   

Figure 2. Permittivity and conductivity of human tissues and organs calculated from 100MHz to 100GHz 

[47-48]. 

3. Electromagnetic Propagation in Human Tissues and Organs 

Waves propagate without any attenuation in lossless materials, for example, free-space or vacuum. 

However, in general, there is always loss in materials, where the electric (E-) and magnetic (H-) field of any 

transverse EM (or TEM) mode can be calculated from:  

𝐸⃑⃑ (𝑧, 𝑡) = 𝐸0𝑒
−𝛼𝑧 𝑐𝑜𝑠( 𝜔𝑡 − 𝛽𝑧)𝑎⃑ 𝑥 (2) 

𝐻⃑⃑ (𝑧, 𝑡) =
𝐸0

|𝜂|
𝑒−𝛼𝑧 𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑧 − 𝜃𝜂)𝑎 𝑦 (3) 

These time-varying E- and H-fields are the main EM components, where their resonating directions 

(𝑎⃑ 𝑥 of 𝐸⃑⃑  and 𝑎⃑ 𝑦 of 𝐻⃑⃑ ), create an EM wave propagating in the direction  𝑎⃑ 𝑧 = 𝑎⃑ 𝑥 × 𝑎⃑ 𝑦. Wave propagation 

properties are analyzed by the materials’ propagation constant: 𝛾 = 𝛼 + 𝑗𝛽, where  𝛼 =

𝜔√
𝜇𝜀

2
[√1 + [

𝜎

𝜔𝜀
]
2

− 1] and  𝛽 = 𝜔√
𝜇𝜀

2
[√1 + [

𝜎

𝜔𝜀
]
2

+ 1] are the attenuation and phase constant, and 𝜂 =

√
𝑗𝜔𝜇

𝜎+𝑗𝜔𝜀
= |𝜂||𝜃𝜂 is the intrinsic impedance. 

The incident radiation, or the excitation wave, and the object, or scatter, with which the radiation 

interacts, are the two main elements for the formulation of a scattering problem [54], interrelated with 

propagation properties. Based on the Lorenz-Mie theory [55-57], the incident radiation is corresponded to 
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the wave properties, including wave format and environment, while the material and size are the key 

contributions of the observed scatter. 

We demonstrate experiments focusing on 3 main operating frequencies: 2.4GHz, 28GHz, and 100GHz, 

where trial human organs and tissues are placed in A) a wave propagation direction of 2.4GHz and 28GHz 

dipole antennas, and B) a waveguide port operating from 95-105GHz. 

3.1. Organs and tissues placement facing 2.4GHz and 28GHz dipole antennas 

A half-wavelength 2.4GHz dipole antenna and a half-wavelength 28GHz dipole antenna are 

individually placed in front of a human organ or tissue model in an 80mm (for the 2.4GHz model) and a 

20mm (for the 28GHz model) diameter spherical shape. The perfectly matched layer (PML) or open ‘add 

space’, a specific CST name, set for the system boundaries, ensures the least reflected and scattered waves 

from the boundaries. The estimated reflected level is 0.0001 or 0.01%. The dipole antenna is assigned as 

Port 1, the transmitting port, 42.5mm or 0.34λ (the 2.4GHz dipole), and 10.7mm or 1λ (the 28GHz dipole) 

from the observation organ or tissue. The distance is chosen as an example of users holding or carrying a 

cellphone, tablet, wireless earbuds, smart watch, etc., as well as to ensure a full-wave propagation. Figure 

3 shows the physical domain of the 2.4GHz and 28GHz dipole set-ups with the dimensions and boundaries. 

 

  (a) 
 

   (b) 
Figure 3. (a) 2.4GHz and (b) 28GHz dipole antenna placed in front of a human organ,  

where PML boundaries are set at all 6 sides. 

 

Figure 4 presents the 3D radiating E- and H-field at a center-cut plane, captured at 2.4GHz and 28GHz 

from the aforementioned dipoles. The top-view displays the wavefront, where the operating wavelength 

and field intensity can be observed. As the wave enters the organ and tissue model, where the complex 

permittivity is much higher than that of air or free space, the wavelength is clearly shortened, 

approximately by 5-8 times. This is based on the relationship between the material EM properties and TEM 

(Transverse EM mode) propagation phase velocity: 𝑣𝑝 =
𝜔

𝛽
= √

1

𝜀0𝜀𝑟𝜇0𝜇𝑟

. Therefore, the wave is somewhat 

accelerating, while it is propagating through and oscillating inside organs and tissues. If the excitation 

frequency and power is higher, the organs and tissues will need to be tolerating a much higher stimulation. 

Any dielectric material becomes conducting when the applied E-field is so high and breaks down the 

dielectric strength. The same E- and H-field intensity scale for all models is set in a range of 5e+3V/m to 5e-
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6 V/m and 10 A/m to 1e-6A/m. The 2D maximum E-field is in the range of 9,500-9,600 V/m (of the 2.4GHz), 

and of 101,700-101,900 V/m (of the 28GHz), while the 2D maximum H-field is in the range of 14.20-14.35 

A/m (of the 2.4GHz), and of 173-174 A/m (of the 28GHz). The lowest propagation frequency (or longest 

wavelength) is found in the lung model, where permittivity is lowest at 20.510+j5.9168 and 4.002+j21.384 at 

2.4GHz and 28GHz, respectively.  
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Figure 4. E-and H-fields: 3D center-cut plane in organ models from 2.4GHz and 28GHz dipoles. 

 

3.2. Organs and tissues placement in front of a 95-105GHz waveguide port 

 

 
Figure 5. Brain model placed in front of a 95-105 waveguide 

port, where PML boundaries are set at all 6 sides. 

 

The observed organ or tissue model in a 6mm 

diameter spherical shape is placed in front of a 

waveguide port, where an excitation is 

launched to investigate EM propagation in a 

broad high frequency range of 95GHz-

100GHz, shown in Figure 5. The PML 

boundaries are set for the system to ensure the 

least reflected and scattered waves from the 

boundaries. The estimated reflected level is 

0.0001 or 0.01%. The distance from the port to 

the model is automatically set by CST to ensure 

a full plane wave propagation.  

 

As illustrated in Figure 6(a), the 2D maximum E-field intensity increases significantly as the EM source 

frequency increases, e.g. 3,656 V/m at 95GHz, 3,708 V/m at 100GHz, and 3,804 V/m at 105GHz in the brain 

model, or 5,161 V/m at 95GHz, 5,277 V/m at 100GHz, and 5,378 V/m at 105GHz in the lung model. The 

increasing intensity level from 95GHz to 105GHz radiation in this setting is in between 3.89% (brain) and 

4.86% (liver). The 2D maximum H-field intensity is quite stable, but shows a slight increase inclination at 

higher frequency. The field intensity decreases as the wave propagates through the model, indicating a 

wave attenuation from the material absorption, as shown in Figure 6(b). The H-field is 12.88 A/m when it 

enters the eye bulb model at the plane x = -2 and reduces to 2.587 A/m at x = +2. The next section focuses 

on the absorbance study 
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Figure 6. (a) E-and H-fields: 3D center-cut plane in organ models from a 95-100GHz waveguide port.(b) 3D 

center-cut plane (y = 0) H-field at 105GHz of eye bulb at x = -2, -1, 0, and 2mm. 

4. Electromagnetic Absorption in Human Tissues and Organs 

Waves are weakening or attenuating while propagating in any lossy materials, where 𝛼 ≠ 0, which 

directly corresponds to the material conductivity and the imaginary of the of permittivity. The attenuation 

constant therefore indicates material loss or absorption. Since human organ and tissue conductivity 

increases exponentially as the frequency increases, for example: 𝜎𝐵𝑟𝑎𝑖𝑛 = 0.790, 2.069, 27.570, and 48.194S/m 

at 100MHz, 2.4GHz, 28GHz, and 100GHz, respectively, besides the higher power and E- and H-field 

strength, our organs and tissues are also dealing with higher absorption at higher frequency levels.   

EM absorbance (𝐴(𝜔)) in materials is defined by the amount of residual waves in materials, excluding 

the transmitting and reflected waves, where their field strength is defined as transmittance (𝑇(𝜔)) and 

reflectance (𝑅(𝜔).), respectively. Based on the wave propagation theory, the transmittance and reflectance 

are respectively obtained from the scattering parameters, i.e. the transmission coefficient (𝑆21) and 

reflection coefficient ((𝑆11)). Equation 3 presents the relationship among the absorbance, transmittance, and 

reflectance in terms of the scattering parameters: 

𝐴(𝜔) = 1 −  𝑇(𝜔) − 𝑅(𝜔) = 1 − |𝑆21|
2 − |𝑆11|

2 (1) 

The absorbance, transmittance and reflectance of any material depend directly on the operating 

frequency (𝜔 = 2𝜋𝑓). It means that the same material behaves electromagnetically different while being 

excited by waves of different frequencies. At one frequency, the EM waves can simply propagate through 

a material without any lingering in the material, at another frequency they can resonate heavily in the 

material with very high absorbance, and at other frequency, they can all be reflected back to the launching 

source. 

To test them for the EM absorption, organ and tissue models in flat shape with infinite surface (width 

and length) are placed in between two waveguide ports, operating in 3 different frequency bands. A special 

skin-bone-brain layer case is also investigated. 

 

4.1. Flat shape organ and tissue model with infinite surface placement in between waveguide ports 

 

 
 

Organs and tissues are examined by flat shape structure 

analysis. The studied model is placed in between two waveguide 

ports, where port 1, Zmin, and port 2, Zmax, are the transmitting and 

receiving port, respectively, as shown in Figure 7. The 1-4GHz and 

23-33GHz waves are launched from the Zmin location toward the Zmax 

port in the +z radiation direction. These EM waves are created by the 

Ey and Hx components for a standard free space propagation, TEM 

mode. The heart, brain, and lung, selected based on their EM 

parameters (Table 1 and Figure 2), with a finite 125mm and 10.7mm 

thickness (along the z axis), or one wavelength of 2.4GHz and 

28GHz, and an infinite x-y plane (perpendicular to the excitation) set 

by the periodic boundaries, are modeled for this full-wave analysis. 

This setting is designed to investigate the absorbance, transmittance 

and reflectance of the human organs and tissues.    
 

Figure 7. Brain placed in between (a) 1-4GHz and (b) 23-33GHz waveguide 

ports along z-axis, where periodic boundaries are set in x- and y- axes.  
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Significantly higher E- and H-field intensity, around 10 times, are observed in the three organs as the 

operating frequency increases from 2.4GHz (4G-LTE) to 28GHz (5G-mmW), presented in Figure 8. These 

higher values are not exact numbers, but are directly connected to their power requirement for any higher 

frequency systems/networks. Similar to the previous propagation demonstration, the EM wavelength 

inside the organs is shortened (higher frequency). The cut-plane E- and H-fields along the propagation 

direction are dramatically attenuated and vanish before passing the models. The transmittance (solid line) 

of the three organs is significantly low in the e-3 level in the 1-4GHz range and the e-5 level in the 23-33GHz 

range. The absorbance (dotted line) is found the highest in the lung, i.e. 66.49% at 28GHz and 58.69% at 

2.4GHz, while the lowest is in the heart, i.e. 47.24% at 28GHz and 39.83GHz. These great absorbance values 

contribute to its inflated structure, in majority composed of air. Its complex permittivity, conductivity, 

material density (1020 Kg/m3), blood flow coefficient (9,500 W/K/m3), as well as Basel metabolic rate (1,700 

W/m3), is the lowest among all observed models [38]. On the other hand, the heart reflects the large portion 

of the waves in both frequency ranges approximately at 50% and 60%, respectively. It is also linked to its 

higher EM dispersion, thermal, mechanic, and density values.  

The transmittance and reflectance also indicate the scattering behavior and multiple absorbing 

possibility, as the wave can transmit to, reflect from other tissues and organs, and then launch back onto 

other organs or tissues. Further investigation on complex models where a set of tissues and organs are 

integrated will definitely provide more information on this matter. 
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Figure 8. Top: E-and H-fields: 3D center-cutting plane in organ models in between 1-4GHz and 23-33GHz 

waveguides. Bottom: Transmittance (solid line), reflectance (dashed line) and absorbance (dotted line) of 

heart, brain, and lung in the 1-4GHz and 23-33GHz ranges. 

14 organ and tissue models are tested for their absorbance, reflectance, and transmittance in the 95-

105GHz range. The models with the finite 2cm thickness and an infinite x-y plane (perpendicular to the 

excitation) are created for EM full-wave analysis. The absorbance is found greater than 60% in all models, 

and higher as the frequency increases, shown in Figure 9-top. At 100GHz, bone (83.01%), urinary bladder 

wall (82.95%), lung (80.02%), liver (68.18%), brain (66.18%), and eye (64.46%) are the highest absorbing 

organs. The rest of the EM field is mostly reflected, as the transmittance values are extremely low, below 

the e-20 level. The absorbance increases significantly as the frequency increases, e.g. in the brain model, the 

absorbance is 43.78% at 2.4GHz, 51.95% at 28GHz, and 66.16% at 100GHz. Figure 9-bottom presents the 

far-field pattern through bone, brain, and heart. A green-yellow-red balloon indicates the EM strength 

along the propagation directly, easily noticed by the radius and color intensity. The radiation efficiency 

(Rad. Eff.) at -6.894dB (bone), -2.919dB (brain), and -2.023dB (heart) is observed. The low negative values 

of the radiation efficiency reflect the low or poor transmission between the transmitting and receiving port, 

indicating high loss or absorption in the organ. The total radar cross section (RCS) of bone (-58.16dBm2), 

brain (-55.17dBm2), and heart (-54.60dBm2) is also measured. RCS is a property of the target's reflectivity. 

A low negative RCS value indicates low reflected wave intensity. The RCS is directly correlated with the 

reflectance. The highest reflectance is 38.8%. 
Based on this data, there is no clear correlation between the EM absorbance and heat transfer and 

generation rate (Table 1). Contrastingly, the absorbance is highly connected with the permittivity and 

conductivity. The top five highly EM absorbing organs all have low complex permittivity and conductivity. 
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Figure 9. Top: Absorbance, reflectance, and transmittance of 13 organ and tissue models in 95-105GHz range. 

Bottom: System setting and far-field radiation at 100GHz through a 2cm layer of bone, brain, and heart. 

4.2. Skin-Bone-Brain layer placement in between waveguide ports  

A flat uniform layer of 0.12mm skin (Avg. face skin thickness), 6mm bone, and 60mm brain is tested 

for E-field and H-field propagation, as well as EM absorption, by placing it in between the 1-4GHz, 23-

33GHz, and 95-105 waveguide ports. The infinite structure plane is set perpendicular to the excitation. 

Therefore, the transmitting wave (Back) from the transmitting port will perceive the layer model, in the 

Skin-Bone-Brain order, as an infinite plane with finite thickness. The distance from the ports to the layer is 

set for full plane wave excitation. 

As shown in Figure 10-left, the propagating E- and H-fields are hardly passing through the bone layer 

at all 3 frequencies, and all disappear inside the brain layer. This observation is confirmed by the E-field 

and H-field values recorded behind the skin, bone, and brain layer at Probes 1-4, presented in Figure 10-

middle. It is clearly shown that both the E-field and H-field are highly absorbed inside each layer at higher 

frequencies. As one said, ‘nature does nothing uselessly’, the skin and the bone layers do indeed protect 

our brain: at 28GHz, the E-field of 1326 V/m and H-field of 11.92 A/m in the middle of the skin layer are 

reduced to 238.8 V/m and 1.93 A/m at the middle of the bone layer, before entering the brain, or at a 82.0% 

(E-field) and 83.8% (H-field) decreasing rate. At 100GHz, the E- and H-fields are lessened by almost 99%. 

However, as there is almost no E-field and H-field radiating passed the brain layer, all the remaining EM-

field remains inside the brain. As shown in Figure 10-right, the overall layer absorbance (dotted line) is 

greatly elevated at all 3 frequencies at 69.18% (2.4GHz), 65.69% (28GHz), and 71.49% (100GHz). The 

reflectance (dashed line) of all 3 frequency points is around 30%, while the transmittance (solid line) is 

significantly low in the e-3 (1-4GHz), e-41 (23-33GHz), and e-131 (95-105GHz) level. 
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Figure 10. Left: E-and H-fields: 3D center-cut plane through a layer of 0.12mm skin, 0.6mm bone and 60mm 

brain skin-bone-brain layer in 1-4GHz, 23-33GHz, and 95-105GHz ranges. Middle: E- and H-fields collected 

at 0.06mm@skin, 3.06mm@bone, 9.06mm@brain1, and 36.06mm@brain2. Right: Reflectance (dashed), 

absorbance (dotted), and transmittance (solid) of the organ layer in the 3 frequency ranges.  

5. Conclusion 

Eight human organ and tissue models (blood, brain, breast, eye bulb, heart, kidney, liver and lung), 

while tested with electromagnetic excitation from 2.4GHz and 28GHz dipole antennas, and 95-105GHz 

waveguide ports, show that the wavelength of the E- and H-fields propagating inside the models is 

shortened or the wave frequency is accelerating, approximately 5-8 times. The lowest propagation 

frequency is found in the lung model, where the permittivity and conductivity are lowest among those of 

the eight studied models. The E-field intensity boosts significantly as the EM source frequency increases, 

mailto:36.06mm@brain2
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approximately 10 times between 2.4GHz and 28GHz. The E-field intensity (from 95GHz to 105GHz 

radiation) rises from 3.89% (in brain) to 4.86% (in liver). The field intensity dramatically decreases as the 

wave propagates passing the model, indicating high wave attenuation from the material absorption. 

The EM absorbance is found to be greater than 60% in all 14 organ and tissue models. At 100GHz, the 

bone (83.01%), urinary bladder wall (82.95%), lung (80.02%), liver (68.18%), brain (66.18%), and eye bulb 

(64.46%) present the highest absorbance level. The absorbance increases significantly as the frequency 

increases, for instance, 43.78% at 2.4GHz, 51.95% at 28GHz, and 66.16% at 100GHz in the brain model. The 

transmittance in all models is below e-20 level. At all three operating frequencies: 2.4GHz, 28GHz, and 

100GHz, the E- and H-fields vanish before passing through the brain layer of the Skin-Bone-Brain layered 

model. The overall layer absorbance is greatly elevated at all 3 frequencies: 69.18% at 2.4GHz, 65.69% at 

28GHz, and 71.49% at 100GHz. The reflectance is around 30%, while the transmittance is significantly low. 

The scattering behavior and multiple absorbing possibility is observed. The absorbance is inversely 

proportional to the permittivity and conductivity of human organs and tissues. There is no clear correlation 

between the EM absorbance and heat transfer and generation rate. The models confirm that the higher the 

frequency, the greater the attenuation. Penetration is therefore reduced with increasing frequency. 

However, on the other hand, the absorption level increases with frequency. The results quantitatively 

validate the classic effects of the increase in frequency in terms of penetration and dissipation in human 

tissues and organs. 

Further study of the EM radiation and propagation, either on specific complete human parts, for 

example an eye bulb with cornea, anterior chamber, pupil, iris, lens, ciliary and vitreous body, macular, 

retina, choroid and optic nerve, or the whole human body, will definitely provide more insight and 

correlation of the EM radiation and its effects amid all human organs. 
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