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Asynchronous movement patterns between breeding and stopover
locations in a long-distance migratory songbird
Theodore J. Zenzal, Jr. 1  , Andrea Contina 2  , Hannah B. Vander Zanden 3  , Leanne K. Kuwahara 4, Daniel C. Allen 5   
and Kristen M. Covino 4,6 
1U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, USA, 2School of Integrative Biological and
Chemical Sciences, The University of Texas Rio Grande Valley, Brownsville, TX, USA, 3Department of Biology, University of
Florida, Gainesville, FL, USA, 4Biology Department, Loyola Marymount University, Los Angeles, CA, USA, 5Department of
Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA, 6Appledore Island Migration
Station, Shoals Marine Laboratory, University of New Hampshire, Durham, NH, USA

ABSTRACT. The species-specific migratory patterns and strategies of many songbirds remain unknown or understudied, as research
in animal ecology is biased toward the breeding period, with the fewest studies on the migratory period across taxa. Identifying large-
scale spatiotemporal migratory patterns is challenging, as individuals within a species may vary in their migratory behavior and strategies.
The Yellow Warbler (Setophaga petechia) is a Nearctic-Neotropical migrant that is relatively well studied during the breeding season,
but its species-wide migratory patterns remain understudied. Our aim in studying Yellow Warbler movement ecology was to characterize
temporal migration patterns during fall migration. We sought to determine the temporal migration pattern among breeding locations,
as determined by the hydrogen stable isotope values in feather samples collected at disjunct (~2000 km) stopover sites in the Gulf of
Maine (n = 50) and the Gulf of Mexico (n = 150). We used a similarity matrix to group individuals into a geographic cluster by breeding
location, which was then used as the response variable in a modeling analysis. Our results provide evidence that Yellow Warblers exhibit
an asynchronous, type 1 temporal migration pattern with southern breeding populations initiating migration prior to northern
populations. Using hydrogen isotopes, we identified the temporal migration patterns between geographic clusters, representing an
individual’s breeding location, and stopover sites along the Gulf of Maine and Gulf of Mexico, which fills a gap in understanding
Yellow Warbler migration ecology.

Déplacements asynchrones entre les sites de nidification et les haltes migratoires chez un passereau
migrateur de longue distance
RÉSUMÉ. Les tendances et les stratégies migratoires propres à chaque espèce de nombreux passereaux restent inconnues ou sous-
étudiées, car la recherche en écologie animale est surtout axée sur la période de nidification et non sur la période migratoire. La
détermination de tendances migratoires spatio-temporelles à grande échelle est un défi, car les individus d’une même espèce peuvent
avoir des comportements et des stratégies migratoires différents. La Paruline jaune (Setophaga petechia) est un migrateur néarctique et
néotropical relativement bien étudié pendant la saison de nidification, mais ses tendances migratoires à l’échelle de l’espèce restent peu
étudiées. En étudiant l’écologie de déplacement de la Paruline jaune, notre objectif  était de caractériser les tendances temporelles de
migration pendant la migration d’automne. Nous avons cherché à déterminer la tendance temporelle de migration entre les sites de
nidification à partir de valeurs d’isotopes stables de l’hydrogène dans les échantillons de plumes collectés dans des haltes migratoires
disjointes (~2000 km), dans le golfe du Maine (n = 50) et le golfe du Mexique (n = 150). Nous avons utilisé une matrice de similarité
pour assembler les individus en groupe géographique par lieu de nidification, qui a ensuite été utilisé comme variable explicative dans
une analyse de modélisation. Nos résultats indiquent que les Parulines jaunes présentent une tendance temporelle de migration
asynchrone de type 1, les populations nicheuses du sud entamant leur migration avant celles du nord. Au moyen d’isotopes d’hydrogène,
nous avons déterminé les tendances temporelles de migration entre les groupes géographiques, représentant le lieu de nidification d’un
individu, et des haltes migratoires le long du golfe du Maine et du golfe du Mexique, comblant ainsi une lacune dans la compréhension
de l’écologie de la migration de la Paruline jaune.

Key Words: autumn, spatiotemporal tracking, hydrogen stable isotope, Yellow Warbler (Setophaga petechia), Gulf of Mexico, Gulf of
Maine, geographic assignments, migration synchrony

INTRODUCTION
The majority of North American temperate bird species undergo
annual migrations between breeding and non-breeding locations
(Greenberg 1980, Rappole 1995). The species-specific migratory

patterns and strategies of many songbirds remain unknown or
understudied, as research in animal ecology is biased toward the
breeding period, with the fewest studies on the migratory period
across multiple vertebrate orders (Marra et al. 2015). Moreover,
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avian mortality rate is highest during the migratory period (Sillett
and Holmes 2002, Paxton et al. 2017, Ward et al. 2018), and as
human pressures (e.g., habitat fragmentation, climate change,
artificial light at night) have contributed to declines in North
American avifauna, migratory species have been particularly
vulnerable (Rosenberg et al. 2019). Thus, strategies to reverse such
declines can benefit from understanding the spatiotemporal
patterns between periods of the annual cycle by identifying where
migratory birds are throughout the year in order to enact targeted
conservation and management actions.  

Studying spatiotemporal patterns can shed light on the migration
strategies by focusing on when and how birds from one region
move relative to conspecifics from another region. Salomonsen
(1955) describes five spatial migration patterns, briefly defined
here, which can be exhibited by migratory birds (Fig. 1). Three of
these spatial migration patterns are related to latitudinal
distributions of birds between the breeding and non-breeding
seasons: (1) chain migration, which occurs when southern and
northern populations of a species exhibit the same spatial
distribution in breeding and non-breeding areas; (2) leap-frog
migration, which occurs when northern and southern breeding
populations show the opposite spatial distribution in terms of
latitude on the non-breeding grounds (i.e., northern breeding
populations have non-breeding distributions farther south than
southern breeding populations); and (3) telescopic migration,
where breeding populations from different latitudes share non-
breeding areas at similar latitudes (i.e., birds at the same non-
breeding area exhibit different migration distances based on their
breeding location; sensu Salomonsen 1955, Smith et al. 2003,
Kelly 2006, Zenzal et al. 2018, Skinner et al. 2022). The other two
spatial migration patterns are related to longitude and include (1)
cross-wise migration, in which birds segregated into eastern and
western breeding populations cross during migration and retain
separation at the non-breeding area (i.e., individuals in the eastern
part of the breeding range were found in the western part of the
non-breeding range and vice-versa; sensu Salomonsen 1955,
Witynski and Bonter 2018); and (2) parallel migration, in which
birds segregated into eastern and western breeding populations
retain the same longitudinal separation at the non-breeding area
(i.e., individuals in the eastern part of the breeding range are also
found in the eastern part of the non-breeding range and vice-
versa; sensu Salomonsen 1955, Boulet et al. 2006).

 Fig. 1. Conceptual illustrations of spatial migration patterns
(sensu Salomonsen 1955). Breeding (B) and non-breeding (NB)
locations are shown with numbers indicating the same
population. See Introduction for a written description of each
migration pattern.
 

Smith and coauthors (2003) added to our understanding of
migration patterns by defining two temporal migration patterns
exhibited during autumn migration. The temporal migration
patterns are: (1) type 1 migration, which occurs when southern
breeding populations initiate migration prior to northern breeding
populations; and (2) type 2 migration, which occurs when northern
breeding populations begin to migrate before southern breeding
populations (sensu Smith et al. 2003, Kelly 2006, Zenzal et al. 2018).
Temporal, latitudinal, and longitudinal migration patterns likely
occur in any combination, with combinations of temporal and
latitudinal (mainly chain and leap-frog migration) being the best
described (see Smith et al. 2003). Moreover, the timing of migration
can be further nuanced by considering migratory synchrony, which
describes a population’s variation in migration over time (Bauer et
al. 2016). Understanding the temporal migration pattern used by a
species as well as the potential mechanism is crucial to developing
regional and international conservation programs (e.g., Rosenberg
et al. 2016, Cohen et al. 2017, Zenzal et al. 2019).  

The Yellow Warbler (Setophaga petechia) is a Nearctic-Neotropical
migrant with a broad breeding range that extends across much of
North America (see Lowther et al. 2020 and references therein; Fig.
2). Given the broad range and commonness of the Yellow Warbler,
it is not surprising that this species has been the focal species of
extensive research using a variety of methods. For example, over the
last few decades large-scale studies of Yellow Warblers have
addressed morphology (e.g., Wiedenfeld 1991, Bay et al. 2021),
migration (e.g., Kelly and Hutto 2005, Boulet et al. 2006, Kelly 2006,
Witynski and Bonter 2018, Bay et al. 2021, Somveille et al. 2021),
population distribution and change (Bay et al. 2018, 2021), as well
as genetics (e.g., Klein and Brown 1994, Milot et al. 2000, Boulet et
al. 2006, Bay et al. 2018). Despite this impressive breadth of research,
there is little known about the temporal migration patterns of the
species.  

During autumn migration, the Yellow Warbler appears to be a
relatively early migrant in the eastern portion of its range and a later
migrant over a more protracted period in the western portion of its
range (Bent 1953, Duncan and Weber 1985, Lowther et al. 2020).

 Fig. 2. (A) Map of the breeding, migration, and non-breeding
areas of the migratory Yellow Warbler (BirdLife International and
Handbook of the Birds of the World 2021); (B) Location of the
migration banding station at Appledore Island, Maine; (C)
Locations of the migration banding stations that comprise the
Gulf Coast sites, which were located in Fort Morgan, Alabama,
and Grand Bay National Estuarine Research Reserve, Mississippi.
Yellow Warbler photo credit: Emilie Ospina.
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Across the range, Yellow Warblers have been found to exhibit leap-
frog migration in terms of latitudinal distribution, but there are
conflicting reports on longitudinal distribution (Boulet et al. 2006,
Witynski and Bonter 2018, Bay et al. 2021, Somveille et al. 2021).
Parallel migration was supported by a suite of tracking methods
(banding records, stable isotopes, and genetic samples; Boulet et al.
2006), whereas cross-wise migration was found using light-level
geolocators (Witynski and Bonter 2018). More recently, researchers
have leveraged genetic information to connect breeding and non-
breeding areas of Yellow Warblers, which illustrates that the spatial
scale of the investigation may bias the spatial pattern observed (Bay
et al. 2021, Somveille et al. 2021). Previous studies have suggested
eastern and western populations appear to be distinct evolutionary
units (Klein and Brown 1994, Milot et al. 2000, Kelly and Hutto
2005), so it is possible these populations exhibit different migratory
strategies. However, none of these studies have investigated the
temporal migration of Yellow Warblers to our knowledge.  

Recent research has identified linkages between Yellow Warblers
and climate-driven population changes (Mazerolle et al. 2005, Bay
et al. 2018) as well as regional population declines across the breeding
distribution (Fink et al. 2023), meaning that this currently
widespread species may be at risk. Even with identified climate-
driven declines and other challenges birds already face (e.g., habitat
loss and degradation, human development, etc.), Yellow Warblers
are still fairly common and may serve as a model for understanding
migratory patterns. Therefore, we sought to examine the temporal
migration patterns between the breeding locations of individuals
captured at geographically distinct stopover locations over multiple
years. We used two stopover locations ~2000 km apart to determine
if  patterns were similar across sites or if  patterns changed in relation
to distance from the non-breeding grounds. We modeled likely
breeding area using stable isotope data from feather samples of
Yellow Warblers collected during migration. Whereas many biotic
(i.e., age) and abiotic factors can affect isotopic ratios in animal
tissues (Haché et al. 2012), inert keratinous samples, such as feathers,
integrate the naturally occurring gradients of hydrogen isotope (δ2H)
values in precipitation during the molting period, which occurs on
the breeding grounds for many species, including Yellow Warbler
(Hobson and Wassenaar 1996, Bowen et al. 2005, Hobson et al.
2012, Lowther et al. 2020).  

Our overall aim in studying Yellow Warbler movement ecology was
to characterize temporal migration patterns and determine degree
of synchrony. We examined the temporal migration pattern (degree
of synchrony; type 1 vs type 2) among breeding locations, as
determined by the δ2H values in feather samples collected at stopover
sites on Appledore Island, Maine, and along the northern Gulf of
Mexico. In our analysis of temporal migration, we included fat score,
age, and sex as covariates, which may help explain variation in arrival
timing. We predict that birds from breeding areas closer to the
stopover site will carry more fat stores because their energetic cost
should be lower than individuals from further away. We expect all
three covariates could interact with the phenology of Yellow
Warblers through the stopover sites. If  an interaction exists with fat
score, we predict birds arriving earlier to be in better condition
because of a greater abundance of resources earlier in the season. If
an interaction exists with sex, we expect males to arrive earlier in the
season, as found during their spring migration (Kammeraad 1964,
Lowther et al. 2020). Finally, if  there is an interaction with age, we

expect after-hatch year birds to arrive earlier given that they tend
to be more efficient foragers (Wunderle 1991, Woodrey 2000),
possibly allowing them to migrate faster (sensu Hake et al. 2003,
Jakubas and Wojczulanis-Jakubas 2010).

METHODS

Feather sampling and processing
Young (hatch year) Yellow Warblers grow all their body and flight
feathers while at their natal site (Lowther et al. 2020). Young birds
then molt and replace only their body feathers prior to fall
migration, whereas adult (after-hatch year) Yellow Warblers molt
and replace all feathers (body and flight feathers) annually on
their breeding grounds (Pyle 1997). Thus, the flight feathers of
both adult and young birds, including rectrices, sampled prior to
the next molt cycle incorporate the environmental isotope values
of precipitation from the breeding ground locations (Hobson and
Wassenaar 1996, Contina et al. 2022).  

The right and left fifth rectrices of Yellow Warblers were sampled
during fall migration on Appledore Island, Maine (n = 50;
42.9891° N, 70.6142° W), from 2016 to 2018 (August and
September) and at two coastal sites along the northern Gulf of
Mexico (September and October): Fort Morgan, Alabama (Bon
Secour National Wildlife Refuge; n = 134; 30.2256° N, 88.0189°
W) from 2005 to 2014, and Grand Bay National Estuarine
Research Reserve, Mississippi (n = 16; 30.3713° N, 88.4311° W;
Table 1, Fig. 2), from 2006 and 2007. Samples from the Fort
Morgan and Grand Bay National Estuarine Research Reserve
sites (hereafter “Gulf Coast sites”) were combined for analysis
because of similarities in habitat structure, function (sensu
Mehlman et al. 2005), and proximity to each other (~44 km) as
well as to the Gulf of Mexico (< 20 km). Additionally, each
individual was banded with a U.S. Geological Survey aluminum
leg band, visually assessed for fat score (Appledore Island: Cherry
1982, Morris et al. 1996; Gulf Coast sites: Helms and Drury 1960),
measurements of unflattened wing length and mass were
obtained, and, when possible, age and sex were determined (Pyle
1997). All banding and sampling were conducted under permits
from the U. S. Geological Survey Bird Banding Laboratory (21221
and 22243), University of Southern Mississippi Institutional
Animal Care and Use Committee (IACUC; 11092210), and
Canisius University IACUC (382).

 Table 1. Sampling years and number of individuals sampled by
stopover location for Yellow Warblers during fall migration.
Appledore Island is located along the coast of the Gulf of Maine,
whereas the other two sites, Fort Morgan and the Grand Bay
National Estuarine Research Reserve, are located along the
northern Gulf of Mexico coast and were combined for statistical
analysis (Fig. 2).
 
Site Years Sample size

Appledore Island, ME 2016–2018 50
Fort Morgan, AL 2005–2014 134
Grand Bay National Estuarine Research Reserve,
MS

2006–2007 16
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One of the two sampled feathers from each individual was randomly
selected for processing and was cleaned by using a two-step process
(Paritte and Kelly 2009, Chew et al. 2019). First, feathers were soaked
in a 2:1 chloroform:methanol solution for 30 s and dried overnight
at room temperature. Feathers were then cleaned in a dilute detergent
solution and rinsed of all detergent residue with distilled water (DI)
before drying for a minimum of 24 h (1:30 Fisher Scientific Versa-
Clean:DI water). Feather vane was cut starting at the distal end of
the feather and weighed to 200 ± 10 µg using a Mettler Toledo
microbalance (model XS3DU) and packed into 3.5 mm x 5 mm silver
capsules (Costech, 041066) for isotope ratio mass spectrometry
analysis.

Isotopic determination
Samples and standards were allowed to equilibrate to local
conditions for a minimum of three wk before analysis (Wassenaar
and Hobson 2003). Hydrogen isotope measurements were made
with a ThermoFinnigan Delta V isotope ratio mass spectrometer
connected to a Thermal Conversion Elemental Analyzer (Thermo
Scientific) at the Environmental Stable Isotope Lab at the University
of Oklahoma. We adopted the delta notation (δ²H) of parts per mil
(‰) from the standards (δ²Hsample = [(Rsample/Rstandard) − 1]) relative
to the Vienna Standard Mean Ocean Water (VSMOW). To calibrate
δ²H values measured in feather samples, we used three standards
that we report as mean: Caribou Hoof Standard (count N = 32; δ²
H CBS = −157.0‰), Kudu Horn Standard (count N = 34; δ²H KHS
= −35.3‰), plus an internal reference material Brown-headed
Cowbird feathers (count N = 34; δ2H BHCO = −42.7‰). Analytical
precision is expressed as standard deviation (SD) of the reference
material: CBS (count N = 32; SD = 1.3‰); KHS (count N = 34; SD
= 1.2‰); and BHCO (count N = 34; SD = 2.2‰). Our laboratory
protocol included the analysis of three reference standards every
eight samples across all the mass spectrometer runs.

Geographic assignment of feather origin based
on stable isotope analysis
We performed a Bayesian analysis to obtain the most likely breeding
area of migratory warblers based on hydrogen isotope feather values
(δ²Hf). To calibrate the growing season precipitation isotope values
(δ²Hp; Bowen et al. 2005) to δ²Hf values of Yellow Warblers of known
origin (N = 32; Hobson et al. 2012), we used the calRaster function
of the ‘assignR’ package (Ma et al. 2020) in the R statistical language
(version 4.1.0; R Core Team 2022). Then we generated individual-
based posterior probability density maps restricted to the breeding
distribution range (BirdLife International and Handbook of the
Birds of the World 2021) using the pdRaster function in ‘assignR.’
We used the R package ‘isocat’ (Isotope Origin Clustering and
Assignment Tools) to cluster migrants into groups of common
breeding locations (Campbell et al. 2020) based on a similarity
matrix of the probability surfaces obtained from ‘assignR.’ First,
we computed the pairwise comparisons of Schoener’s D-metric
between all posterior probability raster layers. Then we calculated
the mean aggregated probability surfaces for each cluster in the
package ‘isocat.’ We adopted a hierarchical approach through the 
cutree function in the R package ‘dendextend’ (Galili 2015) and
determined the number of clusters by setting the bracketing height
threshold = 0.25. These clusters were used in the next step of analysis
(see below).

Statistical analysis
We used an information theoretic approach to identify the
temporal migration pattern between breeding clusters and
stopover locations and to identify potential covariates that may
explain variation in arrival timing. Given that our response
variable (breeding region) was categorical, we compared
multinominal logistic regression models for the Appledore Island
and Gulf Coast sites through Akaike’s information criterion
corrected for small sample sizes (AICc). For both stopover sites,
our non-correlated predictor variables (|Spearman’s rho| < 0.35)
included Day of Year and Fat Score. We assumed birds arrived
the day of initial capture and converted the calendar date to
ordinal day (Day of Year). Because of differences in methodology
with assessing fat score between the Appledore Island and Gulf
Coast sites, we standardized fat score between the two locations
based on the written descriptions (Helms and Drury 1960, Cherry
1982, Morris et al. 1996) in order to interpret our results on the
same scale. For the Gulf Coast sites analysis, we had sufficient
samples to include age and sex in the analysis. Data from
Appledore Island had too few individuals of known sex (n = 28)
or of adult age class (n = 3) to include models with age or sex.
However, we did analyze the subset of data with known sex for
Appledore and did not find sex to be included in the top models,
confirming our decision to exclude sex, which allowed us to
include individuals of known or unknown sex in our final
analyses. The final analysis resulted in 5 and 34 models for the
Appledore Island and Gulf Coast sites, respectively. Analyses
were performed by using the ‘nnet’ (Venables and Ripley 2002)
and ‘AICcmodavg’ (Mazerolle 2020) packages in the R statistical
language (R Core Team 2022).

RESULTS

Breeding distributions
Based on the stable isotope similarity matrix, five breeding
clusters were defined, which were numbered in order of decreasing
latitude within the Yellow Warbler breeding range (Fig. 3). For
individuals sampled at Appledore Island, breeding regions tended
to be more southern and eastern than birds sampled at the Gulf
Coast sites, as few birds (n = 4) were assigned to each of the two
northernmost clusters. The remaining three clusters of Appledore
Island birds had an increasing number of individuals progressing
southward, ranging from 10 to 18 (Appendix 1 Table S1). At the
Gulf Coast sites, the number of individuals migrating from each
of the five clusters ranged between 21 and 40 (Appendix 1 Table
S1). The largest group was from the northernmost cluster.

Temporal migration
The timing of arrival at the stopover sites also varied among
geographic breeding clusters. Arrival at Appledore Island was
earlier than at the Gulf of Mexico, such that individuals within
a geographic cluster arrived at Appledore ~10 days earlier than
individuals from those same clusters appeared on the northern
Gulf of Mexico coast. Additionally, even within a geographic
breeding cluster, there was variability in Day of Year, contributing
to weak synchrony within a cluster (Fig. 4).  

For Appledore Island, the top five models had a cumulative weight
of 1.0; three of the five models included Day of Year; however,
the second ranked model was the Null model (Table 2). The most
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 Fig. 3. Mean aggregated probability surface for each of five geographic clusters based on stable hydrogen isotope analysis. Warmer
colors indicate a higher probability of breeding location, and cooler colors signify a lower probability (A - E). The number of
individuals with membership within each cluster that were captured at either the Appledore Island or Gulf Coast sites during fall
migration (F).
 

 Fig. 4. The relationship between capture day and geographic
cluster, based on stable hydrogen isotope analysis, at the
Appledore Island, Maine (A), and Gulf Coast sites (B). The
shape of the violin indicates the probability of individuals
being in a particular area of the distribution with thick areas
indicating higher probability and thin areas indicating lower
probability. The black dots indicate individual data points, the
white dot indicates the median, the orange rectangle indicates
the interquartile range, and the black line illustrates the rest of
the range barring any outliers (indicated as black dots outside
the range).
 

supported model for Appledore Island was the model with only
Day of Year as a model variable, but both this model and the Null
model had a ΔAICc < 2 (Table 2). Average passage date for the

most southern geographic cluster (cluster 5) was much earlier (~8
days) than clusters 3 and 4, representing more northern breeding
regions (Fig. 4A).  

At the Gulf of Mexico sites, all of the top five models included
Day of Year with a cumulative AICc weight of 1.0 (Table 3). The
top model had only Day of Year as a model variable. The second-
best model, also with a ΔAICc < 2, was the additive model of Day
of Year and Age (Table 3). Passage date (Day of Year) was earlier
for the geographic clusters of more southern birds (clusters 4 and
5), whereas clusters representing more northern birds had later
passage dates (Fig. 4B). In terms of age, there were more samples
from hatch year birds (n = 111) compared to after-hatch year
birds (n = 39) overall. Most after-hatch year birds originated from
cluster 1 (n = 11) and the fewest originated from cluster 2 (n = 4),
whereas the most hatch year birds originated from cluster 2 (n =
34), followed closely by cluster 1 (n = 29), and the fewest originated
from cluster 3 (n = 13; Appendix 2 Fig. S1). We found no effect
of fat score at either site (Appendix 2 Fig. S2).

DISCUSSION
Our results from two disjunct (~2000 km) stopover sites provide
evidence that Yellow Warblers exhibit a type 1 temporal migration
pattern that is asynchronous between breeding and stopover
locations. At both the Appledore Island and Gulf Coast sites,
temporal synchrony differed across geographic clusters such that
birds coming from the most southerly breeding locations migrated
earlier relative to those from more northern breeding areas.
Despite previous work on the spatial patterns of Yellow Warblers,
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 Table 2. Akaike Information Criterion (AICc) model selection
on assigned breeding cluster based on feather hydrogen isotope
ratios (see Methods) for 50 Yellow Warblers passing through
Appledore Island, Maine, during fall migration. Candidate
models included combinations of the following variables: Day of
Year and Fat Score. The top five candidate models, which
encompass all the models we tested, are provided in addition to
the AICc weights (wi), log-likelihood, delta AICc (ΔAICc), and
number of model parameters (K).
 
Candidate model w

i
Log-likelihood ΔAIC

c
† K

Day of Year 0.68 −59.16 0 8
Null 0.32 −65.23 1.51 4
Fat Score <0.01 −60.28 31.22 16
Day of Year + Fat Score <0.01 −52.73 36.61 20
Day of Year * Fat Score <0.01 −48.08 146.57 32
† Lowest AIC

c
 score: 137.83.

 Table 3. AICc model selection on assigned breeding cluster based
on feather hydrogen isotope ratios (see Methods) for 150 Yellow
Warblers passing through sites on the northern coast of the Gulf
of Mexico during fall migration. Candidate models included
combinations of the following variables: Day of Year, Age, Sex,
and Fat Score. The top five candidate models are provided in
addition to the AICc weights (wi), log-likelihood, delta AICc 
(ΔAICc), and number of model parameters (K).
 
Candidate model wi Log-likelihood ΔAIC

c
† K

Day of Year 0.65 −207.75 0 8
Day of Year + Age 0.28 −203.96 1.67 12
Day of Year + Sex 0.05 −205.77 5.29 12
Day of Year * Age 0.01 −202.21 7.99 16
Day of Year + Sex + Age 0.01 −202.40 8.37 16
† Lowest AIC

c
 score: 432.52.

temporal migration patterns and, more specifically, patterns
between breeding and stopover sites had yet to be investigated.
The pattern observed here is consistent with a type 1 migration
pattern, and the degree of variation within and among geographic
breeding clusters suggests asynchronous migration. Type 1
migration patterns have also been found between natal origin and
stopover sites during fall migration in Orange-crowned Warblers
(Leiothlypis celata), Common Yellowthroats (Geothlypis trichas),
Sharp-shinned Hawks (Accipiter striatus), and Ruby-throated
Hummingbirds (Archilochus colubris; Smith et al. 2003, Kelly
2006, Zenzal et al. 2018). These results provide the first
information on the temporal migration patterns of Yellow
Warblers between breeding and stopover locations.  

Age was also associated with geographic cluster at the Gulf Coast
sites, which suggests differences in abundances of hatching year
and after-hatching year birds across clusters. We found age to be
included in the second-best model at the Gulf Coast sites with
hatch year birds making up over twice as many samples as after-
hatching year birds. The disparity in age classes is also evident at
Appledore Island, as all but a few samples at this site originated
from hatch year birds. Age-dependent migration at coastal
stopover sites during autumn is not uncommon, as numerous

studies have documented higher numbers of hatch year birds
during autumn migration along coast lines (i.e., the coastal effect;
sensu Ralph 1971, 1978, 1981), including at our sites (e.g., Morris
et al. 1994, 1996; Woodrey and Moore 1997, Morris and Glasgow
2001, Zenzal and Moore 2016). Our Gulf Coast site results
illustrate age-dependent differences in stopover site use from
individuals departing the same breeding area. There are two
potential interpretations for these results: hatch year and after-
hatch year Yellow Warblers from the same population use
different migratory pathways, similar to other species (e.g., Hake
et al. 2003, Trierweiler et al. 2014, Vega et al. 2016), or it is possible
that both age classes use the same pathways, but after-hatch year
birds try to avoid typically resource-poor coastal sites (sensu
Mehlman et al. 2005, Schaub et al. 2008). One possible direct
approach to support or refute these hypotheses would require a
substantial miniaturization in tracking devices, such as GPS tags,
suitable for attaching to small warblers.  

Our study shows that stopover sites along the northern Gulf of
Mexico support birds from throughout the Yellow Warbler
breeding range during fall migration. In contrast, few birds from
breeding clusters 1 and 2 passed through the Maine stopover site
(Appledore Island), which is likely due to the low probability of
birds from geographic clusters 1 and 2 migrating from those
northwestern breeding areas to the northeastern Atlantic coast.
The expansive breeding range of the Yellow Warbler could make
enacting breeding population-specific conservation during the
stationary breeding and non-breeding phases of the annual cycle
more challenging. However, our results indicate that en route
conservation efforts may benefit this species across its range.
Specifically, our coastal stopover sites supported bird populations
from across the breeding range, illustrating the conservation value
of stopover sites along large ecological features (e.g., oceans). We
have identified similar temporal migration patterns at two
disparate stopover sites, which increases our understanding of
migration strategies in Yellow Warblers. A future study could
integrate abundance or genetic data with our cluster analysis to
further refine cluster assignments for Yellow Warbler. Because
migration tends to have the highest rate of mortality across the
annual cycle (e.g., Sillett and Holmes 2002, Newton 2007, Paxton
et al. 2017, Ward et al. 2018), future efforts that provide
information for targeted management during stopover can help
improve the probability of an individual having a successful
migration.
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Appendix 1: Supplemental Table

Table S1. Number of Yellow Warblers that belong to each geographic cluster based on 

capture location. 

Geographic Cluster Appledore Island, ME Fort Morgan, AL Grand Bay, MS Total 

1 1 36 4 41 

2 3 34 4 41 

3 10 21 0 31 

4 18 22 3 43 

5 18 21 5 44 
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Appendix 2: Supplemental Figures 

Figure S1: The distribution of age classes by geographic cluster from birds captured at 

the Gulf of Mexico sites. Hatch Year (HY) birds are on their first migration, while After 

Hatch Year (AHY) birds have completed at least one spring migration prior to this 

season. 



Figure S2: The relationship between fat score and geographic cluster, based on stable 

hydrogen isotope analysis, at the Appledore Island, ME (A) and Gulf Coast Sites (B). 

The shape of the violin indicates the probability of individuals being in a particular area 

of the distribution with thick areas indicating higher probability and thin areas indicating 

lower probability. The black dots indicate individual data points, the white dot indicates 

the median, the orange rectangle indicates the interquartile range, and the black line 

illustrates the rest of the range barring any outliers (indicated as black dots outside the 

range). 
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