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1 Introduction to Differential Equations

In the nineteenth century, there arose in the wake of Newton’s formulation
of the three laws of motion and the development of calculus a great deal of
work on the investigation of mathematical problems which had their origins
in problems of a physical nature. This provided a wide spectrum of problems
which would serve to initiate the study of what is now called the subject of
partial differential equations [1,2]. Many problems with their origins in geom-
etry appeared to be expressible and amenable to study by means of differential
equations as well. It was soon realized that there are links between differen-
tial equations and geometric concepts which are being investigated to this
day. There are many areas of common interest between the area of differential
equations and that of differential geometry, such as the theory of surfaces [3]
eigenvalue problems and variational problems. One of the purposes here is
to elucidate this connection. Differential equations, especially partial differen-
tial equations, can encapsulate many fundamental laws of nature. They also
appear in the analysis of many diverse problems in science and engineering
[4]. Linear partial differential equations were studied extensively at first. The
attempt to describe a vibrating string was one of the first problems of contin-
uum mechanics which produced a partial differential equation. It was required
to develop a general theory, as well as various techniques for finding solutions
for these kinds of equations. This process has had a profound impact on many
other areas of mathematics as well. For example, the theory of Fourier series
had its origin in the study of linear partial differential equations. Partial dif-
ferential equations have been found essential to the development of the theory
of surfaces for example. They appear in the course of the analysis of a wide
variety of mathematical, nonphysical based problems as well, such as in the
area of analysis. The development of mechanics and the calculus of variations
[5,6] has also had a great impact on the subject as well since the formalism of
these areas generally leads directly to differential equations of various types.
The current interest in minmal surfaces and generalized Weierstrass represen-
tations exhibits a connection between the study of surfaces on the one hand
and the solution of systems of partial differential equations on the other.

Although this process has been ongoing for a long time, a more recent
development is the extension of the field to include the study of nonlinear
partial differential equations [6-12]. This has received impetus from many
areas, especially from physics but also from further developments in other
areas of mathematics. The solutions of nonlinear equations often have many
properties of physical interest which has generated great interest in these types
of equations. Of course their influence on the area of geometry has already
been noted [13-15], but group theory also has come to play an enormous role
in their study. The rise of the modern computer has permitted the area of
numerical solution of these equations to evolve into its own field of endeavor.
This is particularly important in the case of nonlinear equations, where a lot
of mathematics must be developed even to begin to obtain solutions [16-18].
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1.1 Overview of Partial Differential Equations.

A partial differential equation [4,19] in terms of a function u(x, y, · · · ) is a
relationship between u and its partial derivatives ux, uy, uxx, uyy, · · · which
can be written as

F (x, y, u, ux, uy, uxx, · · · ) = 0. (1.1)

Here F represents a given function of M variables, x, y are independent vari-
ables and u(x, y, · · · ) is called a dependent variable. The order of a partial
differential equation is defined to be the highest order derivative appearing in
(1.1). The most general first-order partial differential equation can be written
as

F (x, y, u, ux, uy) = 0. (1.2)

Similarly, the most general second-order partial differential equation in two
independent variables x, y has the form

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0. (1.3)

A partial differential equation is called linear if it is linear in the unknown
function and all its derivatives and the coefficients depend only on the inde-
pendent variables. It is called quasi-linear if it is linear in the highest-order
derivative of the unknown function.

It is convenient to write a partial differential equation in an operator form

Lu(x) = f(x). (1.4)

The operator L in (1.4) is called a linear operator if it satisfies the property

L(au+ bv) = aLu+ bLv, (1.5)

for any two functions u, v and any two constants a and b. Equation (1.3) is
called linear if L is a linear operator. If f(x) ≡ 0, (1.4) is called a homoge-
neous equation, otherwise, nonhomogeneous. An equation which is not linear
is called a nonlinear equation.

A classical solution of (1.1) is an ordinary function u = u(x, y, · · · ) defined
in some domain D which is continuously differentiable such that all its partial
derivatives involved exist and satisfy (1.1) identically.

However, this notion of classical solution can be extended by relaxing
the requirement that u be continuously differentiable over D. The solution
u = u(x, y, · · · ) is called a weak, or generalized, solution of (1.1) if u or its
partial derivatives are discontinuous in some or all points in D. In the case of
only two independent variables x, y, the solution u(x, y) of (1.1) is visualized
geometrically as a surface, called an integral surface in the (x, y, u) space.

The general solution of a linear homogeneous ordinary differential equa-
tion of order n is a linear combination of n linearly independent solutions with
n arbitrary constants. In the case of linear homogeneous partial differential
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equations of the form (1.4) with f ≡ 0, the general solution depends on arbi-
trary functions rather than arbitrary constants. If we represent this infinite set
of solutions by {u1(x), · · · , un(x), · · · }, then the infinite linear combinations

u(x) =

∞∑
n=1

cnun(x) (1.6)

where cn are arbitrary constants, in general, may not be again a solution
because the infinite series may not be convergent. So, for partial differential
equations, the superposition principle may not be true in general. As with
linear homogeneous ordinary differential equations, the principle of superpo-
sition applies to linear homogeneous partial differential equations and u(x)
represents a solution, provided that the infinite series (1.6) is convergent and
the operator L can be applied to the series term by term. Often the general
solution has to satisfy other supplementary conditions, usually called initial or
boundary conditions. Usually, there are infinitely many solutions and only by
specifying the initial or boundary conditions can a specific solution of interest
be determined.

1.2 Nonlinear Equations-Basic Concepts.

The most general first-order nonlinear partial differential equation in two in-
dependent variables x and y has the form (1.2). The most general second-order
nonlinear partial differential equation has the form (1.3). The most general
first-order and second-order nonlinear equations in more independent vari-
ables can be written down in a similar way.

As discussed already, it is possible to write equations like (1.2) and (1.3)
in operator form

Lxu(x) = f(x), (1.7)

where Lx is a partial differential operator and f(x) is a given function of two or
more variables, and we write x = (x, y, · · · ) just to highlight the independent
variables which would appear in the equation. As mentioned, if Lx is not a
linear operator, (1.7) is called a nonlinear partial differential equation, and
an inhomogeneous nonlinear equation if f(x) 6= 0, a homogeneous nonlinear
equation if f(x) = 0.

In general, the linear superposition principle can be applied to linear par-
tial differential equations if certain convergence requirements are satisfied.
This principle is usually used to find a new solution as a linear combination of
a given set of solutions. For nonlinear partial differential equations, the linear
superposition principle cannot be applied to generate a new solution. There is
no general method of finding analytical solutions of nonlinear partial differen-
tial equations since solution methods for linear equations usually do not work.
Consequently, numerical techniques are often required, and the development
of the modern computer has given a great push to the study of nonlinear
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equations from all points of view. As in the case of linear equations, questions
of uniqueness, existence and stability of solutions of nonlinear equations are
of fundamental importance. At this point, it is worth listing some important
equations which have appeared in various applications thus far [20].

1. The simplest first-order nonlinear wave equation is given by

ut + c(u)ux = 0, x ∈ R, t > 0, (1.8)

where c(u) is a given function of u. The equation describes the propagation
of a nonlinear wave.

2. The nonlinear Klein-Gordon equation is

utt − c2∇2u+ V ′(u) = 0, (1.9)

where c is a constant, and V ′(u) is a nonlinear function of u.
3. Burger’s equation is

ut + uux = νuxx, x ∈ R, t > 0, (1.10)

where ν is the kinematic viscosity. This is the simplest nonlinear model
equation for diffusive waves in fluid dynamics, introduced to describe one-
dimensional turbulence.

4. The Korteweg-de Vries equation [21],

ut + αuux + βuxxx = 0, x ∈ R, t > 0, (1.11)

where α and β are constants, is a simple and useful model for describing the
long time evolution of dispersive wave phenomena in which the steepening
effect of the nonlinear term is counterbalanced by dispersion.

5. Many physical systems are often characterized by their extremum prop-
erty of some associated physical quantity that appears as an integral in a
given domain, known as a functional. Such a characterization is a variational
principle leading to the Euler-Lagrange equation which optimizes the related
functional. This subject has been a great source of various types of differential
equations through its applications to mechanics and other subjects over time
[4,5].

The classical Euler-Lagrange variational problem is to determine the ex-
treme value of the functional

I(u) =

∫ b

a

F (x, u, u′) dx (1.12)

with the boundary conditions u(a) = α and u(b) = β, where α, β are given
numbers and u(x) belongs to the class C2([a, b]) of functions which have con-
tinuous derivatives up to second order in a ≤ x ≤ b and the integrand F has
continuous second derivatives with respect to all of its arguments.

It is assumed that I(u) has an extremum at some u ∈ C2([a, b]). Then
we consider the set of all variations u + εv for I and arbitrary v belonging
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to C2([a, b]) such that v(a) = 0 = v(b). Consider the variation δI of the
functional I(u)

δI =

∫ b

a

[F (x, u+ εv, u′ + εv′)− F (x, u, v)] dx.

Taylor expanding with respect to ε, there results

δI =

∫ b

a

ε (v
∂F

∂u
+ v′

∂F

∂u′
) dx+O(ε2). (1.13)

Thus, a necessary condition for the functional I(u) to have an extremum for
arbitrary ε is

0 = δI =

∫ b

a

(v
∂F

∂u
+ v′

∂F

∂u′
) dx.

Integrating this by parts,

0 =

∫ b

a

v[
∂F

∂u
− d

dx
(
∂F

∂u′
)] dx+ [v

∂F

∂u′
]ba. (1.14)

Since v is arbitrary with v(a) = 0 = v(b), the last term vanishes and so F
satisfies

∂F

∂u
− d

dx
(
∂F

∂u′
) = 0. (1.15)

Using the fact that

d(
∂F

∂u′
) =

∂

∂x
(
∂F

∂u′
) dx+

∂

∂u
(
∂F

∂u′
) du+

∂

∂u′
(
∂F

∂u′
) du′,

equation (1.15) takes the form,

Fu − Fxu′ − u′Fuu′ − u′′Fu′u′ = 0. (1.16)

This is called the Euler-Lagrange equation for the variational problem in-
volving one independent variable. This is a second-order nonlinear ordinary
differential equation for u, provided that Fu′u′ 6= 0 and, hence, there are two
arbitrary constants involved in the solution.

According to Hamilton’s principle in mechanics, the first variation of the
time integral of the Lagrangian L = L(qi, q̇i, t) of any dynamical system must
be stationary

δI = δ

∫ t2

t1

L(qi, q̇i, t) dt = 0,

where L = T − V is the difference between the kinetic energy, T , and the
potential energy, V . Consequently, in this case, the Euler-Lagrange equation
(1.16) reduces to

∂L

∂qi
− d

dt
(
∂L

∂q̇i
) = 0, i = 1, 2, · · · , n. (1.17)
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In classical mechanics, these equations are universally known as the Lagrange
equations of motion.

The Hamiltonian function or Hamiltonian H is defined in terms of the
generalized coordinates qi, generalized momenta pi = ∂L/∂q̇i, and L by

H =

n∑
i=1

piq̇i − L =

n∑
i=1

q̇i
∂L

∂q̇i
− L(q, q̇). (1.18)

It readily follows that

dH

dt
=

d

dt
[

n∑
i=1

piq̇i − L] =

n∑
i=1

q̇i(
d

dt

∂L

∂q̇i
− ∂L

∂qi
) = 0.

Thus, H is a constant, and hence, the Hamiltonian is a constant of the motion.
In general, the Lagrangian L = L(qi, q̇i, t) is a function of qi, q̇i and t, where

q̇i enters through the kinetic energy as a quadratic term. The differential of
H is

dH =

n∑
i=1

pidq̇i +

n∑
i=1

q̇idpi −
n∑
i=1

∂L

∂qi
dqi −

n∑
i=1

∂L

∂q̇i
dq̇i −

∂L

∂t
dt.

=

n∑
i=1

q̇i dpi −
n∑
i=1

∂L

∂qi
dqi −

∂L

∂t
dt,

where pi = ∂L/∂q̇i has been substituted. On the other hand, the differential
of the Hamiltonian H = H(pi, qi, t) is

dH =

n∑
i=1

∂H

∂pi
dpi +

n∑
i=1

∂H

∂qi
dqi +

∂H

∂t
dt.

Equating the coefficients of the two identical expressions, there results

q̇i =
∂H

∂pi
, − ∂L

∂qi
=
∂H

∂qi
, −∂L

∂t
=
∂H

∂t
. (1.19)

Invoking Lagrange equation (1.17), the first two equations in (1.19) give

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (1.20)

These are the Hamilton canonical equations of motion.

1.3 An Historical Overview Leading to the Present and the
Objectives of this Review.

One of the features of nonlinear equations which has given impetus to their
study is that these equations possess solutions which can be interpreted as
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describing nonlinear waves, which are also referred to as solitons. The ori-
gins of soliton theory go back to the early part of the nineteenth century.
In 1834, John Scott Russell made the remarkable observation of a solitary
bump-shaped wave moving down a long canal near Edinburgh in Scotland.
This wave seemed to display some of the key features that are now associated
with what are called solitons. It wasn’t until 1965 that this type of phenomena
was rediscovered, in particular, by Kruskal and Zabusky. This was in the con-
text of the Fermi-Pasta-Ulam problem, which had been studied earlier in the
century, but whose numerical study had become more tractable on account of
the development of the high speed computer. In fact, it was this group that
coined the term soliton. In 1895, two Dutch mathematicians, Korteweg and
de Vries had derived a nonlinear wave equation now carrying their name and
presented in the previous section. This equation has been used to model long
wave propagation in a rectangular channel and has a traveling wave solution
which resembles the solitary canal wave observed by Russel. It may be said
this began a theoretical impetus to the study of these types of equations.

A pair of equations equivalent to the KdV equation appeared even earlier
in a work by Boussinesq. It was not until the mid-twentieth century that the
equation reappeared in work done by such people as Zabusky and Kruskal
[22] and Gardner and coworkers [23,24], as well in an analysis of the trans-
mission of hydromagnetic waves. Clearly, the mathematical spectrum of this
subject is very wide reaching as far as applications are concerned. There con-
tinues to be ongoing and continuing interest in nonlinear equations such as
these, and the ones mentioned in Section 1.2. There are many other equa-
tions which arise in a diversity of physical systems, such as in the study of
solids, liquids and gases. Self-localizing nonlinear excitations are fundamental
and are intrinsic features of such systems as quasi-one-dimensional conducting
polymers. Perring and Skyrme have applied the sine-Gordon equation to an
elementary particle model, in particular, by solving the equation numerically
to obtain a numerical solution. The results generated from this equation were
found not to disperse and moreover, two solitary waves have been observed to
retain their original shapes as well as velocities despite undergoing collisions.
As will be seen here, this continues to be a very active area for many reasons
outside of physical applications. One of the reasons for this is that there exist
numerous interconnections with other areas of mathematics, in particular, the
areas of group theory and differential geometry. It has been found, for exam-
ple, that equations which determine manifolds in three and higher dimensional
spaces are closely related to the kinds of partial differential equations that will
be discussed here [25]. This is especially the case with surfaces immersed in
three space [3]. These equations not only provide a means for producing such
surfaces, but also for describing their evolution in terms of a parameter which
can be thought of as time.

The intention here is to introduce and provide a survey to a number of
important topics which concern differential equations and their overlap with
differential geometry, as well as being of great current interest as well. Al-
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though a diverse range of subjects are discussed, it is hoped a panorama of
the subject will be developed. The sections are self-contained and should be
understandable to a reader with a basic knowledge of differential equations
and differential geometry. Some sections are of a pedagogic nature, however
some contain new results. Thus, the presentation is carried out with an em-
phasis on applying concepts and techniques from these areas to the study of a
variety of subjects related to both linear and nonlinear differential equations.
Some ideas which are used quite a bit are also reviewed in various places, such
as vector fields and differential forms [26,27]. As well, the notation is standard
but may vary somewhat in presentation from section to section, depending on
the discussion.

Let us give a brief outline of the subjects which are presented. In Chapter
2, a general introduction to equations of first order is presented. The concept
of a vector field as a differential operator and of a one form are introduced and
their significance with respect to differential equations is illustrated. The third
chapter considers flows of vector fields and introduces a more expanded idea of
differential forms in general. Chapter 4 gives an introduction to the concept
of geometric distributions and the role vector fields play in that area. The
Frobenius Theorem is also introduced. This is a very important result which
has a variety of consequences. Chapter 5 discusses Pfaffian systems and gives a
number of Theorems relevant to the study of differential equations. The sixth
chapter discusses how the symmetry group of an ordinary differential equation
can be calculated. A lengthy application illustrating the method to the study
of the Duffing-van der Pol oscillator is given in detail. Exterior differential
systems and Wahlquist-Estabrook prolongations are considered and leads to
the idea of a type of integrability. This is a useful technique for establishing a
type of integrability often called Frobenius integrability. Moreover, the theory
is fully capable of generating Lax pairs, and Bäcklund transformations can
often be determined as well. The overlap of the areas of surface theory and
integrable nonlinear equations is touched on next with a novel examination
of the sine-Gordon equation. This subject has developed into a very active
area of research. A number of applications of Pfaffian systems appears in this
context as well. The generation of integrable systems and hierarchies of such
systems is also of much interest, and so a long section on the development
of a hierarchy is included. Finally, in the last chapter, the subject of heat
operators on Riemannian manifolds is briefly discussed. The Laplacian on
its own can also provide information concerning the underlying manifold on
which it resides, and some final results are given in this area to end.
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2 Equations of First Order

Suppose that x = (x1, x2, · · · , xn) are n ≥ 2 independent variables with u
a single dependent variable. Moreover p = (p1, p2, · · · , pn) denotes the par-
tial derivatives of u which are defined as follows, pi = ∂u/∂xi. As already
remarked in the previous chapter, equations in which the number of indepen-
dent variables is greater than one are termed partial differential equations. An
equation is of first order if the partial derivatives of highest order that occur
are of order one [4]. A single partial differential equation of first order in one
dependent variable can be written in either of the two forms,

F (x, u,p) = F (x1, · · · , xn, u, p1, · · · , pn) = 0. (2.1)

Definition 2.1 A function u = φ(x) which is defined and continuously
differentiable in a neighborhood of the point x0 = (x10, · · · , xn0 ), is said to be a
solution, or integral, of the partial differential equation (2.1) if the substitution
u = φ(x), pi = ∂φ(x)/∂xi converts (2.1) into an identity in a neighborhood
of the point x0.

In the case of two independent variables, we will use the following notation.
The independent variables are denoted x, y, the dependent variable by u, and
its first derivatives p = ∂u/∂x and q = ∂u/∂y. Equation (2.1) is then written

F (x, y, u, p, q) = 0. (2.2)

A solution u = φ(x, y) of the differential equation (2.2) defines a surface in the
three-dimensional space with Cartesian coordinates x, y and u and therefore
it is called an integral surface.

2.1 Linear, Quasi-linear and Nonlinear Equations.

The standard form of a linear partial differential equation of first order is
given by

a1(x)p1 + · · ·+ an(x)pn + c(x)u = f(x). (2.3)

that is,

a1(x)
∂u

∂x1
+ · · ·+ an(x)

∂u

∂xn
+ c(x)u = f(x), (2.4)

where ai(x), c(x) and f(x) are given functions of the independent variables.
In particular, (2.3) with c(x) = 0 and f(x) = 0 is given by

a1(x)p1 + · · ·+ an(x)pn = 0, (2.5)

and is referred to as a homogeneous linear equation owing to the fact that
its left-hand side is a linear form in p. Also, there is no term not involving a
derivative and that the derivatives pi occur in the first power only.

The general quasilinear equation of the first order is
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a1(x, u)p1 + · · ·+ an(x, u)pn = g(x, u), (2.6)

where ai and g are given functions of both independent variables. Since (2.6)
is linear in p, it is sometimes called a non-homogeneous linear equation. How-
ever, (2.6) is nonlinear because the unknown function u is introduced into its
coefficients. Consequently, (2.6) is also termed quasi-linear instead of linear.
Equations (2.1) which differ from (2.3) and (2.6) are termed nonlinear partial
differential equations of first order. When several equations of the form (2.1)
are given instead of a single one, they furnish a system of partial differential
equations of the first order.

2.2 Integration of Linear Equations.

Consider a system of ordinary differential equations of the first order with
(n− 1) dependent variables

dyi

dx
= f i(x, y1, y2, · · · , yn−1), i = 1, · · · , n− 1. (2.7)

Its general solution has the form

yi(x) = φi(x,C1, · · · , Cn−1), i = 1, · · · , n− 1,

whence, upon solving with respect to the constants of integration Ci,

ψi(x, y
1, y2, · · · , yn−1) = Ci, i = 1, · · · , n− 1. (2.8)

The relations (2.8) provide the general integral of the system (2.7). The left-
hand side of each relation in (2.8) reduces to a constant when y1, y2, · · · , yn−1
are replaced by the coordinates y1(x), y2(x), · · · , yn−1(x) of any solution of
the system (2.7). Every single relation in (2.8) is known as a first integral of
(2.7) for this reason.

(1) Consider as an example the system

dx

dt
= x,

dy

dt
= y.

Integration of the pair yields the general solution

x = C1e
t, y = C2e

t.

Solving these with respect to the constants of integration yields two first
integrals,

xe−t = C1, ye−t = C2.

The set of first integrals (2.8) is not the only representation of the general
solution. Indeed, any relation Ψ(ψ1, · · · , ψn−1) = C is a first integral, and
hence one can replace the functions ψ by any n− 1 functionally independent
functions Ψi(ψ1, · · · , ψn−1), i = 1, · · · , n− 1.
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Definition 2.2. Given a system (2.7), its first integral is a solution of the
form

ψ(x, y1, y2, · · · , yn−1) = C

satisfied for any solution yi = yi(x), i = 1, · · · , n − 1, where the function ψ
is not identically constant. The function ψ keeps a constant value along each
solution with the constant C depending on the solution.

The system (2.7) can be rewritten in the form,

dx

1
=
dy1

f1
=
dy2

f2
= · · · = dyn−1

fn−1
.

Since the denominators can be multiplied by any function distinct from zero,
one can rewrite these equations, using x = (x1, x2, · · · , xn) for the variables
x, y1, · · · , yn−1, in the symmetric form

dx1

a1(x)
=

dx2

a2(x)
= · · · = dxn

an(x)
. (2.9)

The term symmetric is due to the fact that the form (2.9) of n − 1 first-
order ordinary differential equations does not specify the independent variable,
which may now be any of the n variables x1, x2, · · · , xn. A first integral of
the system (2.9) is given by Definition 2.2 and is written

ψ(x) = C. (2.10)

Definition 2.3 A set of n− 1 first integrals

ψk(x) = Ck, k = 1, · · · , n− 1, (2.11)

is said to be independent if the functions ψk(x) are functionally independent,
that is, if there is no relation of the form F (ψ1, · · · , ψn−1) = 0.

Any set of n− 1 independent first integrals represents the general solution
of the system (2.9). Since the general solution of a system of n− 1 first order
equations depends exactly on n − 1 arbitrary constants, one arrives at the
following.

Theorem 2.1 A system of n−1 first-order ordinary differential equations
(2.9) has n−1 independent first integrals (2.11). Any other first integral (2.10)
of the system (2.9) is expressible in terms of (2.11)

ψ = F (ψ1, · · · , ψn−1). (2.12)

(2) Consider the system

dx

yz
=
dy

xz
=
dz

xy
.

This is rewritten as
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dx

yz
=
dy

xz
,

dy

xy
=
dz

xy
,

or multiplying through by z and x, respectively,

dx

y
=
dy

x
,

dy

z
=
dz

y

Rewriting these in the form xdx − ydy = 0 and ydy − zdz = 0 and then
integrating, the following two integrals are obtained

ψ1 = x2 − y2 = C1, ψ2 = y2 − z2 = C2.

Alternatively, the system can be written in the form,

dx

y
=
dy

x
,

dx

z
=
dz

x
.

This form produces the first integrals

ψ1 = x2 − y2 = C1, ψ3 = x2 − z2 = C3,

and hence one obtains three different first integrals, ψ1 = C1, ψ2 = C2 and
ψ3 = C3. However, these are not independent since ψ3 = ψ1 + ψ2, in accor-
dance with the above theorem.

2.3 Homogeneous Linear Partial Differential Equations.

Lemma 2.1. A function ψ(x) = ψ(x1, · · · , xn) provides a first integral (2.10)
of the system (2.9) if and only if it solves the partial differential equation

a1(x)
∂ψ

∂x1
+ · · ·+ an(x)

∂ψ

∂xn
= 0. (2.13)

Proof: Let a function ψ(x) provide a first integral. Since ψ equals a con-
stant for every solution x = (x1, · · · , xn) of the system (2.9), the directional
differential dψ, taken along any integral curve of (2.9), vanishes

dψ =
∂ψ

∂x1
dx1 + · · ·+ ∂ψ

∂xn
dxn = 0. (2.14)

whenever the differential dx = (dx1, · · · , dxn) is proportional to the vector
a = (a1, · · · , an) so dx = λa, where λ is the common value of the ratios
dxi/ai in (2.9). Consequently, substituting dxi = λai in (2.14), one arrives at
(2.13). This latter is satisfied at points x belonging to any integral curve of the
system (2.9). According to the existence theorem, integral curves pass through
any point. It follows that (2.13) is satisfied identically in the neighborhood of
any generic point x.

Conversely, let ψ(x) be a solution of the partial differential equation (2.13).
Since the left-hand side of (2.13) is the directional derivative, a · ∇ψ, of ψ in
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the direction a, it follows that the directional differential dψ along any integral
curve of the system (2.9) vanishes. Hence, ψ(x) has a constant value along
any integral curve, and ψ(x) = C is a first integral of (2.9).

Lemma 2.2. Consider the partial differential operator of the first-order

X = a1(x)
∂

∂x1
+ · · ·+ an(x)

∂

∂xn
. (2.15)

Let yi be new independent variables defined by an invertible transformation

yi = ϕi(x), i = 1, · · · , n. (2.16)

Then the operator can be written in the new variables in the form

X̄ = X(ϕ1)
∂

∂y1
+ · · ·+X(ϕn)

∂

∂yn
, (2.17)

where,

X(ϕi) = a1(x)
∂ϕi

∂x1
+ · · ·+ an(x)

∂ϕi

∂xn
.

Proof: The chain rule for partial derivatives gives

∂

∂xi
=

n∑
k=1

∂ϕk

∂xi
∂

∂yk
.

It is easy to check that the substitution of these expressions into the operator
(2.15) transforms it into (2.17).

Theorem 2.2 The general solution to the homogeneous linear partial
differential equation

X(u) = a1(x)
∂u

∂x1
+ · · ·+ an(x)

∂u

∂xn
= 0, (2.18)

is given by the formula

u = F (ψ1(x), · · · , ψn−1(x)), (2.19)

where F is an arbitrary function of n− 1 variables and

ψ1(x) = C1, · · · , ψn−1(x) = Cn−1,

is a set of n − 1 independent first integrals of (2.9) associated with (2.18),
namely the characteristic system of equation (2.18),

dx1

a1(x)
= · · · = dxn

an(x)
. (2.20)

Proof: The function u defined by (2.19) solves (2.18). For X(ψ1) =
0, · · · , X(ψn−1) = 0 by Lemma 2.1, and the equation X(u) = 0 follows from
the relation
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X(F (ψ1, · · · , ψn−1)) =
∂F

∂ψ1
X(ψ1) + · · ·+ ∂F

∂ψn−1
X(ψn−1).

Let us verify that any solution of (2.18) has the form (2.19). We introduce
new independent variables as follows

y1 = ψ1(x), · · · , yn−1 = ψn−1(x), yn = φ(x),

where ψ1(x), · · · , ψn−1(x) are the left-hand sides of n − 1 independent first
integrals of the characteristic system (2.20), and φ(x) is any function that
is functionally independent of the ψ1(x), · · · , ψn−1(x). According to Lemma
2.1, X(ψ1) = · · · = X(ψn−1) = 0, whereas X(φ) 6= 0. Now Lemma 2.2 can be
used to reduce (2.18) to the form

X(u) = X(φ)
∂u

∂yn
= 0,

and so ∂u/∂yn = 0. Therefore, the general solution is an arbitrary function
of y1, · · · , yn−1, in accordance with (2.19).

2.4 Non-Homogeneous Equations.

The integration of non-homogeneous linear equations (2.4) is to be discussed
now which are of the form,

a1(x)
∂u

∂x1
+ · · ·+ an(x)

∂u

∂xn
= f(x). (2.21)

In terms of the notation (2.15), equation (2.21) can be written

X(u) = f(x). (2.22)

Theorem 2.3. Given a particular solution u = ϕ(x) of the non-homogeneous
equation X(u) = f(x), its general solution is obtained by adding to ϕ(x) the
general solution of the corresponding homogeneous equation X(u) = 0. The
general solution of equation (2.21) is given by

u = ϕ(x) + F (ψ1(x), · · · , ψn−1(x)), (2.23)

where ϕ(x) is any particular solution of (2.21), and ψ1(x), · · · , ψn−1(x) are
the left-hand sides of any set of n−1 independent first integrals of the system
of ordinary differential equations (2.20), and F is an arbitrary function.

Proof: Let X(ϕ(x)) = f(x). By setting u = v + ϕ(x), one obtains

X(u) = X(v) +X(ϕ(x)) = X(v) + f(x).

It follows that X(u) = f(x) if and only if v satisfies homogeneous equation
(2.18), X(v) = 0. Hence, after v has been replaced in u = ϕ(x) + v by (2.19),
v = F (ψ1(x), · · · , ψn−1(x)), we arrive at (2.23).
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Theorem 2.3 reduces the problem of integration of a non-homogeneous
linear partial differential equation (2.21) to that of the associated system of
ordinary differential equations (2.20), provided that a particular solution ϕ(x)
of (2.21) is known.

(1) Solve an equation of the form (2.21) in the case in which one of the ai

and f depend on a single variable which can be taken as x1,

a1(x1)
∂u

∂x1
+ a2(x1, · · · , xn)

∂u

∂x2
+ · · ·+ an(x1, · · · , xn)

∂u

∂xn
= f(x1). (2.24)

A particular solution is readily obtained by letting u = ϕ(x1). In fact, (2.24)
yields the ordinary differential equation

a1(x1)
dϕ

dx1
= f(x1).

The solution is then obtained by quadrature,

ϕ(x1) =

∫
f(x1)

a1(x1)
dx1.

The general solution is provided by using (2.23).
(2) The equation in the independent variables x and y

x2
∂u

∂x
+ xy

∂u

∂y
= 1,

has the form (2.24) such that a1 = x2 and f = 1. Consequently, a particular
solution can be sought which has the form u = ϕ(x). Then the equation in
question reduces to the ordinary differential equation x2dϕ/dx = 1, whence
one easily obtains the particular solution ϕ = −1/x2. The associated system
(2.20)

dx

x2
=
dy

xy
,

has the first integral ln
y

x
= lnC or ψ1 =

y

x
= C. The general solution can be

written

u = ϕ(x) + F (ψ1(x)) = − 1

x2
+ F (

y

x
).

(3) Consider the equation

y
∂u

∂x
− x∂u

∂y
= y.

Upon dividing by y, this equation takes the form (2.24) with a1 = 1 and f = 1.
Consequently, assuming u = ϕ(x), one obtains from dϕ/dx = 1 a particular
solution ϕ = x. Since the general solution of the corresponding homogeneous
equation can be found by integrating the system
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dx

a1(x)
=

dy

a2(x)

with a1 = y and a2 = −x. The solution is given by ψ1 = x2 + y2 = C1,
the first integral. Thus, v = F (x2 + y2), and so the general solution of the
non-homogeneous equation has the form

u = x+ F (x2 + y2).

2.5 Quasi-linear Equations and Laplace’s Method.

Laplace integrated the equation with two independent variables given by

α(x, y)
∂u

∂x
+ β(x, y)

∂u

∂y
= g(x, y, u), (2.25)

by reducing it to an ordinary differential equation by means of an appropriate
change of independent variables. Both coefficients α and β are supposed to
be different from zero, since otherwise (2.25) is then an ordinary differential
equation. Equation (2.25) is rewritten in the new variables x′ = x and y′ =
ψ(x, y) in the form,

α
∂u

∂x′
+ (α

∂ψ

∂x
+ β

∂ψ

∂y
)
∂u

∂y′
= g(x, y, u).

Letting ψ(x, y) be a nonconstant solution of the homogeneous linear equation
associated with (2.25),

α(x, y)
∂ψ

∂x
+ β(x, y)

∂ψ

∂y
= 0, (2.26)

then using x′ = x, one arrives at the ordinary differential equation

α(x, y)
∂u

∂x
= g(x, y, u), (2.27)

where y should be expressed in terms of x and y′ by solving y′ = ψ(x, y) with
respect to y. Thus, (2.25) is reduced to the ordinary differential equation of the
first order (2.27). One can use an alternative change of variables, x′ = ψ(x, y)
and y′ = y to obtain, instead of (2.27), the following equation,

β(x, y)
∂u

∂y
= g(x, y, u), (2.28)

where x should be expressed in terms of x′ and y from x′ = ψ(x, y).
Example 1. Consider the equation

y
∂u

∂x
− x∂u

∂y
= 1. (2.29)
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To solve the homogeneous equation

y
∂ψ

∂x
− x∂ψ

∂y
= 0 (2.30)

the characteristic equation dx/y = −dy/x is used, that is, xdx+ydy = 0. Inte-
gration yields the first integral x2 + y2 = C. Hence ψ = x2 + y2 solves (2.30).
Consequently, the change of variables x′ = x2 + y2 and y′ = y transforms
(2.29) into (2.28),

x
∂u

∂y
= −1,

or upon substitution of x =
√
x′ − y2,

∂u

∂y
= − 1√

x′ − y2
.

After integration with respect to y, the general solution to this equation comes
right out,

u = − arcsin(
y√
x′

+ F (x′).

Using the elementary formula arcsin t = arctan(t/
√

1− t2) and returning to
the original variables x and y, the general solution to (2.29) is obtained

u = − arctan(
y

x
) + F (x2 + y2). (2.31)

Laplace’s method can be extended to equations in terms of many variables
x = (x1, · · · , xn) of the form

a1(x)
∂u

∂x1
+ · · ·+ an(x)

∂u

∂xn
= g(x, u). (2.32)

Invoking the operator X defined in (2.15), (2.32) is written

X(u) = g(x, u).

Lemma 2.3. Given an operator X as in (2.15), variables x
′i can be found

by solving the homogeneous equation X(u) = 0, such that X reduces to the
one-dimensional form

X = a(x′)
∂

∂x′n
, (2.33)

with an arbitrary coefficient a(x
′
).

Proof: It follows that the required variables can be determined by the
equations

x
′1 = ψ1(x), · · · , x

′n−1 = ψn−1(x), x
′n = φ(x), (2.34)

where ψ1(x), · · · , ψn−1(x) are any n − 1 functionally independent solutions
of the homogeneous equation, X(ψ1) = · · · = X(ψn−1) = 0, and φ(x) is
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functionally independent of ψ1(x), · · · , ψn−1(x). In fact, in terms of these
variables, the operator X is written

X = X(φ)
∂

∂x′n
.

It has the form (2.33) with a(x′) = X(φ(x)), where on the right side, x has
to be expressed in terms of the variables x′ by inverting (2.34).

Definition 2.4. Variables (2.34) in which X has the one-dimensional form
(2.33), are termed semi-canonical variables for the operator X.

Theorem 2.4. Let an(x) 6= 0. Then there exist semi-canonical variables
(2.34), such that (2.32) is written as the ordinary differential equation of the
first order

an(x)
∂u

∂x′n
= g(x, u). (2.35)

Proof: It suffices to choose the following semi-canonical variables (2.34),

x
′1 = ψ1(x), · · · , x

′n−1 = ψn−1(x), x
′n = xn. (2.36)

After we have expressed the variables x in (2.35) in terms of the new variables
by inverting (2.36), equation (2.35) becomes an ordinary differential equation
with an independent variable x

′n where the remaining variables x
′1, · · · , x′n−1

are regarded as parameters. Consequently, the constant of integration C will
depend on these parameters, C = F (x

′1, · · · , x′n−1).

Example 2. Consider the non-homogeneous linear equation,

x1
∂u

∂x1
+ · · ·+ xn

∂u

∂xn
= 1.

Assuming xn 6= 0 and integrating the homogeneous equation, one readily
obtains the solution ψ1 = x1/xn, ψ2 = x2/xn, · · · , ψn−1 = xn−1/xn and
hence the semi-canonical variables (2.36)

x
′1 =

x1

xn
, · · · , x

′n−1 =
xn−1

xn
, x

′n = xn.

The ordinary differential equation (2.35) is written

x
′n =

∂u

∂x′n
= 1,

and has the general solution u = ln |x′n| + F (x
′1, · · · , x′n−1). Therefore, re-

turning to the original variables

u = ln |xn|+ F (
x1

xn
, · · · , x

n−1

xn
).
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2.6 Reduction to a Homogeneous Linear Equation.

The general quasi-linear equation (2.6) with n independent variables

a1(x, u)
∂u

∂x1
+ · · ·+ an(x, u)

∂u

∂xn
= g(x, u), (2.37)

in particular, an arbitrary non-homogeneous linear equation (2.4) can be re-
duced to a homogeneous linear equation with n+ 1 variables as follows.

Define u as a function of x = (x1, · · · , xn) implicitly by

V (x1, · · · , xn, u) = 0. (2.38)

Now treat V as an unknown function of n + 1 variables x1, · · · , xn and u.
Define

Di =
∂

∂xi
+ pi

∂

∂u
, (2.39)

to be the operator of total differentiation with respect to xi. It follows from
(2.38), upon total differentiation that the following equation results

DiV =
∂V

∂xi
+ pi

∂V

∂u
= 0,

whence, solving for pi,

pi = −

∂V

∂xi

∂V

∂u

, i = 1, · · · , n. (2.40)

Replacing pi in (2.6) by expressions (2.40), one obtains the homogeneous
equation

X(V ) = a1(x, u)
∂V

∂x1
+ · · ·+ an(x, u)

∂V

∂xn
+ g(x, u)

∂V

∂u
= 0 (2.41)

for an unknown function V of n+ 1 variables x1, · · · , xn and u. Applying the
theorem for solving homogeneous linear equations, one arrives at the following
effective method for solving quasi-linear equations.

Theorem 2.5. Let

ψ1(x, u) = c1, · · · , ψn(x, u) = cn

be a set of n independent first integrals of the system of equations called the
characteristic system for the quasi-linear equation (2.37),

dx1

a1(x, u)
=

dx2

a2(x, u)
= · · · = dxn

an(x, u)
=

du

g(x, u)
. (2.42)

Then the general solution to (2.41) is given by
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V (x, u) = F (ψ1(x, u), · · · , ψn(x, u)), (2.43)

where F is an arbitrary function of n variables. Consequently, the solution of
the quasi-linear equation (2.37) is defined implicitly by (2.38), V (x, u) = 0.
Provided that ∂V/∂u 6= 0, the solution can be written explicitly u = φ(x).

Example 3. Apply the method above to (2.29),

y
∂u

∂x
− x∂u

∂y
= 1.

Here g(x, y, u) = 1 and hence the characteristic system (2.42) is written

dx

y
= −dy

x
=
du

1
.

Two independent first integrals of this system must be found. The first equa-
tion xdx+ ydy = 0 gives x2 + y2 = a2, where a is constant. By means of this
relation, the second equation is rewritten

du+
dy√
a2 − y2

= 0,

whence, upon integration, u + arcsin(y/a) = C, or u + arctan(y/x) = C.
Hence, the two independent first integrals have the form

ψ1 = x2 + y2 = C1, ψ2 = u+ arctan(
y

x
) = C2.

Therefore, the general solution of the corresponding equation (2.41),

y
∂V

∂x
− x∂V

∂y
+
∂V

∂u
= 0,

is given by (2.43),

V = F (x2 + y2, u+ arctan(
y

x
)).

Hence (2.38) is written,

F (x2 + y2, u+ arctan(
y

x
)) = 0.

Under the assumption ∂V/∂u 6= 0, solution (2.31) is obtained by solving the
latter equation with respect to u.

Example 4. Consider the quasi-linear equation

∂u

∂t
+ u

∂u

∂x
= 0.

The homogeneous linear equation (2.41) for the function V (t, x, u) is
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X(V ) =
∂V

∂t
+ u

∂V

∂x
= 0.

The characteristic system (2.42) can be written formally as

dt

1
=
dx

u
=
du

0
,

where the last term simply means that this system has the first integral u =
C1. By virtue of this first integral, the characteristic system reduces to dx−
C1dt = 0, whence x − C1t = C2. Thus there are two first integrals, u = C1

and x− tu = C2. Thus V = F (u, x− tu), and the solution of the equation in
question is given implicitly by (2.38),

F (u, x− tu) = 0, u = f(x− tu).

2.7 Integral Surfaces of Loci of Characteristic Curves.

Characteristics play a central role in the whole theory of differential equa-
tions. The general notion of characteristic curves is amenable to a geometric
description in the case of quasi-linear equation (2.6) with two independent
variables

a1(x, y, u)p+ a2(x, y, u)q = g(x, y, u), (2.44)

where p = ∂u/∂x and q = ∂u/∂y. Recall some elementary facts from the
geometry of surfaces. Consider a surface given in the form u = φ(x, y) and a
point P (x, y, u) on the surface. Let p = ∂φ/∂x and q = ∂φ/∂y. The equation
of the tangent plane to the surface at P is given by

U − u = p(X − x) + q(Y − y), (2.45)

where (X,Y, U) are points on the tangent plane. The equation of a straight
line in the direction of a given vector (v1, v2, v3) is

X − x
v1

=
Y − y
v2

=
U − u
v3

, (2.46)

where (X,Y, U) are points on the straight line. If the line is perpendicular to
the tangent plane to the surface at P , it is called a normal line at P . The
equation of the normal line to the surface is

X − x
p

=
Y − y
q

=
U − u
−1

. (2.47)

Consequently, the line represented by (2.46) lies in the tangent plane (2.45) if
the vectors (v1, v2, v3) and (p, q,−1) are orthogonal, so that v1p+v2q−v3 = 0.
Let u = φ(x, y) be any integral surface of the partial differential equation
(2.44). In the above geometric language, (2.44) means that the tangent plane
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(2.45) to the integral surface contains the straight line passing through the
point of contact P (x, y, u) in the direction of the vector (a1, a2, g),

X − x
a1(x, y, z)

=
Y − y

a2(x, y, z)
=

U − u
g(x, y, z)

. (2.48)

Definition 2.5. Curves which are tangent at each of their points P (x, y, u)
to the straight line (2.48) are called characteristic curves, or simply charac-
teristics, of the quasi-linear equation (2.44).

Since the tangent vector to a curve is directed along the vector (dx, dy, du),
the characteristic curves are determined by the system

dx

a1(x, y, u)
=

dy

a2(x, y, u)
=

du

g(x, y, u)
, (2.49)

obtained from (2.48) by merely letting (X,Y, U) tend to (x, y, u).
Theorem 2.6. Every integral surface of the quasi-linear equation (2.44)

is generated by a one-parameter family of characteristic curves.
Proof: Consider two independent first integrals of system (2.49)

ψ1(x, y, u) = a, ψ2(x, y, u) = b. (2.50)

Equations (2.50) define a two-parameter family of characteristic curves. Let
us single out a one-parameter family by subjecting the parameters a and b
to any relation F (a, b) = 0. Eliminating a and b from the latter relation and
from (2.50), one obtains a surface given by

F (ψ1(x, y, u), ψ2(x, y, u)) = 0.

This surface, generated by the one-parameter family of characteristics, has the
form (2.38), (2.43) and hence it is an integral surface for (2.44). Since F is an
arbitrary function, any integral surface can be obtained by this construction.

The characteristics of the general quasi-linear equation (2.37) are deter-
mined by the characteristic system (2.42). Thus a function u = φ(x1, · · · , xn)
is a solution of equation (2.37) if and only if it is formed by a family of
characteristics depending on n− 1 parameters.

In the particular case of (2.44), where g = 0 and the coefficients a1 and
a2 do not depend on u, in the case of the homogenous linear equation

a1(x, y)
∂u

∂x
+ a2(x, y)

∂u

∂y
= 0, (2.51)

the characteristics are given by (2.50) of the form Ψ(x, y) = a, u = b, where
the first relation provides a first integral of the equation

dx

a1(x, y)
=

dy

a2(x, y)
. (2.52)
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It follows that the characteristic curves are merely cuts of cylinders protracted
along the u-axis with directrices ψ(x, y) = a by planes u equal to a constant,
parallel to the xy-plane.

For example, for the following equation

y
∂u

∂x
− x∂u

∂y
= 0,

the characteristics are concentric circles x2 + y2 = C.

2.8 Nonlinear Equations.

Consider the general equation (2.2) of first order

F (x, y, u, p, q) = 0, (2.53)

with two independent variables. Its solution involves, in general, an arbitrary
function. The fundamental result due to Lagrange states however that it suf-
fices to know a solution depending on only two variables. Then all other
integrals of (2.53) can be derived from such a solution through differentiation
and elimination of parameters.

Definition 2.6. The complete integral of equation (2.53) is a solution
depending on two arbitrary constants

u = φ(x, y, a, b). (2.54)

This means that relation (2.53) becomes an identity in x, y, a, b whenever u
and p, q are replaced by u = φ(x, y, a, b) and

p = φx(x, y, a, b), q = φy(x, y, a, b), (2.55)

respectively, where φx = ∂φ/∂x and φy = ∂φ/∂y. Furthermore, it is assumed
that elimination of the parameters a and b from the relations (2.54) and (2.55)
leads precisely to (2.53).

Theorem 2.7. Given a complete integral (2.54), let the parameters a and
b undergo an arbitrary relation b = σ(a). Let

u = fσ(x, y) (2.56)

be the envelope of the one-parameter family of integral surfaces,

u = φ(x, y, a, σ(a)). (2.57)

Then (2.56) is an integral surface for equation (2.53). The subscript σ in (2.56)
indicates that the solution depends upon choice of function σ.

Proof: The envelope (2.56) of the family of surfaces (2.57) is obtained by
eliminating the parameter a from equation (2.57) and the equation
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[
∂φ(x, y, a, b)

∂a
+
∂φ(x, y, a, b)

∂b
σ′(a)]b=σ(a) = 0. (2.58)

By definition, the envelope has the same p and q along the curve of con-
tact with the enveloped surface. Consequently, the envelope (2.56) of integral
surfaces (2.57) is also an integral surface of (2.53).

Definition 2.7. The general integral is the set of all particular solutions
(2.57) obtained for all possible relations b = σ(a) between the two parameters.
Hence, the general integral involves indirectly an arbitrary function σ(a).

Definition 2.8. The singular integral is the envelope of the family of inte-
gral surfaces (2.54) depending on two parameters. It is obtained by eliminating
a and b from equation (2.54) and the equations

∂φ(x, y, a, b)

∂a
= 0,

∂φ(x, y, a, b)

∂b
= 0,

provided that this elimination is possible.
For equations (2.1) with any number of variables, the name complete in-

tegral is given to a solution involving as many parameters as there are inde-
pendent variables.

Definition 2.9. The complete integral of the equation

F (x1, · · · , xn, u, p1, · · · , pn) = 0, (2.59)

is a solution
u = φ(x1, · · · , xn, a1, · · · , an) (2.60)

containing n arbitrary parameters ai and such that elimination of the param-
eters from equation (2.60) and the equations

pi =
∂φ(x1, · · · , xn, a1, · · · , an)

∂xi
, i = 1, · · · , n (2.61)

leads precisely to the differential equation (2.59).

2.9 Completely Integrable Systems. The Lagrange-Charpit
Method.

According to what has just been said, one can find all solutions of equation
(2.53) by calculating its complete integral. To solve the latter problem, one
can use Lagrange and Charpit’s method. The method is based on the following
notion of completely integrable systems.

Let u be an unknown function of n variables x = (x1, · · · , xn), and let
f1(x, u), · · · , fn(x, u) be given functions of x1, · · · , xn and u. Consider the
system of partial differential equations of the first order

∂u

∂x1
= f1(x, u), · · · , ∂u

∂xn
= fn(x, u), (2.62)
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and define an associated one-form ω by

ω = f1(x, u) dx1 + · · ·+ fn(x, u) dxn. (2.63)

Definition 2.10. The system (2.62) is said to be completely integrable if,
for any solution u = u(x) of (2.62), the form ω is exact, specifically,

f1(x, u) dx1 + · · ·+ fn(x, u) dxn = du. (2.64)

Form ω is exact if and only if it is closed. Hence, the condition of complete
integrability is dω = 0 mod (2.62). Invoking the exterior differentiation
formula, one arrives at the following theorem.

Theorem 2.8 The system (2.63) is completely integrable if and only if
the following n(n− 1)/2 equations are satisfied identically in x1, · · · , xn, u,

∂fi
∂xk

+
∂fi
∂u

fk =
∂fk
∂xi

+
∂fk
∂u

fi, i, k = 1, · · · , n. (2.65)

The canonical idea of Lagrange and Charpit’s method is to find an auxiliary
differential equation,

Φ(x, y, u, p, q) = a, (2.66)

a equal to a constant, such that equations (2.53) and (2.66) can be solved in
the form p = f1(x, y, u, a), q = f2(x, y, u, a), to provide a completely integrable
system (2.62),

∂u

∂x
= f1(x, y, u, a),

∂u

∂y
= f2(x, y, u, a). (2.67)

The general solution of this system is obtained by integration of ordinary
differential equations, and contains an arbitrary constant of integration, b.
Thus upon solving the system (2.67), one obtains a complete integral u =
Φ(x, y, a, b) of equation (2.53).

Construction of the auxiliary equation (2.66) requires the following calcu-
lations. The values of the partial derivatives ∂p/∂y, ∂p/∂u, ∂q/∂z and ∂q/∂u,
are obtained from (2.53) and (2.66) by differentiation with respect to x and y
and elimination. The test for complete integrability is obtained by substituting
these values in the integrability condition (2.65)

∂p

∂y
+ q

∂p

∂u
=
∂q

∂x
+ p

∂q

∂u
,

and can be written explicitly in terms of the functions F and Φ as the following
linear partial differential equation in five independent variables x, y, u, p, q

P
∂Φ

∂x
+Q

∂Φ

∂y
+ (pP + qQ)

∂Φ

∂u
− (X + pU)

∂Φ

∂p
− (Y + qU)

∂Φ

∂q
= 0. (2.68)

Here, the functions X, Y , U , P and Q are defined by
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X =
∂F

∂x
, Y =

∂F

∂y
, U =

∂F

∂u
, P =

∂F

∂p
, Q =

∂F

∂q
.

To integrate (2.68), one needs first integrals of the characteristic system,

dx

P
=
dy

Q
=

du

pP + qQ
= − dp

X + pU
= − dq

Y + qU
. (2.69)

However, the method requires a knowledge of one first integral (2.66) only.
Find a complete integral and investigate the singular and general integrals

of the nonlinear equation,

∂u

∂x

∂u

∂y
+ x

∂u

∂x
+ y

∂u

∂y
− u = 0. (2.70)

by applying the Lagrange-Charpit method. Here F = pq + xp + yq − u, so
using the definitions,

X = p, Y = q, U = −1, P = x+ q, Q = y + p.

From these, it follows that X+pU = Y +qU = 0, and hence (2.68) is written,

(x+ q)
∂Φ

∂x
+ (y + p)

∂Φ

∂y
+ (xp+ yq + 2pq)

∂Φ

∂u
= 0.

One of its simple solutions is, for example, Φ = p. Consequently, we take the
first integral (2.66) in the form p = a. The equations

p = a, u+ xp+ yq + pq

yield p = a, q = (u − ax)/(y + a). Hence, the completely integrable system
(2.67) has the form,

∂u

∂x
= a,

∂u

∂y
=
u− ax
y + a

.

Integrating the first equation and substituting the resulting formula u = ax+
v(y) into the second one, it is found that v′(y) = v/(y+ a). Integration yields
v = b(y + a). Thus, the following complete integral for (2.70) is found

u = ax+ by + ab. (2.71)

This complete integral comprises a two-parameter family of planes. These
planes envelop the singular integral obtained by eliminating a and b from the
relations,

u = ax+ by + ab, x+ b = 0, y + a = 0.

Hence, the singular integral is the hyperboloid,

u = −xy.
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The general integral is the envelope of the one parameter family of planes
obtained by setting b = σ(a) in the complete integral (2.71). This envelope is
represented parametrically by equations (2.57)-(2.58) containing an arbitrary
function σ(a)

u = ax+ (y + a)σ(a), x+ σ(a) + (y + a)σ′(a) = 0. (2.72)

It is clearly tangent to the hyperboloid u = −xy representing the singular
integral.

Particular solutions can be obtained by specifying σ(a) in (2.72). For ex-
ample, let us take σ(a) = 1/a. Then equations (2.72) are written

u = 1 + ax+
y

a
, x− y

a2
= 0.

Expressing the parameter a from the second equation and substituting its
value a =

√
y/x into the first equation, a particular solution of (2.70) is

obtained,
u = 12

√
xy.

2.10 Solution of Cauchy’s Problem via Complete Integrals.

The Cauchy problem for equation (2.53), namely F (x, y, u, p, q) = 0, is that
of determining an integral surface passing through a given curve γ. Cauchy’s
problem has, in general, a unique solution just as in the case of ordinary
differential equations.

Let an initial curve γ be given parametrically by

x = x0(s), y = y0(s), u = u0(s),

and let a complete integral (2.54), u = φ(x, y, a, b), of system (2.53) be known.
Introduce the function

W (s, a, b) = u0(s)− φ(x0(s), y0(s), a, b) (2.73)

obtained by considering the complete integral on the initial curve γ. Elimina-
tion of the parameter s from the equations

W (s, a, b) = 0,
∂W (s, a, b)

∂s
= 0 (2.74)

provides a relation b = σ(a), a one-parameter family of integral surfaces (2.57).
The envelope of this family passes through the curve γ by construction, and
it is an integral surface by construction. Hence, it provides the solution of the
Cauchy problem in question.

For example, consider again (2.70), pq + xp + yq − u = 0, and the aim
is to find its integral surface passing through the parabola x = 0, u = y2.
The complete integral above u = ax+ by + ab can be used. The initial curve
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can be written parametrically as x = 0, y = s, u = s2, and (2.73) yields
W (s, a, b) = s2 − bs− ab. Consequently, (2.74) yield

s2 − bs− ab = 0, 2s− b = 0,

and eliminating s one obtains b = −4a. The solution of the Cauchy problem
is obtained now by eliminating a from the equations u = ax − 4ay − 4a2,
x− 4y − 8a = 0 and has the form u = (x− 4y)2/16.
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3 Flows, Vector Fields and Differential Forms.

The subject of the previous chapter can be extended much further by intro-
ducing the idea of a vector field and a differential form on a smooth manifold
[1,19,28]. First, let U ⊂ Rn be open. A vector field on U is a smooth map

X : U → Rn. (3.1)

Consider the corresponding equation,

y′ = X(y), y(0) = x, (3.2)

with x ∈ U . A curve which solves (3.2) is called an integral curve of the vector
field X. It is also called an orbit. For t fixed, write

y = y(t, x) = F tX(x). (3.3)

The mapping F tX , which is locally defined, maps a subdomain of U to U . It
is called the flow generated by the vector field X.

The vector field X defines a differential operator on scalar functions

LXf(x) = lim
h→0

[f(FhXx)− f(x)]

h
=

d

dt
f(F tXx)|t=0. (3.4)

The following notation
LXf(x) = Xf (3.5)

is also commonly used. Thus, X is applied to f as a first order differential
operator.

If we apply the chain rule to (3.4) and use (3.2),

LXf(x) = X(x) · ∇f(x) =
∑
j

aj(x)
∂f

∂xj
(3.6)

if X =
∑
j aj(x)ej , where ej is the standard basis of Rn. Note that X is a

derivation, that is, a map on C∞(U), linear over R, which satisfies

X(fg) = X(f)g + fX(g). (3.7)

Conversely, any derivation on C∞(U) defines a vector field, that is, it has the
form

X =
∑
j

aj(x)
∂

∂xj
. (3.8)

Proposition 3.1. If X is a derivation on C∞(U), then X has the form
(3.8).

If F : Y → W is a diffeomorphism between two open domains in Rn, or
between two smooth manifolds, and Y is a vector field on W , a vector field
F∗Y on V is defined so that
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F tF∗Y = F−1 ◦ F tY ◦ F. (3.9)

If U ⊂ Rn is open and X is a vector field on U defining a flow F t, then for
a vector field Y , F t∗ is defined on most of U , for small |t|, the Lie derivative
can be defined as

LXY = lim
h→0

(Fh∗ Y − Y )

h
=

d

dt
F t∗ Y |t=0, (3.10)

as a vector field on U . Another natural construction is the operator theoretic
bracket

[X,Y ] = XY − Y X, (3.11)

where the vector fields X and Y are regarded as first-order differential oper-
ators on C∞(U). Now (3.11) defines a derivation on C∞(U), hence a vector
field on U .

Theorem 3.1. If X and Y are smooth vector fields, then

LXY = [X,Y ]. (3.12)

Corollary 3.1. If X and Y are smooth vector fields on U , then

d

dt
F tX ∗ Y = F tX ∗ [X,Y ], (3.13)

for all t.
Let G : U → V be a diffeomorphism. A characterization of G∗Y is given

in terms of the flow it generates. One has

F tY ◦G = G ◦ F tG∗Y . (3.14)

The proof of this is a direct consequence of the chain rule. As a special case,
there is the following.

Proposition 3.2. If G∗Y = Y , then F tY ◦G = G ◦ F tY .
From this statement, the following condition for a pair of flows to commute

can be derived. Let X and Y be vector fields on U .
Proposition 3.3. Let X and Y commute as differential operators

[X,Y ] = 0, (3.15)

then locally, FsX and F tY commute; in other words, for any p0 ∈ U , there
exists a δ > 0 such that for |s|, |t| < δ,

FsXF tY p0 = F tY FsXp0. (3.16)

Proof: By Proposition 3.2, it suffices to show that FsX∗Y = Y . This clearly
holds at s = 0. By (3.13) it follows that

d

ds
FsX∗ Y = FsX∗[X,Y ],
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which vanishes if [X,Y ] = 0 when (3.15) holds.
There is a notion which is complementary to that of a vector field, namely,

a differential form. It is especially useful to make constructions that depend
as little as possible on a particular choice of coordinate system. The use of
differential forms is one mathematical tool for this purpose.

Consider the idea of a one-form; formally a one-form on a set Ω ⊂ Rn is
written

α =
∑
j

aj(x) dxj . (3.17)

It is not hard to modify these definitions to apply to a general manifold.
Suppose F : O → Ω is a smooth map, O ⊂ Rm, open. The pull-back F ∗α is
a one-form on O defined by

F ∗α =
∑
j,k

aj(F (y))
∂Fj
∂yk

dyk. (3.18)

The usual change of variable for integrals gives∫
γ

α =

∫
σ

F ∗ α,

if γ is the curve F ◦ σ.
If F : O → Ω is a diffeomorphism and

X =
∑
j

bj(x)
∂

∂xj
, (3.19)

is a vector field on Ω, a pairing between one-forms and vector fields on Ω is
defined by

〈X,α〉 =
∑
j

bj(x)aj(x), (3.20)

and a simple calculation yields,

〈F∗X,F ∗α〉 = 〈X,α〉 ◦ F.

Thus, a one-form on Ω is characterized at each point p ∈ Ω as a linear
transformation of vectors at p to R.

In general, a k-form α on Ω can be regarded as a k-multilinear map on
vector fields

α(X1, · · · , Xk) ∈ C∞(Ω),

with the further condition of antisymmetry,

α(X1, · · · , Xj , · · · , Xs, · · · , Xk) = −α(X1, · · · , Xs, · · · , Xj , · · · , Xk).

If 1 ≤ j1 < · · · < jk ≤ n, j = (j1, · · · , jk), it is customary to set



34 Paul Bracken: Geometry of Differential Equations

α =
∑
j

aj(x) dxj1 ∧ · · · ∧ dxjk , (3.21)

where

aj(x) = α(∂j1 , · · · , ∂jk), ∂j =
∂

∂xj
. (3.22)

In order to express the statement that α is a k-form on Ω, it is customary to
write α ∈ Λk(Ω).

If F : O → Ω is a smooth map, the pull-back F ∗α of a k-form α specified
by (3.21) is defined to be

F ∗α =
∑
j

aj(F (y)) (F ∗dxj1) ∧ · · · ∧ (F ∗dxjk), (3.23)

where

F ∗ dxj =
∑
s

∂Fj
∂ys

dys.

A smooth map F : O → Ω between two open subsets of Rn preserves orien-
tation if DF (y) is everywhere positive. The object called an orientation on
Ω can be identified as an equivalence class of nowhere-vanishing n-forms on
Ω, where two such forms are equivalent if one is a multiple of another by a
positive function in C∞(Ω).

More generally, if S is an n-dimensional manifold with an orientation, the
image of an open set O ⊂ Rn by ϕ : O → S, carrying the natural orientation
of O, we can set, ∫

S

α =

∫
O
ϕ∗ α,

for an n-form α on S. If it takes several coordinate patches to cover S, as with
many manifolds, define

∫
S
α by writing α as a sum of forms, each supported

on a single patch.
It can be shown that this definition of

∫
S
α is independent of the choice

of coordinate system on S, as long as the orientation of S is respected. An
important operator on forms is the exterior derivative,

d : Λk(Ω)→ Λk+1(Ω),

for α ∈ Λk(Ω) defined by (3.21) such that, with j defined above as j =
(j1, · · · , jk),

dα =
∑
j,s

∂aj
∂xs

dxs ∧ dxj1 ∧ · · · ∧ dxjk . (3.24)

The exterior derivative has the following important property under pull-backs

F ∗(dα) = dF ∗ α, (3.25)

if α ∈ Λk(Ω) and F : O → Ω is a smooth map. From (3.24), it is clear that
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d(dα) = 0,

must hold for any differential form α. If dα = 0, then α is said to be closed;
if α = dβ for some β ∈ Λk−1(Ω), it is said that α is exact.

Let Ft be any smooth family of diffeomorphisms from M to Ft(M) ⊂M .
Define vector fields Xt on Ft(M) by

d

dt
Ft(x) = Xt(Ft(x)). (3.26)

Then it easily follows that, for α ∈ ΛkM ,

d

dt
F ∗t α = F ∗t LXtα = F ∗t [d(αyXt) + dαyXt]. (3.27)

In particular, if α is closed, then with Ft diffeomorphisms and 0 ≤ t ≤ 1,

F ∗1 α− F ∗0 α = dβ, β =

∫ 1

0

F ∗t (αyXt) dt. (3.28)

Theorem 3.2. (Poincaré Lemma) If B is the unit ball in Rn, centered at
0, α ∈ Λk(B), k > 0, and dα = 0, then α = dβ for some β ∈ Λk−1(B).

Proof: Consider the family of maps Ft : B → B given by Ft(x) = tx. For
0 < t ≤ 1, these are diffeomeorphisms and (3.27) applies. Note that

F ∗1 α = α, F ∗0 α = 0.

A simple limiting argument shows that (3.28) remains valid, so α = dβ with

β =

∫ 1

0

F ∗t (αyV )t−1 dt,

where V = r ∂∂r =
∑
j xj

∂
∂xj

. Since F ∗0 = 0, the apparent singularity in the

integral is removable.
Now (3.28) can be generalized to the case in which Ft : M → N is a

smooth family of maps, not necessarily diffeomorphisms. Then (3.26) does
not work to define Xt as a vector field, however

d

dt
Ft(x) = Z(t, x), Z(t, x) ∈ TFt(x)N.

Based on (3.28), it can be seen that

F ∗(αyXt)(Y1, · · · , Yk−1) = α(Ft(x))(Xt, DFt(x)Y1, · · · , DFt(x)Yk−1),

and Xt can be replaced by Z(t, x). Hence, in this more general case, if α is
closed, there results

F ∗1 α− F ∗0 α = dβ, β =

∫ 1

0

γt dt, (3.29)
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where, at x ∈M ,

B(Y1, · · · , Yk−1) = α(Ft(x))(Z(t, x), DFt(x)Y1, · · · , DFt(x)Yk−1).

Differential forms are not only a fundamental tool in analysis, but also have
many important applications to topology. Here are some basic propositions
which illustrate this statement.

Proposition 3.4. If M̄ is a compact, oriented manifold with nonempty
boundary ∂M , there is no continuous retraction ϕ : M̄ → ∂M .

Proof: A retraction ϕ satisfies ϕ ◦ j(x) = x, where j : ∂M → M̄ is
the natural inclusion. By a simple approximation, if there were a continuous
retraction, there would be a smooth one, so suppose ϕ is smooth. Select ω ∈
Λn−1(∂M) to be the volume form on ∂M , endowed with some Riemannian
metric, so

∫
∂M

ω > 0. Apply Stokes’ theorem to α = ϕ∗ω. If ϕ is a retraction,
it is the case that j∗ϕ∗ω = ω, consequently∫

∂M

ω =

∫
M

dϕ∗ω.

However, dϕ∗ω = ϕ∗dω = 0, so the integral is zero. This is a contradiction,
so there can be no retraction.

The Brower fixed-point theorem is a consequence of this.
Theorem 3.3. If F : B → B is a continuous map on the closed unit ball

in Rn, then F has a fixed point.
Proof: The claim can be stated as F (x) = x for some x ∈ B. If not,

define ϕ(x) to be the endpoint of the ray from F (x) to x, continued until it
hits ∂B = Sn−1. It is clear that ϕ would be a retraction, which contradicts
Proposition 3.4.

An even-dimensional sphere cannot have a smooth nonvanishing vector
field.

Proposition 3.5. There is no smooth nonvanishing vector field on Sn if
n is even.

Proof: If X were such a vector field, it could be arranged that it have
unit length, so X : Sn → Sn, with X(v) ⊥ v for v ∈ Sn ⊂ Rn+1. Thus,
there is a unique unit-speed geodesic γv from v to X(v) of length π/2. Define
a smooth family of maps Ft : Sn → Sn by Ft(v) = γv(t). Thus F0(v) = v,
Fπ/2(v) = X(v), and Fπ = A the antipodal map, A(v) = −v. From (3.29), it
is deduced that A∗ω − ω = dβ is exact, where ω is the volume form on Sn.
Hence, by Stokes theorem, ∫

Sn
A∗ω =

∫
Sn

ω. (3.30)

On the other hand, it is straightforward that A∗ω = (−1)n+1ω, so the integral
in (3.30) is consistent only when n is odd.

The existence of n-forms on a compact, oriented n-dimensional manifold
M which are not exact, but are closed, is an important part of the proof of
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these propositions. The following is an important counterpoint to the Poincaré
lemma.

Proposition 3.6. If M is a compact, connected, oriented manifold of
dimension n and α ∈ ΛnM , then α = dβ for some β ∈ Λn−1(M) if and only
if ∫

M

α = 0.

Some of these topological results can be extended by using the idea of
the degree of a map between compact, oriented surfaces. Let X and Y be
compact, oriented, n-dimensional surfaces. To define the degree of a smooth
map F : X → Y , assume that Y is connected. Pick ω ∈ ΛnY such that∫

Y

ω = 1, (3.31)

and define Deg(F ) to be

Deg (F ) =

∫
X

F ∗ω. (3.32)

The following Lemma states that Deg (F ) is well defined by (3.32).
Lemma 3.1. The quantity in (3.32) is independent of the choice of ω, as

long as (3.31) holds.
Proof: Pick ω1 ∈ ΛnY which satisfies

∫
γ
ω1 = 1, so

∫
γ
ω − ω1 = 0. By

Proposition 3.6, it must be that

ω − ω1 = dα,

for some α ∈ Λn−1. Thus∫
X

F ∗ω −
∫
X

F ∗ω1 =

∫
X

dF ∗α = 0,

which proves the Lemma.
Proposition 3.7. If F0 and F1 are homotopic, then Deg (F0) = Deg(F1).
Proof: If F0 and F1 are homotopic, then F ∗0 ω − F ∗1 ω is exact, so we can

write dβ, and it follows that
∫
X
dβ = 0.

There is another formula for the degree of a map. A point y0 ∈ Y is called a
regular value of F provided that, for each x ∈ X satisfying F (x) = y0, DF (x) :
TxX → Ty0X is an isomorphism. Suppose X and Y are endowed with volume
elements ωX and ωY , respectively. If DF (x) is invertible, define JF (x) ∈ R\0
by F ∗(ωY ) = JF (x)ωX . Clearly, the sign of JF (x) is independent of the
choices of ωX and ωY , as long as they determine the given orientations of Y .

Proposition 3.8. If y0 is a regular value of F , then

Deg (F ) =
∑
{sgn JF (xj) : F (xj) = y0}. (3.33)
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Proof: Pick ω ∈ ΛnY which satisfies
∫
γ
ω = 1 with support in a small

neighborhood of y0. Then F ∗ω will be a sum
∑

ωj , such that ωj is supported
in a small neighborhood of xj and

∫
ωj = ±1 as sgn JF (xj) = ±1.

Proposition 3.9. Let M̄ be a compact, oriented manifold with boundary.
Assume that dim M = n + 1. Given a smooth map F : M̄ → Y , let f =
F |∂M : ∂M → Y . Then,

Deg(f) = 0.

Proof: Applying Stokes’ Theorem to α = F ∗ω, there results∫
∂M

F ∗ω =

∫
M

dF ∗ω.

However, dF ∗ω = F ∗dω and dω = 0 if dim Y = n.
An easy corollary of this is another proof of Brower’s no-retraction theo-

rem.
Corollary 3.2. If M̄ is a compact, oriented manifold with nonempty

boundary ∂M , then there is no smooth retraction ϕ : M̄ → ∂M .
Proof: Without loss of generality, it can be assumed that M̄ is connected.

If there were a retraction, then ∂M = ϕ(M) must also be connected, so
the previous proposition applies. However, we would then have, for the map
id = ϕ|∂M , the contradiction that its degree is both 0 and 1.
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4 Geometric Distributions

4.1 Distributions of Vector Fields.

Starting with ideas introduced in the previous chapter, let us proceed to look
at the subject of partial differential equations from the perspective of vector
fields [28,29]. Consider equations which are linear homogeneous first order
partial differential equations. Suppose there is one unknown f , so these have
the form,

Xi∂if = 0. (4.1)

Systems of such equations can also be considered. In this case, an f is to be
found which simultaneously satisfies k equations

Xi
1∂if = 0, · · · , Xi

k∂if = 0. (4.2)

Now we generalize to a search for a function on a manifold. In some sense,
these are not partial differential equations at all, since when possible, solutions
are obtained by means of ordinary differential equations and flows of vector
fields, as already described.

Suppose we write Xα = Xi
α∂i, α = 1, · · · , k, so we seek functions annihi-

lated by the k vector fields X1, · · · , Xk,

Xαf = 0.

If the number of linearly independent Xα(m) varies as a function of m,
the problem is referred to as degenerate. Nondegeneracy is assumed, so
X1(m), · · · , Xh(m) are the maximum number of linearly independent Xα(m)
at m. By continuity, X1(x), · · · , Xh(x) are linearly independent for all points

x in some neighborhood U of m. It follows that Xα(x) =
∑h
s=1 F

s
α(x)Xs(x)

for each x ∈ U , α = h + 1, · · · , k. Thus if Xsf = 0, then Xαf = 0. Conse-
quently we can always reduce locally to the linearly independent number of
equations h.

Now X1, · · · , Xh is a local basis of the system in a neighborhood U , and h
is called the dimension of the system. If we move to another point p outside U ,
then X1, · · · , Xh may become linearly dependent, but in some neighborhood
V of p, some other h of Xα will be a local basis. In the intersection, we may
have two or more local bases. In fact, if Yα =

∑h
s=1 G

s
αXs, α = 1, · · · , h,

where (Gβα) is an array of C∞ functions on U with nonzero determinant at
each point, then Yαf = 0 have the same solutions on U as Xαf = 0, so Yα
should be considered a local basis. Thus, one way to solve such a system is to
choose a local basis Yα as simple as possible.

For example, if h = 1, then X1(m) 6= 0, there are coordinates xi at m
such that X1 = ∂1, so the equations in terms of the xi coordinates become
∂1f = 0. Hence a solution is given by any function not dependent on x1, that
is, a function of x2, · · · , xd. For h = 2, if Xαf = 0 for α = 1, · · · , h, then
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[Xα, Xβ ]f = 0 for α, β = 1, · · · , h. As a consequence, if h = 2 and [X1, X2]
is linearly independent of the local basis X1, X2, then the system X1f = 0,
X2f = 0 for which h = 2, does not have more solutions than the system
X1f = 0, X2f = 0, [X1, X2]f = 0, for which h = 3. Thus, the number of
variables on which f depends is determined not only by h, but also by the
relation of Xα to each other.

Now concentrate on the subspaces spanned by the Xα(m). The set of all
tangents at m is the tangent space at m which can also be written Mm =
Tm(M). Thus, we have assigned to every m an h-dimensional subspace, D(m)
of Mm. If Xαf = 0 for every α, then for every t ∈ D(m), t is a linear
combination of Xα(m) so that tf = cαXα(m)f = (cαXαf)m = 0. Conversely,
if tf = 0 for every t ∈ D(m), and every m, then (Xαf)m = Xα(m)f = 0,
for all α,m, since Xα(m) ∈ D(m). Hence, the problem of finding a function
annihilated by all vectors in D(m) is equivalent to the solution of the system
of partial differential equations.

A function D which assigns to each m ∈ M an h-dimensional subspace
D(m) of Mm is called an h-dimensional distribution on M , and is C∞ if
for every m ∈ M , there is a neighborhood U of m and C∞ vector fields
X1, · · · , Xh such that for every p ∈ U , X1(p), · · · , Xh(p) is a basis of D(p),
called a local basis for D at m.

A C∞ distribution D is involutive if for all X,Y ∈ D, we have [X,Y ] ∈ D.
Proposition 4.1. A C∞ distribution D is involutive iff for every local

basis X1, · · · , Xh, the brackets [Xα, Xβ ] are linear combinations of the Xγ ,
that is, there are C∞ functions F γαβ such that [Xα, Xβ ] = F γαβ Xγ .

Proof: If D is involutive, then [Xα, Xβ ] ∈ D and hence [Xα, Xβ ] can be
expressed as a linear combination of the local basis X1, · · · , Xh. The coeffi-
cients of these linear combinations are clearly C∞.

If [Xα, Xβ ] = F γαβXγ , then for X,Y ∈ D we may write X = GαXα,
Y = HαXα, where the Gα and Hα are C∞ functions. Then

[X,Y ] = [GαXα, H
βXβ ] = Gα(XαH

β)Xβ −Hβ(XβG
α)Xα +GαHβF γαβXγ ,

which is certainly an element of D.
Consider the following two examples.
(i) Let X = z∂y−y∂z, Y = x∂z− z∂x and Z = y∂x−x∂y, all restricted to

M = R3−{0}. At any m ∈M , X, Y and Z span a two-dimensional subspace
D(m) of Mm. Then D may be described directly by the fact that D(m) is the
subspace on Mm normal to the line in E3 through 0 and m, where E3 is R3

with the usual Euclidean metric. Since the brackets are given by [X,Y ] = Z,
[Y,Z] = X and [Z,X] = Y , this distribution is involutive.

(ii) The distribution on Rd with local basis ∂1, · · · , ∂h is involutive since
[∂α, ∂β ] = 0 ∈ D.

In fact, another way to state Frobenius’ theorem is that locally every
involutive distribution has precisely this form: for an involutive distribution,
there exist coordinates at each point such that ∂1, · · · , ∂h is a local basis of
D.
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An integrable submanifold of D is a submanifold N of M such that for
every x ∈ N , the tangent space of N at x is contained in D(x), Nx ⊂ D(x).
If X ∈ D and X(m) 6= 0, then the range of an integral curve γ of X is a
one-dimensional integral submanifold if γ is defined on an open interval.

An h-dimensional distribution is completely integrable if there is an h-
dimensional integral submanifold through each m ∈M . The one-dimensional
C∞ distributions are completely integrable, since the local basis field will
always have integral curves. The distribution of the first example (i) above
is completely integrable, since there is a central sphere through each point.
Not every two-dimensional C∞ distribution is integrable since, as an example,
the vector fields ∂x and ∂y + x∂z on R3 span a two-dimensional distribution.
However, [∂x, ∂y+x∂z] = ∂z does not belong to this distribution. The following
proposition then says this distribution and also others are not completely
integrable.

Proposition 4.2. A completely integrable C∞ distribution is involutive.

A solution function, or first integral of D is a C∞ function f such that for
every p in the domain of f and every t ∈ D(p), tf = 0, so D(p) annihilates f
or df annihilates D(p). If f is a solution function such that dfp 6= 0, that is, p
is not a critical point of f , then the level hypersurface f = c, where c = f(p),
is a (d − 1)-dimensional submanifold M1 in a neighborhood of p on which
df 6= 0. The tangent spaces of M1 are the subspaces of the tangent spaces of
M on which df = 0, and since df(D(p)) = 0 for every p ∈M1, D(p) ⊂ (M1)p.
Thus D also defines an h-dimensional distribution D1 on M1.

Proposition 4.3. Let D be a C∞ h-dimensional distribution. Suppose
f1, · · · , fd−h are solution functions such that the dfi are linearly independent
at some m ∈ M . Then, there are coordinates xi at m such that xh+i = fi,
i = 1, · · · , d − h. For any such coordinates, ∂1, · · · , ∂h is a local basis for
D, and the coordinate slices fi = ci, i = 1, · · · , d − h, are h-dimensional
integral submanifolds of D. Finally, if D is restricted to such a coordinate
neighborhood, it is involutive.

In the first example above, f = r can be verified to be a first integral,
where r2 = x2 + y2 + z2 and r > 0. Since d − h = 1, any coordinate system
of the form x1, x2, r gives ∂1, ∂2 as a local basis for D. This is true for
spherical polar coordinates. The level surfaces r = c are the central spheres
of R3, which are integral submanifolds. Every function of r is a first integral,
and conversely, every first integral is a function of r.

In the following two examples, systems of the form (4.2) will be established
based on the given vector fields.

(1) The subspace of T (E3) spanned by the vector fields V1 = x∂y − y∂x
and V2 = y∂z − z∂y forms a Lie subalgebra of T (E3). The equation V1f = 0
is xfy − yfx = 0, which can be solved by characteristics, namely,

dx

−y
=
dy

x
,
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with solution x2 + y2 = C, while V2f = 0 implies that f = φ(x, y2 + z2). To
obtain a common integral of the pair, we solve

V2(g1)
∂ψ

∂g1
+ V2(g2)

∂ψ

∂g2
= 0,

where g1 = x2+y2 and g2 = z. This equation takes the form −2yzψg1 +yψg2 =
0 so dg1 = −2zdz hence g1 + z2 = C. Therefore, the common integrals of
V1f = V2f = 0 are given by

f = ρ(x2 + y2 + z2),

where the function ρ is at least C1.
(2) Here is a second example of the form (4.2) which is defined by the

vector fields

X = 9y∂x − 4x∂y, Y = x∂x + y∂y + 2(z + 1)∂z.

Solve first the equation Xf = 0 to obtain that

2x2 +
9

2
y2 = C.

so this yields

f = ψ(2x2 +
9

2
y2, z) = ψ(g1, g2).

It is next required to solve

Y (g1)
∂ψ

∂g1
+ Y (g2)

∂ψ

∂g2
= 0.

The coefficients in this are given by Y (g1) = 4x2 + 9y2 and Y (g2) = 2(z + 1),
therefore,

(4x2 + 9y2)
∂ψ

∂g1
+ 2(z + 1)

∂ψ

∂g2
= 0.

To solve this equation, write the characteristic equation,

dg1
4x2 + 9y2

=
dz

2(z + 1)
.

Integrating and solving, there results

g1
z + 1

= C, g1 = 2x2 +
9

2
y2.

Therefore, the common integrals of Xf = Y f = 0 are given by

f = ρ(
2x2 +

9

2
y2

z + 1
),

where function ρ is at least C1.
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4.2 The Frobenius Theorem.

For smooth functions f1, · · · , fm−k : Rm → R with linearly independent dif-
ferentials, the equations

Mk(c1, · · · , cm−k) = {x ∈ Rm : f1(x) = c1, · · · , fm−k(x) = cm−k} (4.3)

define a smooth k-dimensional manifold. This nonlinear system of equations
can be linearized by going to the tangent bundle. It is seen that this manifold
can be described by the system

TMk(c1, · · · , cm−k) = {ν ∈ TRm : df1(ν) = 0, · · · , dfm−k(ν) = 0}. (4.4)

These equations determine at each point in Rm a k-dimensional subspace
of the tangent space to Rm. The resulting family of subspaces can also be
described by systems of one-forms, ω1, · · · , ωm−k. For example, if (hij) is a
matrix of functions with nowhere vanishing determinant, the one-forms ωi =
Σm−k
j=1 hij dfj satisfy

TMk(c1, · · · , cm−k) = {ν ∈ TRm : ω1(ν) = 0, · · · , ωm−k(ν) = 0}.

The level surfaces cannot however be recovered from the knowledge of the
forms ωi alone. In general, the problem arises under such conditions as lin-
early independent one-forms ω1, · · · , ωm−k describe a family of k-dimensional
manifolds by means of the system of Pfaffian equations

ω1 = 0, · · · , ωm−k = 0. (4.5)

Frobenius’ theorem provides a complete answer to this question.
Definition 4.1. A k-dimensional geometric distribution on Mm is a family

Ek = {Ek(x)} consisting of k-dimensional subspaces Ek(x) ⊂ TxM
m in the

tangent spaces to Mm depending smoothly on the points in the following
sense: For each point x0 ∈ Mm, there exists a neighborhood x0 ∈ U ⊂ Mm

and vector fields X1, · · · , Xk defined on U such that Ek(x) coincides with the
linear hull of the vectors X1(x), · · · , Xk(x) at every point x ∈ U .

Here are two examples which are important.
(1) Every nowhere vanishing vector field X on Mm induces a one-

dimensional distribution E1(x) formed by all multiples of the vector X(x).
Conversely, every one-dimensional distribution E1 is locally determined by a
nowhere vanishing vector field.

(2) The linearly independent 1-forms ω1, · · · , ωm−k on Mm determine a
k-dimensional distribution by

Ek(x) = {ν ∈ TxMm : ω1(ν) = · · · = ωm−k(ν) = 0}.

In analogy to the integral curve for a vector field, we now introduce the notion
of an integral manifold for a distribution in the next definition.
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Definition 4.2. Let Ek be a k-dimensional distribution on Mm. A k-
dimensional submanifold Nk ⊂Mm is called an integral manifold of Ek if the
tangent spaces of Nk coincide with the spaces of the distributions

TxN
k = Ek(x), x ∈ Nk.

Definition 4.3. For the k-distribution Ek defined by linearly independent
one-forms ω1, · · · , ωm−k as in example (2) above, a submanifold i : Nk →Mm

is an integral manifold of Ek if and only if the restriction of the forms to Nk

vanishes,
i∗(ω1) = · · · = i∗(ωm−k) = 0.

The local existence theorem for solutions of ordinary differential equations
can be formulated in the following way.

Proposition 4.4. Every one-dimensional geometric distribution is inte-
grable.

(3) Consider the nowhere vanishing one-form ω = xdy+dz on R3 together
with the two-dimensional distribution determined by ω, namely E2 = {ν ∈
TR3 : ω(ν) = 0}. It will be proved that this distribution is not integrable.

Suppose E2 is integrable. Then it must be that there exists an open set
W ⊂ R2 as well as a smooth map f : W → R3 such that f∗(ω) = 0 and also
(rank) (D(f)) ≡ 2. For example, choose for f a chart of the integral manifold.
In the coordinates of R3, the map f = (f1, f2, f3) consists of three functions,
and the condition f∗(ω) = 0 is expressed on W ⊂ R2 as

f1 df2 + df3 = 0.

Differentiating this expression, there results

df1 ∧ df2 = 0.

Moreover, forming the exterior product of the same expression with df2, we
have

df2 ∧ df3 = 0.

Finally, wedge df1 on f1 df2+df3 = 0, whence f1 df1∧df2+df1∧df3 = df1∧df3 =
0. It has been shown that all twofold products vanish dfi∧dfj = 0. This result
contradicts the assumption that the differential D(f) of f : W → R3 has the
maximal rank two. Therefore, the two-dimensional distribution in R3 defined
by ω = x dy + dz cannot have an integral manifold.

For higher-dimensional distributions on a manifold, the following prob-
lem thus arises, which has been addressed in one way already. Under which
conditions do these turn out to be integrable? The answer to this question is
supplied by the Frobenius theorem and the notion of an involutive distribution
is needed.

Definition 4.4. A distribution Ek on the manifold Mm is called involutive
if, for every pair of vector fields V , W on Mm whose values V (x), W (x) ∈



Geometry and Partial Differential Equations 45

Ek(x) at each point belong to the distribution, the commutator [V,W ](x) ∈
Ek(x) again has values in Ek.

Theorem 4.1. (Frobenius’ Theorem-Second Version) Let Ek be a k-
dimensional distribution on the manifold Mm defined by (m − k) linearly
independent one-forms ω1, · · · , ωm−k

Ek = {ν ∈ TMm : ω1(ν) = · · · = ωm−k(ν) = 0}.

Then the following conditions are equivalent :
(1) Ek is integrable,
(2) Ek is involutive,
(3) for every point x0 ∈ Mm, there exist a neighborhood such that x0 ∈

U ⊂Mm and one-forms θij defined on U such that

dωi =
m−k∑
j=1

θij ∧ ωj ,

for 1 ≤ i ≤ m− k.
(4) for all indices 1 ≤ i ≤ m− k, the following exterior products vanish

dωi ∧ (ω1 ∧ · · · ∧ ωm−k) = 0.

Condition (4) occurring in Frobenius’s theorem is called the integrability
condition for the geometric distribution or the corresponding Pfaffian system.

If condition (3) holds for distribution Ek, then

dωi(V,W ) =

m−k∑
j=1

θij ∧ ωj(V,W ) = 0.

This implies that ωi([V,W ]) = 0, hence all one-forms ω1, · · · , ωm−k vanish on
the commutator [V,W ]. Therefore, this vector field takes values in Ek, which
means the distribution Ek is involutive.

A one-dimensional distribution is determined bym−1 one-forms ω1, · · · , ωm−1,
and then dωi∧(ω1∧· · ·∧ωm−1) is an (m+1)-form on the m-dimensional man-
ifold. This has to be zero for trivial reasons, and the integrability condition
of the Frobenius theorem is automatically satisifed.

The implication (3) implies (1), which is at the core of the Frobenius
Theorem, is a local statement. It is a direct consequence of Theorem 4.2,
which will not be proved here.

Theorem 4.2. Let ω1, · · · , ωm−k be linearly independent one-forms on an
open subset Mm ⊂ Rm such that

dωi =

m−k∑
j=1

θij ∧ ωj ,
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for certain one-forms θij . Then there exists at each point x ∈ Mm a neigh-
borhood U ⊂Mm of x and functions hij and fj defined on U satisfying

ωi =

m−k∑
i=1

hijdfj .

Proof (3) ⇐⇒ (4): Suppose that there exist local one-forms θij such that

dωi =
∑m−k
j=1 θij ∧ ωj . Then

dωi ∧ (ω1 ∧ · · · ∧ ωm−k) =

m−k∑
j=1

θij ∧ ωj ∧ (ω1 ∧ · · · ∧ ωm−k) = 0,

since the exterior square of any one-form vanishes.
Conversely, assume that condition (4) is satisfied. In a neighborhood U ⊂

Mm of the point x0, extend the family of linearly independent one-forms
ω1, · · · , ωm−k by adding one-forms η1, · · · , ηk so that the combined family
{ω1, · · · , ωm−k, η1, · · · , ηk} forms a basis for Λ1

x(Mm) at each point x of U .
The two-form dωi (1 ≤ i ≤ m− k) can thus be represented as

dωi =

m−k∑
α,β=1

Cαβ ωα ∧ ωβ +

m−k∑
α=1

k∑
j=1

Pαj ωα ∧ ηj +

k∑
j,l=1

Qjl ηj ∧ ηl,

where Cαβ , Pαj , Qjl. The condition dωi ∧ (ω1 ∧ · · · ∧ ωm−k) = 0 implies that

k∑
j,l=1

Qjl ηj ∧ ηl ∧ (ω1 ∧ · · ·ωm−k) = 0.

Therefore, all coefficients Qjl = 0. If we define the one-forms

θiα = −
m−k∑
β=1

Cαβωβ −
k∑
j=1

Pαj ηj ,

the exterior derivative dωi takes the desired form

dωi =

m−k∑
α=1

θiα ∧ ωα.

Proof (3) =⇒ (2): For any two vector fields V and W with values in the
distribution Ek, it follows that ωi(V ) = ωi(W ) = 0. Moreover, from

dωi(V,W ) = V (ωi(W ))−W (ωi(V ))− ωi([V,W ])

it follows that
dωi(V,W ) = −ωi([V,W ]).
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Proof (3) =⇒ (1): Let Ek be a distribution with the property stated in
(3). By Theorem 4.2, the forms ωi can be represented in a neighborhood U of

an arbitrary point x0 ∈ Mm as ωi =
∑m−k
j=1 hijdfj for certain functions. By

assumption, the one-forms ω1, · · · , ωm−k are linearly independent. Thus the
differentials df1, · · · , dfm−k are linearly independent as well and Nk = {x ∈
U : f1(x) = f1(x0), · · · , fm−k(x) = fm−k(x0)} is a submanifold containing
x0 ∈ Mm, At an arbitrary point x ∈ Nk, we determine the tangent space
TxN

k = {v ∈ TMm : dfj(ν) = 0, j = 1, · · ·m − k} ⊂ {ν ∈ TMm : ωj(ν) =
0, j = 1, · · · ,m − k} = Ek(x). For dimensional reasons, the vector spaces
coincide, so Nk is an integral manifold of distribution Ek through x0 ∈ Mm,
and thus the integrability of the distribution Ek is proved.

4.3 Some Applications of the Frobenius Theorem.

The simplest case is that of an (m− 1)-dimensional distribution Em−1 on an
m-dimensional manifold Mm. If Em−1 is defined by one nowhere vanishing
one-form ω, the integrability of the distribution reduces to the condition that
the three-form dω ∧ ω vanishes,

dω ∧ ω = 0.

The method to explicitly integrate this (m − 1)-dimensional Pfaffian system
is based on looking for a so-called integrating factor and an application of
Poincaré ’s lemma.

Definition 4.5. An integrating factor for the one-form ω is a nowhere
vanishing function f : Mm → R such that the one-form f · ω is closed

d(f · ω) = 0.

Theorem 4.3. Let ω be a nowhere vanishing one-form on the manifold
Mm.

(i) If there exists an integrating factor for ω, then dω∧ω = 0. In this case,
the distribution Em−1 is integrable.

(ii) If dω ∧ ω = 0, then there exists an integrating factor for the one-form
ω in a neighborhood of each point in Mm.

(iii) Locally, the integral manifolds of the distribution Em−1 are the level
surfaces of the function g determined from the integrating factor f by the
equations

d(f · ω) = 0, f · ω = dg.

Proof: The equation d(fω) = 0 implies that df∧ω+f ·dω = 0. Multiplying
this equation once again by the one-form ω leads to fdω∧ω = 0. Since f 6= 0,
there results dω ∧ ω = 0 as a necessary condition for the existence of an
integrating factor. If on the other hand dω ∧ ω = 0, then the existence of an
integrating factor follows immediately from Theorem 4.2.

In dimension m = 2, the three form dω∧ω = 0 vanishes for purely algebraic
reasons. In this case, the following corollary results.
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Corollary 4.1. Every nowhere vanishing one-form on a two-dimensional
manifold locally has an integrating factor.

Example 4.1. Consider in R2 the differential equation

P (t, x) +Q(t, x)ẋ = 0.

Near a point (t0, x0) ∈ R2 at which P and Q do not vanish simultaneously,
the following one-form can be written

ω = P dt+Qdx.

Its integrating factor will be f(t, x). The equivalent differential equation

(fP )(t, x) + (fQ)(t, x)ẋ = 0

is called the total differential equation, and the solution curves are implicitly
determined by the equation

g(t, x) = C,

where C is a constant such that dg = fω. Frobenius’s theorem now claims
that it is always possible to solve the original differential equation. It does
not however provide an algorithm for finding the integrating factor. In simple
cases, this may be computed directly. If functions F (t) and G(t) can be found
depending only on the variables t and x and satisfying

∂P (t, x)

∂x
− ∂Q(t, x)

∂t
= Q(t, x)F (t)− P (t, x)G(x),

then
f(t, x) = e

∫
F (t) dte

∫
G(t) dx,

is an integrating factor.
Example 4.2. Consider the differential equation

(2t2 + 3tx− 4t)ẋ+ (3x− 2tx− 3x2) = 0,

so we can set P = 3x− 2tx− 3x2 and Q = 2t2 + 3tx− 4t, then

∂P

∂x
− ∂Q

∂t
= −6t− 9x+ 7.

and
(2t2 + 3tx− 4t)F (t)− (3x− 2tx− 3x2)G(x)

= (2t2 + 3tx− 4t)
2

t
+ (3x− 2tx− 3x2)

5

x
= 7− 9x− 6t.

Therefore

∂P

∂x
− ∂Q

∂t
= Q(t, x)F (t)− P (t, x)G(x) = 7− 9x− 6t,
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provided that F (t) = 2/t and G(x) = −5/x, which implies there is an integrat-
ing factor of the form f = t2x−5. The solutions of this differential equation
computed by means of this integrating factor are curves described by the
equation

t3x−4 − 1

2
t4x−4 − t3x−3 = C.

Assume now that on the manifold Mm, a Riemannian metric g is given,
as well as an (m − 1)-dimensional distribution Em−1 described by the one-
form ω. Denote the vector field associated with the one-form by means of the
Riemannian metric by W . This field is uniquely determined by either of the
two equivalent equations

∗ω = Wydv(Mm), ω(V ) = g(V,W ), ω(W ) = g(W,W ) = ||W ||2.

The assignment V (f)(x) determines a linear functional on the tangent space,
hence there exists a vector grad(f)(x) ∈ TxMm such that

V (f)(x) = g(grad(f)(x), V (x))

holds for all vector fields. By using the vector field W , the distribution Em−1
can be described in the following way

Em−1 = {ν ∈ TMm : g(ν,W ) = 0}.

Thus, W is orthogonal to each integral manifold Nm−1 of the distribution.
Normalizing the length of the vector field W to one, the volume form of each
integral manifold is given by means of

dv(Nm−1) =
1

||W ||
Wy dv(Mm). (4.6)

The volume form is written here as dv(Mm) rather than dv to include the
space referred to, in this instance Mm. If {xi} is a coordinate system on Mm

then

dv(Mn) =
√
|gij | dx1 ∧ · · · ∧ dxm.

The behavior of the integral manifold Nm−1 ⊂ Mm of the distribution can
be studied under the flow Φt : Mm → Mm of the vector field W . To initiate
this, compute first the Lie derivative of the one-form ω with respect to the
associated vector field W . Since ω(W ) = ||W ||2 and LW (ω) = d(Wyω) +
Wy(dω), we obtain

(LW (ω))V = V (ω(W ))+dω(W,V ) = V (ω(W ))+W (ω(V ))−V (ω(W ))−ω([W,V ])

= W (ω(V ))− ω([W,V ]). (4.7)

Here use is made of the well-known result dω(V,W ) = V (ω(W ))−W (ω(V ))−
ω([V,W ]). In particular, for a vector field V tangent to the distribution, this
simplifies to
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(LW (ω))V = −ω([W,V ])− g(W, [W,V ]).

There is then the following theorem.
Theorem 4.4. The flow Φt of the vector field W maps an integral manifold

of the distribution Em−1 to another integral manifold if and only if

V (||W ||2) + dω(W,V ) = −g(W, [W,V ]) = 0, (4.8)

for every vector field V on Mm with values in Em−1.
Corollary 4.2. Let the distribution Em−1 be defined by the closed one-

form ω. Then the flow of the dual vector field W transforms integral manifolds
into integral manifolds if the length ||W || is constant on every connected
integral manifold.

Corollary 4.3. If the distribution Em−1 is defined by a one-form ω of con-
stant length, and if, moreover, the flow of the dual vector field W transforms
integral manifolds into integral manifolds, then dω = 0. In this case Em−1
locally consists of level surfaces of a function whose gradient has constant
length.

Proof: Theorem 4.4 implies that Wydω = 0. At a point x ∈Mm, choose
an orthonormal basis e1, · · · , em in the tangent space so thatW is proportional
to e1, that is W = ae1. Denoting by σ1, · · · , σm the dual basis, the form
ω = aσ1 is proportional to σ1. Write the two-form dω in this basis,

dω =
∑
i<j

Bij σi ∧ σj .

Since dω ∧ ω = 0, the two-form dω only contains the m− 1 summands dω =
b12σ1 ∧σ2 + · · ·+ b1mσ1 ∧σm. However, the condition 0 = Wydω = a(b12σ2 +
· · ·+ b1mσm) implies that ω is a closed form.

Next, the infinitesimal volume change of a compact integral manifold
Nm−1 can be computed under the flow Φt of the vector field W . The Lie
derivative of the volume form dNm−1 is given by

LW (dv(Nm−1)) = LW (
1

||W ||
Wydv(Mm)) = Wyd(

1

||W ||
Wydv(Mm))

= (divW − 1

2
W ln(||W ||2)) dv(Nm−1).

Based on this, the following Theorem can be formulated.
Theorem 4.5. The derivative of the volume change of a compact integral

manifold Nm−1 of the distribution Em−1 under the flow of the vector field W
is given by the formula

d

dt
(vol(Φt(N

m−1)))|t=0 =

∫
Nm−1

(div(W )− 1

2
W ln ||W ||2)dv(Nm−1). (4.9)

If the distribution Em−1 consists of the level surfaces of a function f : Mm →
R, and the gradient of this function is chosen as the vector field, W = grad(f),
then div(W ) = ∆(f), which is the Laplacian of f .
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Corollary 4.4. The volume change of a compact level surface Nm−1 of
the function f : Mm → R under the flow of the gradient vector field is given
by the formula

d

dt
(vol(Φt(N

m−1)))|t=0 =

∫
Nm−1

(∇f − 1

2
grad(f) ln ||grad(f)||2) dv(Nm−1).

(4.10)
In all these formulas, the Laplacian, the divergence and the gradient are taken
with respect to the manifold.

As an example, consider a function f : Mm → R and assume there is
another function µ : Mm → R such that

d(||grad(f)||2) = 2µdf.

By Theorems 4.4 and 4.5, the flow of the gradient vector field grad(f) maps
level surfaces of f to level surfaces, and the volume change is described by

d

dt
(vol(Φt(N

m−1)))|t=0 =

∫
Nm−1

(∇(f)− µ) dv(Nm−1).

The spheres Sm−1(R) ⊂ Rm are level surfaces of the function f(x) = ||x||2,
and it follows that ||grad(f)||2 = 4||x||2 as well as ∇(f) = 2m. Hence, µ = 2
and ∇f −µ = 2(m− 1) is constant. For the flow, Φt(x) = e2tx, we obtain the
following differential equation describing the evolution of the volume

d

dt
(vol(Φt(S

m−1))) = 2(m− 1)vol(Φt(S
m−1)).

The second application of Frobenius Theorem plays an important role in
surface theory.

Theorem 4.6. Let Ω = {ωij} be a (k × k) matrix of one-forms defined
on a neighborhood of 0 ∈ Rm, and let A0 be an invertible (k × k) matrix. In
a connected neighborhood O ∈ V , there exists a (k × k) matrix A = (fij) of
functions which satisfy

Ω = dA ·A−1, A(0) = A0, (4.11)

if and only if
dΩ = Ω ∧Ω. (4.12)

In this case, the matrix A is uniquely determined. If, in addition, Ω is an
anti-symmetric matrix Ω + Ωt = 0, and A0 is an orthogonal matrix so that
A0 ·At0 = I, then the solution A(x) is also orthogonal at each point of the set
V .

Proof: The condition dΩ = Ω ∧ Ω is necessary for the solvability of the
equation Ω = dA ·A−1. In fact, dA = Ω ·A, so

0 = ddA = d(ΩA) = dΩ A−Ω ∧ dA = (dΩ −Ω ∧Ω)A,
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The matrix A is invertible, therefore it follows that dΩ−Ω∧Ω = 0. Uniqueness
of the solution follows, since for two solutions A(x) and B(x), there results,

dB−1 = −B−1 · (dB) ·B−1.

Hence the differential d(B−1 ·A) vanishes,

d(B−1 ·A) = d(B−1) ·A+B−1dA = −B−1 · (dB) ·B−1A+B−1 ·Ω ·A

= −B−1ΩB ·B−1A+B−1ΩA = 0.

Therefore, B−1 · A is constant, and at x = 0, it is equal to the unit matrix.
This implies that A(x) = B(x) for all x ∈ V . Now the existence of a solution
will be proved under the condition dΩ = Ω ∧ Ω. To this end, consider the
following (k×k) matrix of one-forms on the space Rm×Rk2 with coordinates
(x1, · · · , xm, zij) so

Λ = dZ −Ω · Z = (dzij −
k∑
r=1

ωir z
rj).

Using the relation dΩ = Ω ∧Ω, we obtain

dΛ = ddZ − dΩ ∧ Z +Ω ∧ dZ = −Ω ∧Ω ∧ Z +Ω ∧ dZ

= −Ω ∧Ω ∧ Z +Ω ∧ (Λ+Ω ∧ Z) = Ω ∧ Λ.

The system of forms dzij−
∑k
r=1 ωirz

rj is linearly independent in Rm×Rk2 , so
by Frobenius’ theorem, there exists anm-dimensional integral manifoldMm ⊂
Rm ×Rk2 through (0, A0) ∈ Rm ×Rk2 . The tangent space T(0,A0)M

m to this

integral manifold has only the null vector in common with Rk2 , T(0,A0)M
m ∩

Rk2 = {0}. This follows directly from the shape of the form Λ, since the
tangent space to Mm is determined by Λ = 0. Then the integral manifold
Mm is the graph of a map A : W → Rk2 defined on an open set O ∈W ⊂ Rm
satisfying the initial condition A(0) = A0. Using

A∗(Λ) = A∗(dZ −ΩZ) = dA−ΩA,

it is seen that the (k×k)-matrix A is the solution of the differential equations
sought after. The remaining statements follow from the result

d(At ·A) = (dA)t ·A+At · dA = AtΩtA+AtΩA.

In fact, it may be concluded that if Ω is an antisymmetric matrix, and dA =
Ω · A is a solution of the differential equation, then it can be concluded that
d(At ·A) = 0.
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5 Pfaffian Systems.

This is a view of Pfaffian systems which is somewhat more abstract than the
previous section, but closely related to it. All manifolds, maps, differential
forms, vector fields and other geometric structures will be assumed to be C∞

[30-33].
Definition 5.1. An exterior differential system on an n-dimensional man-

ifold Nn is a differential ideal I of the ring Ω(Mn) of exterior differential
forms on Mn, that is, an ideal of Ω(Mn) which is closed under exterior dif-
ferentiation. A Pfaffian system is an exterior differential system generated by
one-forms as a differential ideal.

An m-dimensional integral manifold of I is an m-dimensional immersed
submanifold h : Wm →Mn such that

h∗ω = 0,

for all ω ∈ I.
Here are two examples which address integral manifolds.
(v.i) On R3 with coordinates (x, y, p), consider the Pfaffian system

I = {dy − pdx, dp ∧ dx}.

The one-dimensional integral manifolds of I are the curves (x(t), y(t), p(t))
such that y′ − px′ = 0. The curves for which x′ 6= 0 may be reparametrized
in the form (x, f(x), f ′(x)), where f is an arbitrary function. The one-
dimensional integral manifolds of I thus depend on one arbitrary function
of one variable.

(v.ii) On R5 with coordinates (x, y, u, p, q), consider a function F : R5 → R
such that Fp 6= 0, Fq 6= 0. Consider the exterior differential system

I = {F, du− pdx− qdy, dF, dx ∧ dp+ dy ∧ dq}.

The integral manifolds of I, which are two-dimensional surfaces (x(s, t), y(s, t),
u(s, t), p(s, t), q(s, t)) such that

F (x(s, t), y(s, t), u(s, t), p(s, t), q(s, t)) = 0,

us − pxs − qys = 0, ut − pxt − qyt = 0.

If |∂(x, y)/∂(s, t)| 6= 0, then the integral surfaces may be reparametrized in
the form (x, y, u(x, y), p(x, y), q(x, y)) where p = ux, q = uy and u(x, y) is a
solution of the first-order partial differential equation F (x, y, u, ux, uy) = 0.
In local coordinates then, the condition that an immersion defines an integral
manifold of an exterior differential system is expressed as a system of differen-
tial equations on the component maps of the immersion in the corresponding
local coordinate charts.

Some basic existence theorems will be stated for local integral manifolds
of Pfaffian systems. The general principle behind these existence theorems is
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to establish local normal forms in which the integral manifolds are manifest.
The proofs of these theorems are based on the fundamental theorems for the
existence, uniqueness and smooth dependence on initial conditions of solutions
of ordinary differential equations.

Consider a Pfaffian system I generated as a differential ideal by s ≤ n
linearly independent one-forms

ωa =

n∑
i=1

Aai (x1, · · · , xn) dxi, 1 ≤ a ≤ s. (5.1)

Written out in local coordinates, the integral manifolds of a Pfaffian system
I correspond to the solutions of a system of partial differential equations. In-
deed, if the immersion f is given locally in a domain U of Rp with coordinates
uα, 1 ≤ α ≤ p, by an n-tuple of functions (f1(u1, · · · , up), · · · , fn(u1, · · · , up))
satisfying rank(∂f i/∂uα) = p in U , then f∗ωa = 0 has the form,

n∑
i=1

p∑
α=1

Aαi (f1(u1, · · · , up), · · · , fn(u1, · · · , up)) ∂f
∂uα

= 0, 1 ≤ a ≤ s.

(5.2)
The simplest existence theorem for integral manifolds of a Pfaffian system

is the Frobenius theorem, which was introduced in the previous section. The
last part of Theorem 4, which is more relevant for Pfaffian systems, is repeated
here.

Theorem 5.1. Let I be a Pfaffian system generated by linearly indepen-
dent one-forms ωa, 1 ≤ a ≤ s, satisfying

dωa ∧ ω1 ∧ · · ·ωs = 0, 1 ≤ a ≤ s. (5.3)

There exist local coordinates (u1, · · · , un) such that I is generated by the
differentials du1, · · · , dus.

(v.iii) On R4 with local coordinates (x, y, z, u), minus the locus x+ z = 0,
y = 0, u = 0, consider the Pfaffian system I = {ω1, ω2, dω1, dω2}, where

ω1 = u2(x+ z)(dx+ dz) + u2(dy + udu), ω2 = y4(dy + udu).

The integrability conditions (5.3) are satisfied and we have

I = {d(x+ z), d(2y + u2)},

so that the two-dimensional integral manifolds are the surfaces obtained by
taking the intersection of the 3-planes x+z = c1 with the parabolic 3-cylinders
2y = u2 = c2, where c1 and c2 are arbitrary constants.

If I is an s-dimensional Pfaffian system satisfying the Frobenius condi-
tions (5.3), there exist, at least locally, (n− s)-dimensional integral manifolds
of I given by u1 = c1, · · · , us = cs, where c1, · · · , cs are arbitrary real con-
stants. These integral manifolds are of maximal dimension. A Pfaffian system
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generated by linearly independent one-forms ωj is said to be completely inte-
grable if it satisfies (5.3), and the uj are called first integrals of the completely
integrable system I.

There is a classical construction due to E. Cartan, for obtaining a minimal
set of coordinates in which to express the generators of a Pfaffian system. Let
Char (I) denote the system of Cauchy characteristic vector fields of I, defined
by Char (I) = {X|X ∈ I⊥, XydI ⊂ I}. The Cartan system of I, denoted
C(I), is the dual Pfaffian system defined by C(I) =Char (I)⊥. The class of
a Pfaffian system is by definition the dimension of its Cartan system. The
Cartan system C(I) of any Pfaffian system I is always completely integrable.
The first integrals of C(I) provide the required minimal set of coordinates.

Theorem 5.2. (Cartan) Let I be a Pfaffian system of class r and let
{w1, · · · , wr} denote a set of first integrals of the Cartan system C(I). There
exists a small neighborhood U with local coordinates (w1, · · · , wr; yr+1, · · · , yn)
such that I is generated in U by one-forms in w1, · · · , wr and their differen-
tials.

The Frobenius theorem leads to a normal form in which the integral mani-
folds of a completely integrable Pfaffian system are manifest. There are similar
normal form results which apply to Pfaffian systems which are not completely
integrable, but whose structure equations are of a special type. Consider the
simplest result, known as the solution to the Pfaff problem. Let I be a Pfaffian
system generated as a differential ideal by a single one-form ω. The rank of
I = {ω, dω} is the integer r defined by

(dω)r ∧ ω 6= 0, (dω)r+1 ∧ ω = 0. (5.4)

Theorem 5.3. If rank {ω, dω} = r, then class {ω} = 2r + 1 and there
exist local coordinates (z, p1, · · · , pr, x1, · · · , xr, u2r+2, · · · , un) such that

{ω, dω} = {dz −
r∑
i=1

pidx
i,

r∑
i=1

dpi ∧ dxi}. (5.5)

Unlike the case in which I is completely integrable, the integral manifolds of
I = {ω, dω} depend now on one arbitrary function of r variables. They can
be put in the form z = f(x1, · · · , xn), pi = fxi , 1 ≤ i ≤ r. ♣

(v.iii) On R4 with coordinates (x, y, z, u), minus the locus y(x+ y2) = 0,
consider the Pfaff system I = {ω, dω}, where

ω = (x+ y2)y2 dz − y(yz + u2(x+ y2)2) dx+ (u2x(x+ y2)2 − 2y3z) dy.

Then dω ∧ dω ∧ ω = 0 and I = {dZ − PdX, dP ∧ dX}, where

X =
x

y
, Z =

z

x+ y2
, P = u2.

The one-dimensional integral manifolds of I thus depend on one arbitrary
function of one variable and are given by
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z

x+ y2
= f(

x

y
), u2 = f ′(

x

y
).

A slightly stronger result which can be thought of as the solution to a
relative version of the Pfaff problem can be proved. It goes like this.

Theorem 5.4. Let I be an (s+1)-dimensional Pfaffian system of the form

I = {θ1, · · · , θs, dθ1, · · · , dθs, ω, dω},

where J = {θ1, · · · , θs, dθ1, · · · , dθs} is completely integrable and the rank r
of I = {ω, dω} relative to J , defined by

(dω)r ∧ ω 6 ≡0 mod J, (dω)r+1 ∧ ω ≡ 0 mod J, (5.6)

is constant.
There exist local coordinates

(z, p1, · · · , pr, x1, · · · , xr, w1, · · · , ws, u2r+s+1, · · · , un)

in which

I = {dz −
r∑
i=1

pi dx
i,

r∑
i=1

dpi ∧ dxi, dw1, · · · , dws}. (5.7)

♣
The local integral manifolds of I now depend on one arbitrary func-

tion of r variables and s arbitrary constants. They are parametrized by
z = f(x1, · · · , xn), pi = fxi , w

α = cα, 1 ≤ i ≤ r, 1 ≤ α ≤ s.
(v.iv) The solution of the relative Pfaff problem has interesting applica-

tions to the classification and normal forms problem for partial differential
equations. Consider the system

F (x, y, z, w,
∂z

∂x
,
∂z

∂y
,
∂w

∂x
,
∂w

∂y
) = 0, G(x, y, z, w,

∂z

∂x
,
∂z

∂y
,
∂w

∂x
,
∂w

∂y
) = 0,

(5.8)
of two first-order partial differential equations for maps (z, w) : R2 → R2.

The system (5.8) is said to be parabolic if and only if the matrix
∂(F,G)
∂(m,n)

1
2 (∂(F,G)
∂(q,m) −

∂(F,G)
∂(p,n) )

1
2 (∂(F,G)
∂(q,m) −

∂(F,G)
∂(p,n) ) ∂(F,G)

∂(p,q)

 (5.9)

has rank one. The first step is to formulate system (5.8) geometrically as a
Pfaffian system. Consider the bundle J1(R2,R2) of 1-jets of maps from R2 to
R2 and use local coordinates (x, y, z, w, p, q,m, n) in which the Pfaffian system
Ω1
cont(R2,R2) of contact 1-forms is the differential ideal generated by

θ1 = dz − p dx− q dy, θ2 = dw −mdx− ndy. (5.10)
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Thus if f : R2 → J0(R2,R2) : (x, y)→ (x, y, z(x, y), w(x, y)) is a section, then

p(j1f) =
∂z

∂x
, q(j1f) =

∂z

∂y
, m(j1f) =

∂w

∂x
, n(j1f) =

∂w

∂y
.

It is assumed that the equations

F (x, y, z, w, p, q,m, n) = 0, G(x, y, z, w, p, q,m, n) = 0, (5.11)

corresponding to the partial differential equations (5.8) give rise to a six-
dimensional submanifold i : Σ6 → J1(R2,R2). It can be shown that the local
sections f : R2 → Σ6 which are the integral manifolds of the Pfaffian system
I obtained by pulling back the contact system Ω1

cont(R2,R2) to Σ6 are in one-
to-one correspondence with the solutions of (5.8). Moreover, it can be shown
that if (5.8) is parabolic and I has a one-dimensional first derived system,
then there exist generators π1 and π2 such that I = {π1, π2, dπ1, dπ2} and the
following structure equations are valid,

dπ1 = 0, dπ2 = ω3 ∧ ω5 + ω4 ∧ ω6, mod {π1, π2}. (5.12)

Theorem 5.5. Every partial differential equation system (5.8) of parabolic
type whose associated Pfaffian system I has a one-dimensional first derived
system can be locally transformed to the normal form

∂z

∂x
= 0,

∂z

∂y
= 0,

by a contact transformation.
Proof: The hypotheses of the theorem allow us to apply the Cartan-Von

Weber theorem to conclude that I(1) = {π1} must be completely integrable.
We can therefore apply the solution to the relative Pfaff problem to argue
that there exist local coordinates (x, y, z, w,m, n) such that

{π1, π2} = {dw −mdx− ndy, dz}. ♣

Another normal form result is the Goursat normal form, of which the
relative version is presented.

Theorem 5.6. Let I be an (r + s)-dimensional Pfaffian system of codi-
mension two, given by

I = {ω1, · · · , ωr, θ1, · · · , θs, dω1, · · · , dωr, dθ1, · · · , dθs} (5.13)

where I = {θ1, · · · , θs, dθ1, · · · , dθs} is completely integrable. Suppose that
there exist one-forms α and π such that α 6= 0, π 6= 0, mod I and such that
the following structure equations are valid

dω1 ≡ ω2 ∧ π mod {ω1, θ1, · · · , θs}
...

dωi ≡ ωi+1 ∧ π mod {ω1, · · · , ωi, θ1, · · · , θs}, 1 ≤ i ≤ r − 1
...

dωr ≡ α ∧ π mod {ω1, · · · , ωr, θ1, · · · , θs} = I
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There exist local coordinates (x, y, y′, · · · , y(r), w1, · · · , ws, ur+s+3, · · · , un)
such that

I = {dy− y′ dx, · · · , dy(r−1)− y(r)dx, dy′ ∧ dx, · · · , dy(r) ∧ dx, dw1, · · · , dws}.
(5.14)

The local integral manifolds of I depend on one arbitrary function of one
variable and r arbitrary constants. They can be generically parametrized as

y = f(x), y′ = f ′(x), · · · , y(s) = f (s)(x), u1 = c1, · · · , ur = cr.

Finally, an introduction to Cauchy characteristics is given. To set the stage
some background results are needed. Let V here be a real vector space of
dimension n and V ∗ its dual space. An element x ∈ V is called a vector and
an element ω ∈ V ∗ a covector such that between V and V ∗ there exists a
pairing such that 〈x, ω〉, x ∈ V , ω ∈ V ∗, is a real number. Over V there is the
exterior algebra, which is a graded algebra

Λ(V ) = Λ0(V )⊕ Λ1(V )⊕ · · · ⊕ Λn(V ),

with Λ0(V ) = R, Λ1(V ) = V . In the same way, there is over V ∗ an exterior
algebra

Λ(V ∗) = Λ0(V ∗)⊕ Λ1(V ∗)⊕ · · · ⊕ Λn(V ∗),

with Λ0(V ∗) = R, Λ1(V ∗) = V ∗. If ei is a basis of V and ωk its dual basis,
then 〈ei, ωk〉 = δki , 1 ≤ i, k ≤ n.

Given an ideal I ⊂ Λ(V ∗), it is desired to determine the smallest subspace
W ∗ ⊂ V ∗ such that I is generated, as an ideal, by the set S of elements of
Λ(W ∗). Define

A(I) = {x ∈ V |xyI ⊂ I},

where the last condition means that xyα ∈ I, for all α ∈ I. Now A(I) is
clearly a subspace of V , and is referred to as the Cauchy characteristic space
of I. Its annihilator

C(I) = A(I)⊥ ⊂ V ∗,

will be called the retracting subspace of I.
Proposition 5.1. (Retraction Theorem. ) Let I be an ideal of Λ(V ∗). Its

retracting subspace C(I) is the smallest subspace of V ∗ such that Λ(C(I))
contains a set S of elements generating I as an ideal. The set S also generates
an ideal J in Λ(CI)) to be called a retracting ideal of I. There exists a mapping

∆ : Λ(V ∗)→ Λ(C(I))

of graded algebras such that ∆(I) = J .
The Frobenius Theorem shows that a completely integrable system takes a

very simple form upon a proper choice of local coordinates. Given any exterior
differential system, one can ask the question whether there is a coordinate
system such that the system is generated by forms in a smaller number of
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these coordinates. This question is answered by the Cauchy characteristics,
and its algebraic basis is the Retraction theorem.

Let I be a differential ideal. A vector field ξ such that ξyI ⊂ I is called a
Cauchy characteristic vector field of I. At a point x ∈M we define

A(I)x = {ξx ∈ TxM |ξxyIx ⊂ Ix}, (5.15)

and C(I)x = A(I)⊥x ⊂ T ∗xM . Call C(I)x the retracting space at x and
dimC(I)x the class of I at x. We have now a family of ideals Ix depend-
ing on the parameter x ∈M . When restricting to a point x we have a purely
algebraic situation.

Proposition 5.2. If ξ, η are Cauchy characteristic vector fields of a dif-
ferential ideal I, their Lie bracket [ξ, η] is as well.

Proof. Let Lξ be the Lie derivative defined by ξ. Then Lξ takes the form

Lξ = d(ξy) + (ξy)d.

Since I is closed, dI ⊂ I. If ξ is a characteristic vector field, then ξyI ⊂ I. It
follows that LξI ⊂ I. This follows from the identity

[Lξ, ηy] = Lξηy− ηyLξ = [ξ, η]y, (5.16)

which is valid for any two vector fields ξ, η.
Theorem 5.7. Let I be a finitely generated differential ideal whose re-

tracting space C(I) has constant dimension s = n− r. Then there is a neigh-
borhood in which there are coordinates (x1, · · · , xr; y1, · · · , ys) such that I
has a set of generators that are forms in y1, · · · , ys and their differentials.

Proof: By the Frobenius condition the differential system defined by C(I)
is completely integrable. Choose coordinates (x1, · · · , xr; y1, · · · , ys) so that
the foliation so defined is given by

yσ = cσ, 1 ≤ σ ≤ s.

The cσ are constants. By Proposition 5.1, I has a set of generators which are
forms in dyσ, 1 ≤ σ ≤ s. Their coefficients may involve xρ, 1 ≤ ρ ≤ r. The
theorem follows when it is shown a new set of generators for I can be chosen
which are forms in the yσ coordinates in which xρ do not enter. To exclude
the trivial case, we suppose the ideal I is a proper ideal, so that it contains
no non-zero functions.

Let Iq be the set of q-forms in I, q = 1, 2, · · · . Let ϕ1, · · · , ϕp be linearly
independent one-forms in I1 such that any form in I1 is their linear combi-
nation. Since I is closed, dϕi ∈ I, 1 ≤ i ≤ p. For a fixed p it holds that
∂/∂xρ ∈ A(I), which implies

∂

∂xρ
ydϕi = L∂/∂xρϕ

i ∈ I1,

since the left-hand side is of degree one. It follows that
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∂ϕi

∂xρ
= L∂/∂xρϕ

i =
∑
j

aijϕj , 1 ≤ i, j ≤ p (5.17)

where the left-hand side stands for the form obtained from ϕi by taking the
partial derivatives of the coefficients with respect to xρ.

For this fixed ρ, regard xρ as the variable and the remaining quantities
x1, · · · , xρ−1, xρ+1, · · · , xr,y1, · · · , ys as parameters. Write the system of or-
dinary differential equations

dzi

dxρ
=
∑
j

aijz
j , 1 ≤ i, j ≤ p. (5.18)

Let zi(k), 1 ≤ k ≤ p, be a fundamental system of solutions, such that

det(zi(k)) 6= 0.

Now replace ϕi by the ϕ̃k defined by

ϕi =
∑

zi(k)ϕ̃
k. (5.19)

Differentiating (5.19) with respect to xρ and using (5.17) and (5.18), there
results

∂ϕ̃k

∂xρ
= 0,

so ϕ̃k does not involve xρ. Applying the same process to the other x ’s, a set
of generators of I1 is reached which are forms in yσ.

Suppose this process is continued for I1, · · · , Iq−1, so that they consist of
forms in yσ. Let Jq−1 be the ideal generated by I1, · · · , Iq−1. Let ψα ∈ Iq,
1 ≤ α ≤ r, be linearly independent mod Jq−1, such that any q-form of Iq
is congruent mod Jq−1 to a linear combination of them. Thus, such forms
include

∂

∂xρ
ydψα = L∂/∂xρψ

α.

Hence
∂ψα

∂xρ
≡
∑

bαβψ
β , mod Jq−1, 1 ≤ α, β ≤ r.

Using the argument above, replace the ψα by ψ̃β such that ∂ψ̃α/∂xp ∈ Iq−1,
which means that

∂ψ̃α

∂xρ
=
∑

ηαh ∧ ωαh ,

where ηαh ∈ I1 ∪ · · · ∪ Iq−1 and are therefore forms in yσ. Let θαh be defined
by

∂θαh
∂xρ

= ωαh .

Then the forms
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ψ̂α = ψ̃α −
∑
h

ηαh ∧ θαh

do not involve xρ, and can be used to replace ψα. Applying this process to all
xρ, 1 ≤ ρ ≤ r, a set of generators for Iq is found which are forms in yσ only.

♣
Definition: The leaves defined by the distribution A(I) are called Cauchy

characteristics.

Notice that generally r is zero, so that a differential system generally does
not have Cauchy characteristics. The theorem just shown allows us to lo-
cally reduce a differential ideal to a system in which there are no extraneous
variables in the sense that all coordinates are needed to express I in any
coordinate system.

Corollary 5.1. Let f : M →M ′ be a fibration with vertical distribution
V ⊂ T (M) with connected fibers over x ∈M ′ given by (ker f∗)x. Then a form
α on M is the pull-back f∗α′ of a form α′ on M ′ if and only if

vyα = 0, vydα = 0 ∀ v ∈ V.

Proof: By the substitution theorem, there are local coordinates such that

fx1, · · · , xp, xp+1, · · · , xN ) = (x1, · · · , xp).

As such

V = (
∂

∂xp+1
, · · · , ∂

∂xN
).

Now setting I = (α), it is seen that V ⊂ A(I). Therefore, by Theorem 2.2,
there exists a generator for I independent of (xp+1, · · · , xN ), and hence of the
form F ∗α′′ with α′′ ∈M ′. Thus there is a function µ such that

µα = f∗ α′′.

Since

0 = vy(dµ ∧ α′′ + µdα′′) = v(µ)α′′, ∀ v ∈ V,

it is seen that µ is independent of (xp+1, · · · , xN ) and hence µ = λ ◦ f for
some function λ defined on M ′. Setting α′ = 1

λα
′′ the result that α = f∗(α′)

follows.

Now these results are applied to the first-order partial differential equation

F (xi, z,
∂z

∂xi
) = 0, 1 ≤ i ≤ n. (5.20)

This equation can be formulated as an exterior differential system. To (5.20)
are added the exterior derivatives,
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F (xi, z, pi) = 0,

dz −
∑
i pi dx

i = 0,∑
i (Fxi + Fzpi) dx

i +
∑
i Fpi dpi = 0,∑

i dx
i ∧ dpi = 0.

(5.21)

These equations are in the (2n + 1)-dimensional space (xi, z, pi). The corre-
sponding differential ideal is generated by the left-hand members of (5.21).

To determine the space A(I), consider the vector

ξ =
∑
i

ui
∂

∂xi
+ u

∂

∂z
+
∑
i

vi
∂

∂pi
, (5.22)

and then express the condition that the interior product ξy keeps the ideal I
stable. Doing so gives the result

u−
∑
i piu

i = 0,∑
i (Fxi + Fzpi)u

i + Fpivi = 0,∑
i (ui dpi − vi dxi) = 0.

(5.23)

Comparing the last equation of (5.23) with the third equation of (5.21), it
follows that

ui = λFpi , vi = −λ(Fxi + Fzpi). (5.24)

The first equation of (5.23) then gives

u = λ
∑
i

piFpi . (5.25)

The parameter λ is arbitrary, so (5.24) and (5.25) show that dim A(I) = 1.
Thus, the characteristic vectors at each point form a one-dimensional space.
This fundamental fact is the key to the theory of partial differential equations
of first order. The characteristic curves in the space (xi, z, pi), or characteristic
strips in the classical terminology, are the integral curves of the differential
system,

dxi

Fpi
= − dpi

Fxi + piFz
=

dz∑
i piFpi

. (5.26)

These are the equations of Charpit and Lagrange. To construct an integral
manifold of dimension n, it suffices to take an (n − 1)-dimensional integral
transverse to the Cauchy characteristic vector field, or noncharacteristic data
in classical terminology, and draw the characteristic strips through its points.
To put it another way, an n-dimensional integral manifold is generated by
characteristic strips.
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Note that points in (xi, pi)-space may be thought of as hyperplanes∑
i pidx

i = 0 in the tangent spaces Tx(Rn). A curve in (xi, z, pi)-space
projects to a curve in (xi, pi) space, which is geometrically a one-parameter
family of tangent hyperplanes. This is the meaning of the terminology ‘strips’.

Consider the example of the initial value problem for the partial differential
equation

u
∂u

∂x
+
∂u

∂y
= 1, (5.27)

with initial data given along y = 0 by u(x, 0) =
√
x.

Let us introduce natural coordinates in J2(2, 1) by selecting (x, y, u, p, q).
This initial data D : R → R2 × R where D(x) = (x, 0,

√
x) is extended to a

map δ : R→ J2(2, 1) such that the image satisfies the equation and the strip
condition

0 = δ∗(du− p dx− q dy) =
1

2
√
x
dx− p dx.

Here p = 1/2
√
x and q = 1− up = 1/2 and δ is unique. In general, there are

several choices of δ due to non-linearity of the equation. The extended data
becomes

δ(x) = (x, 0, x,
1

2
√
x
,

1

2
).

If we parametrize the equation by i : σ → J1(2, 1) where i(x, y, u, p) =
(x, y, u, p, 1 − up), then the data can be pulled back to a map ∆ : R → Σ,
where ∆(s) = (s, 0,

√
s, 1

2
√
s
).

The Cauchy characteristic vector field is found by calculating u1 = λFp1 =
λu, u2 = λ, v1 = −λ(Fx1 + Fup1) = −λp21, v2 = −λ(Fx2 + Fup2) = −λp1p2,
therefore,

X = u
∂

∂x
+

∂

∂y
+

∂

∂u
− p2 ∂

∂p
− pq ∂

∂q
.

On a strip where q is constant, the Cauchy characteristic vector field is

X = u
∂

∂x
+

∂

∂y
+

∂

∂u
− p2 ∂

∂p
,

and the corresponding flow is given by

dx

dt
= u,

dy

dt
= 1,

du

dt
= 1,

dp

dt
= −p2.

Integrating these equations, the solution for the given data representing
the union of charcteristic curves along the data is given by

x =
1

2
t2 +

√
st+ s, y = t, u = t+

√
s.

Eliminating s and t gives an implicit equation for z(x, y) given by
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u2 + uy = x− 1

2
y2.

Clearly, upon differentiating

u
∂u

∂x
=

u

2u− y
,

∂u

∂y
=

u− y
2u− y

,

and these derivatives satisfy (5.27).
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6 Introduction to Symmetry Calculations for Ordinary
Differential Equations

6.1 General Theory

Ordinary differential equations of the form

y(n) = ω(x, y, y′, · · · , y(n−1)), (6.1)

will be considered where y(k) is the k-th derivative of y with respect to x.
The symmetry condition will be stated and then the general results will be
applied to study a specific nonlinear ordinary differential equation [34,35]. A
symmetry of (6.1) is a diffeomorphism that maps the set of solutions of the
equation to itself. Any diffeomorphism

Γ : (x, y)→ (x̂, ŷ),

maps smooth planar curves to smooth planar curves. The action of Γ on the
plane induces an action on the derivatives as well. This is the mapping

Γ : (x, y, y′, · · · , y(n))→ (x̂, ŷ, ŷ′, · · · , ŷ(n)), y(k) =
dkŷ

dx̂k
, k = 1, · · · , n.

This mapping is called the n-th prolongation of Γ . The new variables depend
on a parameter ε. The functions ŷ(k) are calculated recursively by means of
the chain rule

ŷ(k) =
dŷ(k−1)

dx̂
=
Dxŷ

(k−1)

Dxx̂
, ŷ(0) = ŷ0. (6.2)

Here Dx is the total derivative with respect to x,

Dx = ∂x + y′∂y + y′′∂y′ + · · · .

The symmetry condition for (6.1) is given by

ŷ(n) = ω(x̂, ŷ, ŷ′, · · · , ŷ(n−1)), (6.3)

when (6.1) holds, and the functions ŷ(k) are given by (6.2). The symmetry
condition (6.3) is nonlinear. Lie symmetries are obtained by linearizing (6.3)
about ε = 0. For ε sufficiently close to zero, the prolonged Lie symmetries are
of the form,

x̂ = x+ εξ +O(ε2),

ŷ = y + εη +O(ε2), (6.4)

y(k) = y(k) + εη(k) +O(ε2), k ≥ 1.

Substitute (6.4) into the symmetry condition (6.3) and the order ε terms yield
the linearized symmetry condition
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η(n) = ξωx + ηωy + η(1)ωy′ + · · ·+ η(n−1)ωy(n−1) , (6.5)

when (6.1) holds. The ŷ(k) can be derived recursively from (6.2),

ŷ(1 =
Dxŷ

Dxx̂
=
y′ + εDxη +O(ε2)

1 + εDxξ +O(ε2)
= y′ + ε(Dxη − y′Dxξ) +O(ε2),

y(k) =
y(k) + εDxη

(k−1) +O(ε2)

1 + εDxξ +O(ε2)

(6.6)

The results in (6.6) give

η(1) = Dxη − y′Dxξ, (6.7)

and
η(k)(x, y, y′, · · · , y(k)) = Dxη

(k−1) − y(k)Dxξ. (6.8)

The functions ξ, η and η(k) can be written in terms of the characteristic
Q = η − y′ξ as

ξ = −Qy′, η = Q− y′Qy′ , η(k) = Dk
xQ− y(k+1)Qy′ , k ≥ 1.

In order to find the symmetry group G admitted by a differential equation
with generator

X = ξ(x, y)∂x + η(x, y) ∂y, (6.9)

the prolonged generator is introduced

X(n) = ξ∂x + η ∂y + η(1)∂y′ + · · ·+ η(n)∂y(n) . (6.10)

The prolonged infinitesimal generator can be used to write the linearized
symmetry condition in the following form

X(n)(y(n) − ω(x, y, y′, · · · , y(n−1))) = 0,

when (6.1) holds. Consider diffeomorphisms of the form

(x̂, ŷ) = (x̂(x, y), ŷ(x, y))

corresponding to a symmetry. This type of symmetry is called a point trans-
formation. Any point transformation that is also a symmetry is called a point
symmetry. To find the Lie point symmetries of an equation of the form (6.1),
the η(k) must be calculated. The functions ξ and η depend on x and y and
therefore, (6.7) and (6.8) give

η(1) = ηx + (ηy − ξx)y′ − ξyy
′2, (6.11)

η(2) = ηxx + (2ηxy − ξxx)y′ + (ηyy − 2ξxy)y
′2 − ξyyy

′3 + (ηy − 2ξx − 3ξyy
′)y′′,

(6.12)
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η(3) = ηxxx + (3ηxxy − ξxxx)y′ + 3(ηxyy − ξxxy)y
′2 + (ηyyy − 3ξxyy)y

′3

−ξyyyy
′4 + 3(ηxy − ξxx + (ηyy − 3ξxy)y′ − 2ξyyy

′2)y′′ − 3ξyy
′′2

+(ηy − 3ξx − 4ξyy
′)y′′.

Consider the case of second-order ordinary differential equations described
by the equation

y′′ = F (x, y, y′). (6.13)

The linearized symmetry condition is obtained by substituting (6.11) and
(6.12) into (6.5) and then replacing y′′ by F (x, y, y′). This results in

ηxx + (2ηxy − ξxx)y′ + (ηyy − 2ξxy)y
′2 − ξyyy

′3 + (ηy − 2ξx − 3ξyy
′)F

= ξFx + ηFy + (ηx + (ηy − ξx)y′ − ξyy
′2)Fy′ .

(6.14)
Both ξ and η are independent of y′ and so (6.14) can be decomposed into a
system of partial differential equations. These are the determining equations
for Lie point symmetries.

6.2 Application to a Nonlinear Equation

As an application of the theory, a general nonlinear oscillator system will be
presented [36-39]. The general form of the equation is

y′′ + (δ + βym)y′ − µy + αym+1 = 0. (6.15)

Differentiation is with respect to the independent variable x and all the coef-
ficients δ, β, µ and α are real. Equation (6.15) is frequently referred to as the
Duffing-van der Pol oscillator. When we set α = 0 and m = 2, it becomes the
van der Pol oscillator

y′′ + (δ + βy2)y′ − µy = 0.

Consider (6.13) written in the form (6.13),

y′′ = −(δ + βym)y′ + µy − αym+1 = F (x, y, y′). (6.16)

The integrability of this equation can be studied by using the Lie theory
of differential equations. In order to obtain the symmetry group G which is
admitted by an equation with infinitesimal operator (6.9), it is required to
obtain an infinitesimal operator X1 such that it annihilates the equation

X1(y′′ + (δ + βym)y′ − µy + αym+1) = 0. (6.17)

The operator X1 is given by

X1 = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+A(x, y, y′)

∂

∂y′
+B(x, y, y′, y′′)

∂

∂y′′
(6.18)
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and A(x, y, y′) and B(x, y, y′, y′′) are obtained from η(1) and η(2) as follows,

A(x, y, y′) = ηx + y′(ηy − ξx)− y′2ξy,

B(x, y, y′, y′′) = ηxx + y′(2ηxy − ξxx) + y
′2(ηyy − 2ξxy)− y′3ξyy

+y′′(ηy − 2ξx − 3y′ξy).

(6.19)

All ξ(x, y) and η(x, y) that verify (6.10) generate infinitesimal operators X as
in (6.17) which make up the symmetries of the differential equation. Moreover,
it is known that one symmetry can be used to reduce by one the order of an
equation. Thus (6.16) will be integrated only if ξ(x, y) and η(x, y) are such
that they generate two linearly independent infinitesimal operators.

To obtain the determining equations, we write (6.17) in the form

ηxx + (2ηxy − ξxx)y′ + (ηyy − 2ξxy)y
′2 − ξyyy

′3

= (2ξx − ηy + 3ξyy
′)F + ξFx + ηFy + [ηx + (ηy − ξx)y′ − ξyy

′2]Fy′ . (6.20)

For this equation,

Fy = −βmym−1y′ + µ− α(m+ 1)ym, Fy′ = −δ − βym.

Both ξ and η are independent of y′ and therefore (6.20) can be pulled apart
according to the powers of y′ into a system of partial differential equations
which are the determining equations for the Lie point symmetries. Writing
first the power of y′ on the left and then the corresponding coefficient, we
have

0 ηxx = µη − δηx + µ(2ξx − ηy)y − (βηx + α(m+ 1)η)ym + α(ηy − 2ξ2)ym+1,

1 2ηxy − ξxx = −δξx + 3µξyy − βmηym−1 − βξxym − 3αξyy
m+1

2 ηyy − 2ξxy = −2δξy − 2βξyy
m,

3 ξyy = 0.
(6.21)

The equation obtained from the coefficient of y
′3 implies that

ξ = a(x)y + b(x). (6.22)

Differentiating this with respect to x and y and substituting into the y
′2

equation gives
ηyy − 2a′(x) = −2δa(x)− 2βa(x)ym.

Integrating this twice assuming that m 6= −1,−2, it is found that

η = a′(x)y2 − δa(x)y2 − 2

(m+ 1)(m+ 2)
βa(x)ym+2 + c(x)y + d(x). (6.23)
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Suppose that m = −1, then integrating once, we have

ηy = 2a′(x)y − 2δa(x)y − 2βa(x) ln y + c(x),

and so η is given by

η = a′(x)y2 − δa(x)y2 − 2βa(x)y ln y + 2βa(x)y + c(x)y + d(x). (6.24)

On the other hand, if m = −2, the integral can be done to give

η = a′(x)y2 − δa(x)y2 + 2βa(x) ln y + c(x)y + d(x). (6.25)

The functions a(x), b(x), c(x) and d(x) are arbitrary constants of integration
at this point. Putting (6.22) and (6.23) into the y0 equation, it reduces to a
polynomial of degree 2m + 2 in the y variable. It is zero if and only if the
following system of equation holds. These equations are obtained by equating
coefficients of powers of y to zero. Below, the power is given first and then the
equation:

2m+ 2 βa′(x)− αa(x) = 0,

m+ 2
2βµ

m+ 2
a+

2βδ

(m+ 1)(m+ 2)
a′ +

2βa′′

(m+ 1)(m+ 2)

−α(m+ 1)a′ + α(m− 1)aδ − βa′′ + βδa′ = 0,

m+ 1 mαc(x) + βc′(x) + 2αb′(x) = 0,

m βd′(x) + α(m+ 1)d(x) = 0,

2 a′′′(x)− µa′(x)− δ2a′(x)− δµa(x) = 0,

1 c′′(x) + δc′(x)− 2µb′(x) = 0,

0 d′′(x)− µd(x) + δd′(x) = 0.

(6.26)

The y′ equation in turn yields the system of equations

2m+ 1 2mβ2a(x) = 0,

m+ 1 4
β

m+ 1
a′(x)−mβa′(x) +mβδa(x)− βa′(x)− 3αa(x) = 0,

m β(mc(x) + b′(x)) = 0,

m− 1 mβd(x) = 0,

1 δa′(x) + µa(x)− a′′(x) = 0,

0 2c′(x) + δb′(x)− b′′(x) = 0.

(6.27)
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It is assumed that α 6= 0 and β 6= 0 in these equations. Then from (6.27),
the y2m+1 equation yields a(x) = 0 and from the ym−1 equation it is clear
that d(x) = 0. Substituting these results into both (6.26) and (6.27), these
equations reduce to the set of four,

mαc(x) + βc′(x) + 2αb′(x) = 0,

c′′(x) + δc′(x)− 2µb′(x) = 0,

mc(x) + b′(x) = 0,

2c′(x) + δb′(x)− b′′(x) = 0.

(6.28)

From the third equation in (6.28), it follows that mc(x) = −b′(x). Substituting
this into the first, an equation entirely in terms of b(x) is obtained,

b′′(x)− mα

β
b′(x) = 0. (6.29)

This can be solved for b(x), which in turn yields c(x),

b(x) = −c0β
α
eαmx/β + b0, c(x) = c0e

αmx/β . (6.30)

In (6.30), both b0 and c0 are arbitrary constants. Consider the following two
cases.

(1) The first case is that with c0 = 0. In this case, b0 can be an arbitrary
constant so we take b ≡ 1 and c ≡ 0, which implies that

ξ = 1, η = 0, χ1 = ∂x. (6.31)

In this case, only one infinitesimal operator is obtained, χ1 = ∂x.
(2) Two symmetries result if it is assumed that c0 6= 0. The general solu-

tions for b(x) and c(x) can be put in the remaining two equations in (6.28) to
yield the system

(
αm

β
)2 + δ

αm

β
+ 2µm = 0, 2

αm

β
−mδ +

αm2

β
= 0. (6.32)

Simplifying these, we have

m =
βδ

α
− 2,

α2m

β2
= −δα

β
− 2µ.

Eliminating m the following result is obtained

δ =
α

β
− µβ

α
. (6.33)
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This is a constraint equation which must hold between the four parameters
which appear in (6.16). Since b0 and c0 are arbitrary constants, assume first
that b0 = 0 and c0 = 1 so the solution becomes

b(x) = −β
α
eαmx/β , c(x) = eαmx/β . (6.34)

Consequently, the functions which appear in the generator are

ξ = −β
α
eαmx/β , η = c(x)y = eαmx/β y.

In this case, two infinitesimal generators result

χ1 = ∂x, χ2 = −β
α
eαmx/β∂x + eαmx/βy∂y. (6.35)

Every infinitesimal generator is of the form

χ = C1χ1 + C2χ2.

Equation (6.15) is completely integrable only when the constraint δ = α
β −µ

β
α

holds. Otherwise, the oscillator is only partially integrable.
Now let us look at the problem of reduction to canonical variables. If an

ordinary differential equation admits an infinitesimal generator, there exist a
pair of variables

t = f(x, y), u = g(x, y),

called canonical variables such that f and g (g 6= 0) are arbitrary particular
solutions of the first-order linear partial differential equations

ξ(x, y)
∂f

∂x
+ η(x, y)

∂f

∂y
= σ, ξ(x, y)

∂g

∂x
+ η(x, y)

∂g

∂y
= 0, (6.36)

where σ is a nonzero constant and can be arbitrarily chosen. If the general
solution of the characteristic equation

dx

ξ(x, y)
=

dy

η(x, y)

has the form U(x, y) = C, where C is an arbitrary constant, then the general
solutions of (6.36) are expressed as

f(x, y) = σ

∫
dx

ξ(x, U)
+ Φ1(U), g(x, y) = Φ2(U), U = U(x, y), (6.37)

where Φ1(U) and Φ2(U) are arbitrary functions, and U is regarded as a pa-
rameter at some point. With k = αm/β and ξ, η from χ2 in (6.35),

−α
β
e−kx dx = e−kx

dy

y
.
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Integrating, we have

U(x, y) = ln y +
α

β
x = C,

which means that f is given by integrating

f(x, y) = −m
∫

α

βekx
dx+ Φ1(U) = e−αmx/β . (6.38)

Here Φ1(U) has been set to zero. Now U(x, y) takes the form

U(x, y) = ln(yeαx/β).

Consequently, taking Φ2 to be the exponential function,

g(x, y) = Φ2(U) = yeαx/β . (6.39)

Since t = f(x, y) and u = g(x, y), (6.38) and (6.39) are equivalent to

x = − β

αm
ln t, y = ut1/m. (6.40)

Under this nonlinear transformation, the derivatives of y are found to be

∂y

∂x
= −α

β
(mutt

1
m+1 + ut

1
m ),

∂2y

∂x2
=
∂t

∂x

∂

∂t
(−α
β

(mutt
1
m+1+ut

1
m )) =

α2

β2
(m2uttt

1
m+2+mut(m+2)t

1
m+1+ut

1
m ).

Returning to the oscillator equation (6.15) and substituting y and these deriva-
tives, it becomes

α2

β2
(m2uttt

1
m+2 +mut(m+ 2)t

1
m+1 + ut

1
m )− α

β
(δ + βumt)(mutt

1
m+1 + ut

1
m )

−µut 1
m + αum+1t1+

1
m = 0.

Collecting powers of t in this, we obtain

(
α2m2

β2
utt − αmumut)t2 + (

α2

β2
m(m+ 2)ut −

α

β
δmut − αum+1 + αum+1)t

+(
α2

β2
u− α

β
δu− µu) = 0.

Equating the coefficients of t to zero, the following three equations are pro-
duced,

αm

β2
utt − umut = 0,

α

β
(m+ 2)ut − δut = 0,

α2

β2
− α

β
δ = µ.
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The third equation is just the parametric equation (6.33). In the second it
results in

−µβ
2

α2
= m+ 1. (6.41)

This is another constraint equation, however, it is a linear combination of two
previous constraints. Finally, the first implies that

αm

β2
utt =

1

m+ 1
(um+1)t.

Integrating both sides with respect to t yields,

ut =
β2

αm(m+ 1)
um+1 + I. (6.42)

Now the reverse transformation is done,

∂u

∂t
= −(

β

αm
yx +

y

m
)e

α
β (m+1)x.

On account of (6.42) and um+1 = ym+1e
α
β (m+1)x, it is found that

(yx +
α

β
y +

αβ

m+ 1
ym+1)e

α
β (m+1)x + I = 0, (6.43)

where I is an arbitrary constant.
Suppose now that β = 0 however α 6= 0 so that equation (6.15) reduces to

y′′ + δy′ − µy + αym+1 = 0. (6.44)

The third equation of (6.28) is multiplied by β, which is zero here and so only
three equations remain,

mc(x) + 2b′(x) = 0,

c′′(x) + δc′(x)− 2µb′(x) = 0,

2c′(x)− b′′(x) + δb′(x) = 0.

The first two have the solutions

b(x) = −c0
m+ 4

2δ
e
δm
m+4x + b0, c(x) = c0e

δm
m+4x. (6.45)

Again, there are two cases to consider.
(1) Suppose that c0 = 0 and b0 = 1, which is equivalent to ξ = 1, η = 0.

Hence the only infinitesimal operator in this case is χ1 = ∂x.
(2) Suppose that c0 6= 0, in which case the third equation implies a con-

straint relation on µ, namely,
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µ = − 2m+ 4

(m+ 4)2
δ2. (6.46)

It suffices to pick b0 = 0 and c0 = 1 so that

b(x) = − (m+ 4)

2δ
e
δm
m+4x, c(x) = e

δm
m+4x,

which in turn implies that

ξ = −m+ 4

2δ
e
δm
m+4x, η = e

δm
m+4xy.

This solution leads to the following generator

χ2 = −m+ 4

2δ
e
δm
m+4x∂x + e

δm
m+4xy∂y.

Thus, when (6.46) holds, the oscillator is completely integrable and solutions
in terms of known functions can be written down.

As before, the functions f and g can be calculated

U(x, y) = ln(ye
2δ
m+4x), f(x, y) = e−

δm
m+4x, g(x, y) = ye

2δ
m+4x.

Since t = f(x, y) and u = g(x, y), these are equivalent to the parametric form,

x = −m+ 4

δm
ln t, y = ut

2
m .

Using this nonlinear transformation, we calculate that

∂y

∂x
= − δm

m+ 4
utt

m+2
m − 2δ

m+ 4
ut

2
m ,

∂2y

∂x2
= (

δm

m+ 4
)2uttt

2m+1
m +

δ2m

m+ 4
t
m+2
m ut + 4(

δ

m+ 4
)2t

2
mu.

Substituting these into the equation, it becomes

((
2δ

m+ 4
)2−2

δ2

m+ 4
−µ)ut

2
m +(

m(m+ 2)

(m+ 4)2
δ2+

2m

(m+ 4)2
δ2− m

m+ 4
δ2)utt

m+2
m

+((
mδ

m+ 4
)2utt + αum+1)t

2m+2
m = 0.

The coefficient of the first term is just the condition (6.46), the second vanishes
and the third reduces to

(
mδ

m+ 4
)2utt = −αum+1. (6.47)

This is integrated to obtain
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u2t = −2(
m+ 4

mδ
)2

α

m+ 2
um+2 + I.

Now
∂u

∂t
= −(

m+ 4

δm
y′ − 2

m
y)e

m+2
m+4 δx.

and so substituting this into u2t , a first integral of the equation is obtained
when (6.46) holds,

[(
m+ 4

δm
)2y

′2 + (
2

m
)2y2 + 4

m+ 4

m2δ
yy′ + 2

α(m+ 4)2

m2δ2(m+ 2)
ym+2]e2

δ(m+2)
m+4 x = I.

(6.48)
Two special cases of this first integral will be mentioned now.

The choice β = 0 and m = 1 leads to the damped Helmholtz oscillator
equation

y′′ + δy′ − µy + αy2 = 0.

Putting m = 1 in (6.48), a first integral of the Helmholtz oscillator is obtained,

(
25

δ2
y
′2 + 4y2 +

20

δ
yy′ +

50α

3δ2
y3)e

6
5 δx = I,

provided that µ = − 6
25δ

2.
Picking β = 0 and m = 2 leads to the damped Duffing equation

y′′ + δy′ − µy + αy3 = 0.

Substituting m = 2 into (6.48), a first integral of the Duffing equation results,

(
9

δ2
y
′2 + y2 +

6

δ
yy′ +

9α

2δ2
y4)e

4
3 δx = I,

provided that µ = − 2
9δ

2.
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7 Exterior Differential Systems and
Wahlquist-Estabrook Prolongations.

7.1 Introduction.

Once nonlinear terms are included in linear dispersive equations, solitary
waves can result which can be stable enough to persist indefinitely. It is well
known that many important nonlinear evolution equations which have nu-
merous applications in mathematical physics appear as sufficient conditions
for the integrability of systems of linear partial differential equations of first
order, and such systems are referred to as integrable [40,41].

This provides an excellent opportunity to develop a very useful, interesting
application for many of the theoretical topics which have been introduced so
far [42].

To introduce the basic ideas, there exists an immersion map, or submani-
fold, of the differentiable manifold spanned by all the variables of a specified
differential system. Independent variables constitute a subset which span the
submanifold, so a solution of a partial differential system can be thought of
as a map of those independent variables onto the rest of the variables, or de-
pendent variables. Thus, by requiring a given set of differential forms which
constitute a differential system to be identically zero when so restricted, cer-
tain immersion maps can be distinguished, in particular the nonlinear equation
itself. The fact that the equation results is reflected in the choice of the differ-
ential system in the first place. They are solutions as well of a particular set
of coupled first-order partial differential equations. Such submanifolds have
come to called integral submanifolds of the set of differential forms.

A very important extension of this idea is the Cartan-Wahlquist-Estabrook
prolongation technique. Wahlquist and Estabrook [43-46] first constructed
prolongations for the KdV and other systems. This procedure produces a
nonclosed Lie algebra of vector fields in general which are defined on fibres
above the base manifold that supports the exterior differential system defin-
ing the equation. Moreover, the vanishing of the curvature form of a Cartan-
Ehresmann connection is the necessary and sufficient condition for the ex-
istence of the prolongation. The prolongations which this method generates
have many useful applications, such as generating Lax pairs and Bäcklund
transformations. Several applications of this theory to a variety of nonlinear
equations have already been done [47-51]. An application to a coupled system
of equations will be presented at the end of this section.

7.2 Theoretical Introduction.

Let M be a manifold which has dimension m. The case in which M = Rm
with coordinates (u1, u2, · · · , um) is of particular interest here. Let a closed
exterior differential system be defined,
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ξ1 = 0, · · · , ξl = 0. (7.1)

Let I be the ideal generated by the forms {ξi}l1,

I = {ω =

l∑
i=1

ηi ∧ ξi, ξi ∈ Λ(M)}. (7.2)

The exterior system is chosen such that the solutions of an evolution equation
correspond with two-dimensional integral manifolds of the differential system
It must also be closed, so dI ⊂ I, so that the differential system is integrable.

Definition 7.1. A Cartan-Ehresmann connection in the fibre bundle
(M̃, π̃,M) is a system of one-forms ω̃i, i = 1, · · · , k in T ∗(M̃) with the prop-
erty that the mapping π̃∗ from the vector space Hm̃ = {X̃ ∈ Tm̃|ω̃i(X̃) =
0, i = 1, · · · , k} to the tangent space Tm is a bijection.

A version of the Wahlquist-Estabrook method will be presented. Suppose
M is a manifold as above with a projection map π : M → R2 which is defined
by π(u1, · · · , um) = (u1, u2) and I(ξi) the differential ideal of forms on M
generated by the {ξi}l1. It will be the case that I are chosen such that dI ⊂ I.
As a consequence, the Frobenius Theorem indicates that the Pfaff system {ξi}
is completely integrable. In applications which involve the nonlinear equations
discussed here, u1, u2 will be identified with the independent x, t variables
of the equation and u3 the dependent variable. If more than one equation
is considered, further dependent variables can be introduced, as in the case
considered at the end of this chapter. The system {ξi} is constructed in such
a way that solutions u = u(x, t) of an evolution equation correspond to the
two-dimensional transversal integral manifolds.

Suppose N ⊂ R2 is coordinatized by the variables (x, t) and π : M → N
such that s : N →M is a cross section of π. The integral manifolds can then
be written as sections S in M specified by

s(x, t) = (x, t, u(x, t), · · · , um(x, t)). (7.3)

A bundle can now be constructed based on M so that M̃ = M × Rn and
B = (M̃, π̃,M). The Rn factor is coordinatized by means of the coordinates
y = (y1, · · · , yn), and whose number may be left undetermined at this point.
The y will be referred to as the prolongation variables; everything so far can be
lifted up to M̃ . Thus, consider the exterior differential system in M̃ specified
by

ξ̃i = π̃∗ξi = 0, i = 1, · · · , l, ω̃j = 0, j = 1, · · · , n. (7.4)

The forms {ω̃j} have been included in the set in order to specify a type
of Cartan-Ehresmann connection on the bundle B. System (7.4) is called a
Cartan prolongation if it is closed and whenever S is a transversal solution of
I there should also exist a transverse local solution S̃ of (7.4) with π̃(S̃) = S.
There is a Theorem to the effect that (7.4) is a Cartan prolongation of I if
and only if (7.4) is closed.



78 Paul Bracken: Geometry of Differential Equations

There are a number of ways to state the definition of a connection, for
example, Definition 7.1. Also, a Cartan-Ehresmann connection on B can be
regarded as a field H of horizontal contact elements on M̃ which is supple-
mentary to the field V of the π-vertical contact elements. Also H is assumed
complete, so every complete vector field X on M has a complete horizontal
lift X̃ on M . The ideal Ĩ of differential forms on M̃ , which is generated by
π̃∗I ∪H∗ determines on M̃ the exterior differential system, which we continue
to write as {ξi = 0} in the following. Thus H∗ is the set of one-forms on M̃
which vanish on the field H.

It remains to specify the form of the connection explicitly. The method
here lets us keep the dimension of the space of y variables undetermined until
a representation for the algebra is fixed at the end. In terms of the coordinates
of the bundle, the connection forms are designated to have the general form

ω̃k = dyk − F k(u1, · · · , um,y) dt−Gk(u1, · · · , um,y) dx ≡ dyk − ηk, (7.5)

where k = 1, · · · , n. The idea then is to include the forms ω̃k so as to enlarge
the initial differential ideal of forms.

The integrability condition requires that the prolonged ideal {ξi, ω̃k} re-
mains closed. This implies that the exterior derivatives of the ω̃k can be ex-
pressed in the form,

dω̃k =

l∑
j=1

fkjξj +

n∑
j=1

ηkj ∧ ω̃j . (7.6)

The fkj in (7.5) represent dependent functions of the bundle coordinates and
the ηki represent a matrix of one-forms.

For a connection such as (7.5), the prolongation condition can be expressed
equivalently using the summation convention over repeated indices as follows,

−dηi =
∂ηi

∂yj
∧ (dyj − ηj), mod π̃∗(I). (7.7)

This result can be rewritten by using the identity

dηi = dMη
i − (

∂ηi

∂yj
) ∧ dyj .

Here dM refers to differentiation with respect to the variables of the base
manifold. The prolongation condition then becomes

dMη
i − (

∂ηi

∂yj
) ∧ ηj = 0, mod π̃∗(I). (7.8)

Introduce the vertical valued one-form as well as the following definitions

η = ηi
∂

∂yi
, dη = (dMη

i)
∂

∂yi
, [η, τ ] = (ηj ∧ ∂τ

i

∂yj
+ τ j ∧ ∂η

i

∂yj
)
∂

∂yi
.
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The prolongation condition then takes the form

dη +
1

2
[η, η] = 0, mod π̃∗(I). (7.9)

A particular version of connection form (7.5) which will allow the dimension
of the y prolongation variables to remain unspecified until a representation is
specified for the algebra and is suited to writing Lax pairs is

Ω̃k = dyk − ηk = dyk −
n∑
i=1

F ki(u)yi dt−
n∑
i=1

Gki(u)yi dx. (7.10)

The commutator can be simplified using (7.9). It is given explicitly as

[η, η] = (GjiF νjyi dx ∧ dt+ F jiGνjyi dt ∧ dx

+F jiGνjyi dt ∧ dx+GjiF νjyi dx ∧ dt) ∂

∂yν
= 2[F,G]νiyi

∂

∂yν
dx ∧ dt.

(7.11)
The prolongation condition takes the form

(
∂F νi

∂uj
duj∧dt+

∂Gνi

∂uj
duj∧dx)yi

∂

∂yν
+[F,G]νiyi

∂

∂yν
dx∧dt = 0, mod π̃∗(I).

(7.12)
If the ideal of forms is specified by the system of two forms {ξi} closed over
I, then (7.12) takes the equivalent form

(
∂F νi

∂uj
duj ∧ dt+

∂Gνi

∂uj
duj ∧ dx) + [F,G]νi dx ∧ dt ≡ λνij ξj . (7.13)

The objective in any given case is to produce the forms {ξj} which generate
the differential ideal I relevant to the equation and then solve (7.13) for the
components of the connection F νi and Gνi. In effect, the following theorem
has been established.

Theorem 7.1. Each prolongation of Pfaffian system {ξi = 0} which
corresponds to a nonlinear equation on the integral manifold by a Cartan-
Ehresmann connection determines a geometrical realization of a Wahlquist-
Estabrook partial Lie algebra L by solving (7.13). Conversely, every geometri-
cal realization of L corresponds to such a prolongation by constructing (7.5).
Moreover, on a two-dimensional solution submanifold of the differential ideal,
the one-forms are annihilated and there exists the differential Lax pair given
by

yx = −Fy, yt = −Gy. (7.14)

The results of Theorem 7.1 are of use in making Lax pairs once F and G
have been determined. Bäcklund transformationscan also be found from these
results.
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7.3 An Application to a Coupled KdV System.

The intention in this section is to apply the formalism just discussed to a
nontrivial system of coupled nonlinear equations. The prolongation structure
of a coupled KdV system will be studied. It will be shown that the prolonga-
tion structure of the system can be determined, so the system is integrable.
A matrix spectral problem can be constructed as well.

Define the manifold M = R8(x, t, u, v, p, q, z, r) over which the exterior
differential system

ξ1 = du ∧ dt− p dx ∧ dt,

ξ2 = dp ∧ dt− q dx ∧ dt,

ξ3 = dv ∧ dt− z dx ∧ dt,

ξ4 = dz ∧ dt− r dx ∧ dt,

ξ5 = du ∧ dx+ (−vz + 5
4pv + 5

4uz −
7
4up) dt ∧ dx− dq ∧ dt,

ξ6 = dv ∧ dx+ (− 5
2up+ 2pv + 2uz − 7

4vz) dt ∧ dx− dr ∧ dt.

(7.15)

By straightforward differentiation, it is determined that

dξ1 = dx ∧ ξ2,

dξ2 = −dx ∧ ξ5,

dξ3 = dx ∧ ξ4,

dξ4 = −dx ∧ ξ6,

dξ5 = dx ∧ [−( 5
4z + 7

4p)ξ
1 + ( 5

4v + 7
4u)ξ2 + ( 5

4p− z)ξ
3 − (v + 5

4u)ξ4]

dξ6 = dx ∧ [(2z − 5
2p)ξ

1 + (2v − 5
2u)ξ2 + (2p− 7

4z)ξ
3 + (2u− 7

4v)ξ4].
(7.16)

Therefore, the ideal defined by I = {ω =
∑6
i=1 η

i∧ξi : ηi ∈ Λ(M)} is therefore
closed, so dI ⊂ I. Let s be a section of the projection π(x, t, u, v, p, q, z, r) =
(x, t), then the transverse integral manifolds are given by

s(x, t) = (x, t, u(x, t), v(x, t), · · · ).

On system (7.15), this gives

0 = ξ1|S = s∗ξ1 = (ux − p) dx ∧ dt,

0 = ξ2|S = s∗ξ2 = (px − q) dx ∧ dt,
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0 = ξ3|S = s∗ξ3 = (vx − z) dx ∧ dt,

0 = ξ4|S = s∗ξ4 = (zx − r) dx ∧ dt,

0 = ξ5|S = s∗ξ5 = (ut − vz + 5
4pv + 5

4uz −
7
4up+ qx)dt ∧ dx,

0 = ξ6|S = s∗ξ6 = (vt − 5
2up+ 2pv + 2uz − 7

4vz + rx) dt ∧ dx.

(7.17)

On the transverse integral manifold, it follows that

p = ux, q = px = uxx, z = vx, r = zx = vxx. (7.18)

These transverse integral manifolds give solutions to the coupled KdV system
given by,

ut + uxxx − 7
4uux + 5

4uxv + 5
4uvx − vvx = 0,

vt + vxxx − 5
2uux −

7
4vvx + 2uxv + 2uvx = 0.

(7.19)

Substituting (7.15) into (7.13), there results the expression,

Fu du ∧ dt+ Fv dv ∧+Fp dp ∧ dt+ Fqdq ∧ dt+ Fzdz ∧ dt+ Fr dr ∧ dt

Gu du ∧ dx+Gv dv ∧ dx+Gpdp ∧ dx+Gq dq ∧ dx+Gz dz ∧ dx+Gr dr ∧ dx

+[F,G] dx∧dt = λ1(du∧dt−p dx∧dt)+λ2(dp∧dt−qdx∧dt)+λ3(dv∧dt−z dx∧dt)

+λ4(dz∧dt−r dx∧dt)+λ5(du∧dx+(−vz+
5

4
pv+

5

4
uz− 7

4
up)dt∧dx−dq∧dt)

+λ6(dv ∧ dx+ (−5

2
up− 7

4
vz + 2pv + 2uz) dt ∧ dx− dr ∧ dt).

Equating the coefficients of the two-forms on both sides gives the system,

Fu = λ1, Fv = λ3, Fp = λ2, Fq = −λ5, Fz = λ4, Fr = −λ6,

Gu = λ5, Gv = λ6, Gp = 0, Gq = 0, Gz = 0, Gr = 0,

[F,G] = −pλ1 − qλ2 − zλ3 − rλ4 − λ5(−vz +
5

4
pv +

5

4
uz − 7

4
up)

−λ6(−5

2
up− 7

4
vz + 2pv + 2uz).

Eliminating the set of λi from this set of equations, it reduces to

Gp = Gq = Gz = Gr = 0, Fq +Gu = 0, Fr +Gv = 0,

pFu+qFp+zFv+rFz−Fq(−vz+
5

4
pv+

5

4
uz− 7

4
up)−Fr(2pv+2uz− 5

2
up− 7

4
rz)

(7.20)
+[F,G] = 0.
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The first four derivatives of G ensure that G is independent of p, q, z, r, but
can depend on u and v. Thus we can take G of the form

G = uX1 + vX2 +X3. (7.21)

The Xi are noncommuting generators which do not depend on the bundle
coordinates and may be given an explicit representation at the end by em-
bedding in an algebra. By means of the next two equations, the derivatives
Fq = −X1 and Fr = −X2 are determined, and so F has the general structure

F = −qX1 − rX2 +H(u, v, p, z). (7.22)

Substituting (7.21) and (7.22) into the final equation of system (7.20), it
remains to solve the expression

pHu + qHp + zHv + rHz +X1( 5
4pv + 5

4uz − vz −
7
4up)

+X2(2pv + 2uz − 5
2up−

7
4vz)− qv[X2, X1]− q[X3, X1]− ur[X1, X2]

−r[X3, X2] + [uX1 + rX2 +X3, H] = 0.
(7.23)

The first step is to obtain the coefficients of q and r and set them to zero. This
gives the pair of equations Hp+v[X1, X2]− [X3, X1] = 0 and Hz−u[X1, X2]−
[X3, X2] = 0. Integrating these two results, H is found to be of the form,

H = −vp[X1, X2] + p[X3, X1] + uz[X1, X2] + z[X3, X2] + H̃(u, v).

Define the new generators X4 = [X1, X2], X5 = [X3, X1] and X6 = [X3, X2]
so that H takes the form,

H = −pvX4 + pX5 + uzX4 + zX6 + H̃(u, v). (7.24)

At this point H in (7.24) can be replaced back in (7.23). This gives two
equations to determine H̃ by isolating the coefficients of p and z. Doing so
gives two coupled equations,

H̃u+[−7

4
X1−

5

2
X2+[X1, X5])u+[X3, X5]+(

5

4
X1+2X2−[X3, X4]+[X2, X5])v = 0,

H̃v+(
5

4
X1+2X2+[X3, X4]+[X1, X6])u+[X3, X6](−X1−

7

4
X2+[X2, X6])v = 0.

To get a unique solution, these two equations must be rendered compatible.
To accomplish this, new generators X8, X9 and X10 are introduced which
satisfy,

2X8 − 7
4X1 − 5

2X2 + [X1, X5] = 0, 2X9 −X1 − 7
4X2 + [X2, X6] = 0,

X10 + 5
4X1 + 2X2 − [X3, X4] X10 + 5

4X1 + 2X2 + [X3, X4]

+[X2, X5] = 0, +[X1, X6] = 0.
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Moreover, defining X11 = [X5, X3] and X12 = [X6, X3], the two equations
above integrate to the form

H̃ = X7 + u2X8 + v2X9 + uvX10 − uX11 − vX12. (7.25)

In (7.25), X7 is an arbitrary generator obtained from the integration. Substi-
tuting (7.25) back into (7.23), the coefficients of the remaining powers of u
and v specify all the remaining brackets. To make the presentation condensed,
all of the brackets for the algebra A, or integrability conditions, obtained thus
far will be summarized below,

X4 = [X1, X2], X5 = [X3, X1], X6 = [X3, X2],

[X1, X8] = [X2, X9] = [X1, X4] = [X2, X4] = [X3, X7] = 0,

[X1, X7]+[X3, X11] = 0, [X2, X7]+[X3, X12] = 0, [X3, X8]+[X1, X11] = 0,

[X1, X9] + [X2, X10] = 0,

[X3, X9] + [X2, X12] = 0, [X1, X10] + [X2, X8] = 0, (7.26)

[X3, X10] + [X1, X12] + [X2, X11] = 0,

X11 = [X5, X3], X12 = [X6, X3],

5

4
X1+2X2+[X2, X5]−[X3, X4]+X10 = 0, 2X8−

7

4
X1−

5

2
X2+[X2, X5] = 0,

2X9−X1−
7

4
X2 +[X2, X6] = 0,

5

4
X1 +2X2 +[X1, X6]+[X3, X4]+X10 = 0.

These generators Xi determine an incomplete Lie algebra called the prolon-
gation algebra. An explicit matrix Lax representation can be found in terms
of n× n matrices. Moreover, the final form for F is given by

F = −qX1 − rX2 − pvX4 + pX5 + uzX4 + zX6 +X7 + u2X8 + v2X9

+uvX10 − uX11 − vX12.
(7.27)

With F and G given by (7.21) and (7.27), the structure of a Lax pair is given
in Theorem 7.1.

A spectral parameter can be introduced by making use of the scale sym-
metry of the coupled pair. The symmetry is given by

x→ λ−1x, t→ λ−3t, u→ λ2u, v → λ2v,

which leads to an automorphism of the prolongation algebra. To establish
a matrix representation of the algebra A, the approach of Dodd and Fordy
[52] can be used to embed the elements of A in a simple Lie algebra. The
generators {X1, · · · , X10} which span A will be taken as
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X1 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , X2 =


0 0 0 0
− 1

2 0 0 0
0 0 0 0
1 0 −1 0

 , X3 =


1 1

12 0 0
λ 0 0 0
0 5

12 0 − 1
8

0 0 λ 0

 ,

X4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 X5 =


1
12 0 0 0
0 − 1

12 0 0
5
12 0 − 1

8 0
0 − 5

12 0 1
8

 , X6 =


− 1

24 0 0 0
0 1

24 0 0
− 1

3 0 1
80 0

0 1
3 0 − 1

8

 ,

X7 =


0 − λ

36 0 0

−λ
2

3 0 0 0
0 5λ

72 0 − λ
16

− 5λ2

3 0 λ2

2 0

 , X8 =


0 0 0 0
1
6 0 0 0
0 0 0 0
5
6 0 − 1

4 0

 , X9 =


0 0 0 0
1
24 0 0 0
0 0 0 0
7
12 0 − 1

4 0

 ,

(7.28)

X10 =


0 0 0 0
− 1

6 0 0 0
0 0 0 0
− 4

3 0 1
2 0

 , X11 =


0 1

72 0 0
−λ6 0 0 0
0 − 5

144 0 1
32

− 5λ
6 0 λ

4 0

 , X12 =


0 − 1

144 0 0
λ
12 0 0 0
0 7

144 0 − 1
32

2λ
3 0 −λ4 0

 .

Clearly, coupled KdV system (7.19) will have a nontrivial prolongation struc-
ture under the representation. Consequently, the dimension of the space of y
variables is four so that

y =


y1

y2

y3

y4


A matrix representation for F and G can be obtained by substituting (7.28)
into equations (7.21) and (7.27). For G, it is found that

G =


0 1

12 0 0
u− v

2 + λ 0 0 0
0 5

12 0 − 1
8

v 0 u− v + λ 0

 . (7.29)

The matrix form of F in (7.27) under algebra (7.28) is given by

F =


p
12 −

z
24 −

u
72 + v

144 −
λ
36 0 0

F12 − p
12 + z

24 0 0
5
12p−

z
3

5
144u−

7
144v + 5λ

72 −
p
8 + z

8 −
λ
16 −

u
32 + v

32
F14 − 5

12p+ z
3 F34

p
8 −

z
8

 . (7.30)

In (7.30), p, q, z and r can be replaced by the results in (7.17). and

F12 = −uxx +
1

2
vxx +

1

24
(2u− v)2 − λ

12
(v − 2u+ 4λ),
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F14 =
5

6
u2 − vxx +

7

12
v2 − 4

3
uv +

λ

6
(5u− 4v − 10λ),

F34 = vxx − uxx +
λ

4
(−u+ v + 2λ)− 1

4
(u− v)2.

The Lax pair is composed of the equations specified in (7.14).
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8 Surfaces of Arbitrary Constant Negative Gaussian
Curvature and the Related Sine-Gordon Equation

8.1 Introduction.

A great deal of the development of the ideas pertaining to nonlinear equa-
tions, surfaces and solitons had their origins in investigations concerning the
sine-Gordon equation [2,4]. The study of surfaces with constant Gaussian
curvature dates back to E. Bour [3], who in 1862 generated the particular
form

ωuv =
1

ρ2
sin(ω), (8.1)

where K = −1/ρ2. Although much has been written with regard to this
system, it seems to invariably return to the case in which K = −1. Surfaces
with constant Gaussian curvature are of great interest [51]. The intention here
is to produce an equation similar in form to (8.1) of sine-Gordon type such that
K for the corresponding surface is negative but arbitrary. Such an equation
will be referred to as a deformed sine-Gordon equation and the discussion
can be thought to pertain to any two-dimensional manifold which can be
embedded in R3. In fact, any compact, smooth two-manifold can be embedded
smoothly in R3. This enables the use of the natural metric 〈, 〉 on R3 so that
lengths can be calculated as well as angles between normals in order that the
formalism of a line congruence can be invoked. A two parameter family of
lines in R3 or R2+1 forms a line congruence, and all normal lines of a surface
form a line congruence called a normal line congruence. A line congruence
can be expressed by writing Y = X(u, v) + λq(u, v), 〈q ,q〉 = 1. For fixed
parameters u, v, this represents a straight line passing through X(u, v) in the
direction q(u, v). This then is a two parameter family of straight lines, or a
line congruence. This idea appears in a formulation of Bäcklund’s theorem
which will be invoked to aid in establishing the claims which are formulated,
as well as the fundamental equations for a two-manifold or surface.

Suppose that S and S∗ are two focal surfaces of a line congruence, and
PP ∗ is the line in the congruence and the common tangent line of the two
surfaces, so P ∈ S and P ∗ ∈ S∗. Suppose that e3, e∗3 are the normal vectors at
points P and P ∗ to S and S∗, respectively. Finally, let τ be the angle between
e3 and e∗3, so 〈e3, e∗3〉 = cos τ , and let l be the distance between P and P ∗.
Proposition 8.1 will be invoked as needed.

Proposition 8.1. (Bäcklund’s Theorem) Suppose that S and S∗ are two
focal surfaces of a pseudo-spherical congruence in R3, the distance between
the corresponding points is constant and denoted l. The angle between the
corresponding normals is a constant τ . Then these two focal surfaces S and
S∗ have the same negative constant Gaussian curvature

K = − sin2 τ

l2
. (8.2)
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Thus, from any solution of the sine-Gordon or deformed sine-Gordon equa-
tion, a corresponding surface of negative constant curvature can be obtained.
It is the latter case that is elucidated here.

On the other hand, from the Bäcklund theorem, it is known that two
focal surfaces of a pseudospherical congruence are surfaces with the same
negative constant curvature. These two focal surfaces will correspond to two
solutions of the deformed sine-Gordon equation to appear. It will be seen that
a relation can be established between the two solutions from the Bäcklund
theorem, or equivalently, from the correspondence between two focal surfaces
of a pseudo-spherical line congruence. This will be enough to give a Bäcklund
transformation for this new deformed sine-Gordon equation.

8.2 Development of the Equation and Bäcklund Transformation.

Suppose S and S∗ are two focal surfaces with arbitrary constant negative cur-
vature K such that {P, e1, e2, e3} is a frame [13] corresponding to coordinates
of surface S with

ω1 = cos
α

2
du ω2 = sin

α

2
dv,

ω13 = sin
α

2
du ω23 = − cos

α

2
du,

ω12 = 1
2 (αv du+ αu du) = −ω21.

(8.3)

These forms completely specify the set dr, de1, de2, de3 in the fundamental
equations given that ωij + ωji = 0.

Suppose
x∗ = x+ le = x+ l(cosϑe1 + sinϑe2), (8.4)

form a pseudo-spherical line congruence and ϑ is to be specified. In (8.4), x
and x∗ correspond to the surfaces S and S∗, l is the distance between the
corresponding points P and P ∗ on the surfaces S and S∗, e is in the direction
of PP ∗ and ϑ is the angle between e and e1. Suppose S corresponds to a
solution α of the deformed sine-Gordon equation to be obtained and α′ a
second solution. The fundamental equations for S are given by

dx = ω1e1 + ω2e2, ω3 = 0,

de1 = ω12e2 + ω13e3, de2 = ω21e1 + ω23e3, de3 = ω31e1 + ω32e2. (8.5)

The fundamental equations for S∗ are the same as (8.5), but with star on each
quantity. By exterior differentiation of (8.4), it is found that

dx∗ = dx+ l(cosϑ de1 + sinϑ de2) + l(− sinϑ e1 + cosϑ e2) dϑ. (8.6)

Using (8.3) in (8.5) and then substituting this into (8.6), there results,



88 Paul Bracken: Geometry of Differential Equations

dx∗ = [cos
α

2
du− l sinϑ dϑ− 1

2
l sinϑ(αv du+ αu dv)]e1

+[sin
α

2
dv +

1

2
l cosϑ(αv du+ αu dv) + l cosϑ dϑ]e2

+[l sin
α

2
cosϑ du− l cos

α

2
sinϑ dv]e3. (8.7)

Due to the fact that e∗3 has to be perpendicular to e1 with respect to 〈 , 〉 and
have a constant angle τ with respect to e3, the unit normal of S∗ at P ∗ takes
the form

e∗3 = sin τ sinϑ e1 − sin τ cosϑ e2 + cosϑ e3. (8.8)

Since e∗3 is the normal vector of S∗, with respect to the usual metric on R3

〈dx∗, e∗3〉 = 0. (8.9)

Calculating the left-hand side of (8.9) and simplifying, the following result is
obtained

l sin τ dϑ+
1

2
l sin τ(αv du+ αu dv)

− sin τ(cos
α

2
sin θ du−sin

α

2
cosϑ dv)−l cos τ(sin

α

2
cosϑ du−cos

α

2
sinϑ dv) = 0.

(8.10)
Now ϑ is specified by considering the case in which

ϑ =
α′

2
,

and since the orthogonality condition holds and du, dv are independent dif-
ferentials, the coefficients in (8.7) can be equated to zero giving

1
2 l sin τ (α′u + αv) = sin τ cos(

α

2
) sin(

α′

2
) + l cos τ sin(

α

2
) cos(

α′

2
),

1
2 l sin τ(α′v + αu) = − sin τ sin(

α

2
) cos(

α′

2
)− l cos τ cos(

α

2
) sin(

α′

2
).

(8.11)

No restrictions have been placed on the value of K up to this point. To give
system (8.9) in another form, let us introduce a set of new variables σ, η
defined to be

σ =
1

2
(u+ v), η =

1

2
(u− v). (8.12)

In terms of the variables (8.12), upon adding and subtracting the pair of
equations in (8.11) and, using standard trigonometric identities, they simplify
to

1
2 l sin τ(α+ α′)σ = sin τ sin(

α′ − α
2

) + l cos τ sin(
α− α′

2
),

1
2 l sin τ(α′ − α)η = sin τ sin(

α′ + α

2
) + l cos τ sin(

α+ α′

2
).

(8.13)
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Introducing constants C1 and C2 to denote the pair of constants

C1 =
sin τ − l cos τ

l sin τ
, C2 =

sin τ + l cos τ

l sin τ
, (8.14)

it is clear that (8.13) can be expressed in the equivalent form

(α′ + α)σ = 2C1 sin(
α′ − α

2
), (α′ − α)η = 2C2 sin(

α′ + α

2
). (8.15)

System (8.15) will be compatible provided that the quantities α and α′ sat-
isfy a specific nonlinear equation. To obtain this equation, the compatibility
condition for system (8.15) must be worked out. Differentiating, we obtain

(α+ α′)ση = 2C1C2 cos(
α′ − α

2
) sin(

α′ + α

2
),

(α′ − α)ησ = 2C1C2 cos(
α′ + α

2
) sin(

α′ − α
2

).

(8.16)

Adding and subtracting the two equations in (8.16) and invoking trigonomet-
ric identities, it is found that both α and α′ satisfy an identical deformed
sine-Gordon equation, namely,

ψησ = C1C2 sin(ψ), ψ = α, α′. (8.17)

Equation (8.17) can be expressed in terms of the variables u and v as follows

ψuu − ψvv =
1

2
C1C2 sin(ψ). (8.18)

It should be remarked that, based on (8.14), the combination C1C2 is not in
general related in a straightforward way to K. The case in which sin τ/l = 1
can be considered separately. This corresponds to the case in which K = −1
so that

C1 =
1− cos τ

sin τ
, C2 =

1 + cos τ

sin τ
.

In this case, it is easy to determine that

C1C2 =
1− cos2 τ

sin2 τ
= 1. (8.19)

Therefore, corresponding to the case K = −1, upon setting β = C1 and using
(8.19) to get C2, it is useful to note that system (8.15) assumes the usual
form,

(α′ + α)σ = 2β sin(
α′ − α

2
), (α′ − α)η =

2

β
sin(

α′ + α

2
). (8.20)

Let us make a summary of what has been done up to now. It has been seen that
Bäcklund’s theorem has the following implications. Suppose S is a surface in
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R3 with negative, constant Gaussian curvature (8.2) such that l > 0 and τ 6=
nπ are constants. Let e0 ∈ TP0

M be a unit vector which is not in the principle
direction. Then there exists a unique surface S∗ and a pseudo-spherical line
congruence {PP ∗} where P ∈ S and P ∗ ∈ S∗ satisfy PP ∗0 = le0, and τ is the
angle between the normal direction of S at P and S∗ at P ∗. The content of
the new results is Proposition 2.

Proposition 8.2: A surface of arbitrary constant negative curvature (8.2)
is determined by any nontrivial solution to (8.17)-(8.18) combined with the
fundamental surface equations (8.5).

8.3 Calculation of Solutions and Formulation of the Theorem of
Permutability.

The system described by (8.15) is in fact a Bäcklund transformation for the
equation (8.18). Given a particular solution to (2.16), it will be shown that
(8.15) can be used to obtain a new solution to (8.18). Since α = 0 is a solution
to (8.17)-(8.18) for any C1, C2, substituting into (8.15) with α′ = α1, we have

∂σα1 = 2C1 sin(
α1

2
), ∂ηα1 = 2C2 sin(

α1

2
). (8.21)

Introduce two new variables s, t which are defined such that s = C1σ and
t = C2η so that system (8.21) takes the form

∂α1

∂s
= 2 sin

α1

2
,

∂α1

∂t
= 2 sin

α1

2
. (8.22)

Since the derivatives in (8.22) are the same, it follows that α1 must have
the form α1 = α1(s + t). To determine the form of the new solution α1

corresponding to α = 0 explicitly, let us write the first equation in (8.22) as

∂α1

∂s
= 2 sin(

α1

2
) = 4 sin

α1

4
cos

α1

4
= 4 tan

α1

4
cos

α1

4
. (8.23)

This equation is equivalent to the form,

∂

∂s
tan

α1

4
= tan

α1

4
. (8.24)

In this form, the equation may be easily integrated with the help of (8.22) to
give the solution

tan
α1

4
= C exp(s+ t), (8.25)

where C is an arbitrary real constant. It is now straightforward to transform
back to the (u, v) variables from the (s, t) variables to yield

tan
α1

4
= C exp[C1σ + C2η] = C exp[

1

2
C1(u+ v) +

1

2
C2(u− v)]. (8.26)
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Therefore a new solution to deformed sine-Gordon equation (8.17) has been
found starting with the α = 0 solution applying (8.15) and integrating. Let
us summarize it in the form,

α1 = 4 tan−1{C exp[
1

2
(C1 + C2)u+

1

2
(C1 − C2)v]}.

Other solutions to (8.17) can be constructed along similar lines.
According to the theorem of permutability, the application of two succes-

sive Bäcklund transformations commutes. To express it more quantitatively,
if two successive Bäcklund transformations with distinct parameters λ1 and
λ2 map a given solution α0 through intermediate solutions to either α12 or
α21, the order in which this is done is irrelevant and in fact α12 = α21. If the
intermediate solutions are denoted α1 and α2, then making use of the η equa-
tion in (8.15) and identifying the Bäcklund parameter as the constant which
appears on the right, the scheme described can be expressed in the form

(α1 − α0)η = 2λ1 sin(
α1 + α0

2
), (α12 − α1)η = 2λ2 sin(

α12 + α1

2
),

(α2 − α0)η = 2λ2 sin(
α2 + α0

2
), (α12 − α2)η = 2λ1 sin(

α12 + α2

2
).

In fact, all the derivative terms can be eliminated from these equations. Sub-
tracting the first two and the last two pairwise, and then subtracting these
two resulting equations produces the result,

λ2(sin(
α12 + α1

2
)− sin(

α2 + α0

2
)) + λ1(sin(

α1 + α0

2
)− sin(

α12 + α2

2
)) = 0.

(8.27)
By making use of standard trigonometric identities, it is possible to render
this in the following concise form,

(λ2 − λ1) tan(
α12 − α0

4
) = (λ1 + λ2) tan(

α2 − α0

4
). (8.28)

The usual result for the sine-Gordon equation is obtained. The theorem of
permutability allows the construction algebraically of a second order solution,
and the procedure can be carried out order by order.

To conclude, it has been seen here that the sine-Gordon equation has
been generalized to accommodate cases of arbitrary Gaussian curvature, and a
Bäcklund transformation has been calculated as well as applying it to generate
a solution. Further solutions can be produced from it using the theorem of
permutability.

8.4 Bäcklund Transformation for the Sine-Gordon Equation.

Historically the sine-Gordon equation has played an important role in the
development of the Bäcklund transformation. In fact, by using the prolonga-
tion ideas of the last chapter, a Bäcklund tranformation has been obtained
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by combining the prolongation results with the idea of a Mauer-Cartan alge-
bra. Due to its significance, it is worth discussing some related but perhaps
somewhat unconventional methods for generating Bäcklund transformations
for this and other nonlinear equations [53]. There is an important relation-
ship between the non-linear partial differential equations which have soliton
solutions, such as the sine-Gordon and Korteweg-de Vries equations and the
group SL(2,R) of 2 × 2 real matrices with determinant one. This relation-
ship is deepened by the fact that it helps to explain some of the features of
these soliton equations, namely they have Bäcklund transformations and may
be solved by the Inverse Scattering method. In fact, by using the prolonga-
tion ideas of the last chapter, a Bäcklund transformation has been obtained
for these equations by combining the prolongation results with the idea of a
Mauer-Cartan algebra. The indication of such a relationship is the existence
of three one-forms {θ1, θ2, θ3} on the space of independent variables x and t
of the equation, whose coefficients depend on the dependent variable and its
partial derivatives, and which satisfy

dθ1 = −θ2 ∧ θ3, dθ2 = −2 θ1 ∧ θ2, dθ3 = 2θ1 ∧ θ3. (8.29)

These are formally the same as the Maurer-Cartan equations satisfied by the
left-invariant one-forms {ω1, ω2, ω3} of SL(2,R) but with the θi defined on a
two-dimensional space. The Frobenius Theorem implies there must be a map
from some open subset of R2 to SL(2,R) under which the one-forms {ωi} pull
back to {θi}.

Thus let

X =

(
x11 x12
x21 x22

)
(8.30)

where detX = 1, so that X is a general element of SL(2,R). Then X−1dX
considered as a matrix of one-forms, takes its values in the Lie algebra of
SL(2,R). Moreover, if

X−1dX =

(
ω1 ω2

ω3 −ω1

)
then the {ωi} are the left-invariant forms of SL(2,R). Thus there is a local
SL(2,R)-valued function G on R2 such that,

G−1dG =

(
θ1 θ2

θ3 −θ1
)
.

This sl(2,R)-valued one-form on R2 will be represented as Θ, so the expression
above is dG = GΘ. Thus, each row of matrix G satisfies,

dr = rθ1 + sθ3, ds = rθ2 − sθ1.

Consequently, the Maurer-Cartan equations for the forms {θi} may be written
dΘ + Θ ∧ Θ = 0. The form Θ may be regarded as defining a connection on
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a principal SL(2,R) bundle over R2. The nonlinear equation expresses the
fact that the curvature of the connection dΘ + Θ ∧ Θ must vanish, hence
Θ = G−1dG is pure gauge.

Bäcklund transformations fit into this picture. Any element of SL(2,R)
can be expressed uniquely as the product of an upper-triangular matrix-valued
function T and a rotation matrix-valued function R as G = T R−1. It follows
from this expression that

TR−1Θ = GΘ = dG = dT R−1 − TR−1 dRR−1,

hence,
T−1 dT = R−1ΘR+R−1 dR.

Now T−1 dT is itself upper triangular, however, the lower left corner element
on the right is not as the following calculation shows. The matrices R and Θ
may be written in the form,

R =

 cos
v

2
sin

v

2
− sin

v

2
cos

v

2

 , Θ =

(
θ1 θ2

θ3 θ1

)
.

Therefore,

R−1 =

cos
v

2
− sin

v

2
sin

v

2
cos

v

2

 , dR =
1

2

− sin
v

2
cos

v

2
− cos

v

2
− sin

v

2

 .

With these matrices, the two terms on the right of T−1dT can be calculated.
First, the term R−1 dR is given by

R−1 dR =
1

2

(
0 dv
−dv 0

)
and then R−1ΘR takes the form,

R−1ΘR

=
1

2

(
2 cos v θ1 − sin v(θ2 + θ3) 2 sin v θ1 + (θ2 − θ3)

2 sin vθ1 − (θ2 − θ3) + cos v (θ2 + θ3) −2 cos vθ1 + sin v (θ2 + θ3)

)
The lower left-hand corner of R−1 dR+R−1ΘR is determined to be

−dv + 2 sin v θ1 − (θ2 − θ3) + cos v (θ2 + θ3).

Since this must match the corresponding element in T−1dT , which is upper-
triangular, this result can be equated to zero to produce the following equa-
tion,

dv + θ2 − θ3 = 2 sin v θ1 + cos v(θ2 + θ3). (8.31)
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This is equivalent to two first-order partial differential equations for v in terms
of u and its partial derivatives, which are the Bäcklund transformation equa-
tions associated with the soliton equation satisfied by u. The Bäcklund equa-
tions may therefore be interpreted as the equations satisfied by the angle in the
rotation part of G. Alternatively, the transformation Θ → R−1 dR+R−1ΘR
may be viewed as a gauge transformation of Θ. If this viewpoint is taken, the
Bäcklund transformation is the gauge transformation which makes Θ upper
triangular.

These equations may be written in another form as follows. Comparison
of G and TR−1 leads to the equation τ = tan(v/2) = r/s. Therefore,

dτ =
1

s
dr − r

s2
ds = 2τθ1 − τ2θ2 + θ3.

This form is equivalent to the previous version. Here τ can be thought of as
a pseudo-potential

There is a certain amount of freedom in the choice of {θi}, and two different
Θ which lead to the same equation are typically related by means of a gauge
transformation and possibly a change of coordinates. As an example, let us
make a particular choice for the {θi} and then substitute into (8.31). The
forms are given as

θ1 =
1

2
cos

u

2
(η dx+

1

η
dt),

θ2 = (
1

4
ux −

η

2
sin

u

2
) dx− (

1

4
ut −

1

2η
sin

u

2
) dt,

θ3 = −(
1

4
ux +

η

2
sin

u

2
) dx+ (

1

4
ut +

1

2η
sin

u

2
) dt.

Substituting these forms into (8.31), the following result appears

dv+
ux
2
dx− ut

2
dt = sin v cos

u

2
(η dx+

1

η
dt)+cos v(−η sin

u

2
dx+

1

η
sin

u

2
dt).

It remains to equate the coefficients of dx and dt on both sides and then use
a well known idntity to obtain the Bäcklund transformation

vx = −1

2
ux + η sin(v − u

2
), vt =

1

2
ut +

1

η
sin(v +

u

2
). (8.32)

8.5 Another Application of Differential Systems to Bäcklund
Correspondences.

A quite specific type of differential ideal often appears when Cartan’s method
of moving frames is applied to classical problems of differential geometry.
These ideals can be generated by sets of two-forms and have a canonical
structure inasmuch as they are expressed in an anholonomic basis of one-
forms in which all of their terms have constant coefficients [54]. Such ideals
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are usually derived by specializing the closure relations that are fulfilled by
the left or right invariant one-forms in the space of Lie groups. They can be
analyzed for invariances, conservation laws, Bäcklund correspondences and
integral manifolds classified by computing Cartan’s local algebraic characters.
Depending on how dependent and independent sets of variables are intro-
duced, elegant sets of coupled nonlinear partial differential equations, such as
the sine-Gordon equation can emerge.

Consider a six parameter Lie group that is built upon the three-parameter
rotation group O(3), In terms of six basis one-forms ωi, and φi with i = 1, 2, 3,
the following set of two-forms generates a closed differential ideal I

ϑ1 = dω1 + ω2 ∧ ω3, ϑ4 = dφ1 + ω2 ∧ φ3 − ω3 ∧ φ2,

ϑ2 = dω2 + ω3 ∧ ω1, ϑ5 = dφ2 + ω3 ∧ φ1 − ω1 ∧ φ3,

ϑ3 = dω3 + ω1 ∧ ω2, ϑ6 = dφ3 + ω1 ∧ φ2 − ω2 ∧ φ1.

(8.33)

This is a differential ideal and in fact it can be shown that it is a closed
differential ideal over the entire set of forms {ϑi}61.

Theorem 8.1. The exterior derivatives of the system {ϑi} in (8.33) are
calculated to be,

dϑ1 = ϑ2 ∧ ω3 + ϑ3 ∧ ω2,

dϑ2 = ϑ3 ∧ ω1 + ϑ1 ∧ ω3,

dϑ3 = ϑ1 ∧ ω2 + ϑ2 ∧ ω1,

dϑ4 = ϑ2 ∧ φ3 + ϑ6 ∧ ω2 − ϑ3 ∧ φ2 − ϑ5 ∧ ω3,

dϑ5 = −ϑ1 ∧ φ3 + ϑ3 ∧ φ1 + ϑ4 ∧ ω3 − ϑ6 ∧ ω1,

dϑ6 = ϑ1 ∧ φ2 − ϑ2 ∧ φ1 − ϑ4 ∧ ω2 + ϑ5 ∧ ω1.

(8.34)

Proof: To produce these results, differentiate each of the ϑi in (8.33)
and eliminate the known exterior derivatives. The case which involves ϑ1 is
illustrated explicitly,

dϑ1 = dω2∧ω3−ω2∧dω3 = (ϑ2−ω3∧ω1)∧ω3−ω2∧(ϑ3−ω1∧ω2) = ϑ2∧ω3+ϑ3∧ω2.

The others follow a similar procedure.
If, in a space of six dimensions, the forms ϑi in (8.33) were to vanish iden-

tically, the basis one-forms ωi, φi could be called left-invariant, and the space
identified at least locally with the group space. A set of canonical structure
constants for the group can be read off (8.33).

It may be that there exists a matrix Ω composed of the ωi, φj such that
the integrability conditions are expressed as the vanishing of a matrix of two-
forms,
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Θ = 0, Θ = dΩ −Ω ∧Ω,
which gives, by construction, the nonlinear equation to be solved.

This differential ideal can be enlarged in the following way. Introducing the
two auxiliary variables f and g, which are referred to as prolongation variables
or pseudopotentials, consider the differential ideal augmented by means of the
following two additional differential forms,

α1 = df − fgω1 + (1 + f2)ω2 − gω3, α2 = dg − (1 + g2)ω1 + fgω2 + fω3.
(8.35)

Solving (8.35) for df and dg, we obtain

df = α1 + fgω1 − (1 + f2)ω2 + gω3, dg = α2 + (1 + g2)ω1 − fgω2 − fω3.

Theorem 8.2. The exterior derivatives of {α1, α2} in (8.35) take the form

dα1 = −gα1 ∧ ω1 − fα2 ∧ ω1 + 2fα1 ∧ ω2 − α2 ∧ ω3,

dα2 = gα1 ∧ ω2 + α1 ∧ ω3 − 2gα2 ∧ ω1 + fα2 ∧ ω2.

Proof: This is a long calculation which utilizes the results for the forms df
and dg. For example,

dα2 = −2g dg ∧ ω1 − (1 + g2)dω1 + g df ∧ ω2 + fgdω2 + df ∧ ω3 + f dω3

= −2g(α2 + (1 + g2)ω1 − fgω2 − fω3) ∧ ω1 + (1 + g2)ω2 ∧ ω3 + g(α1 + fgω1

−(1 + f2)ω2 + gω3)∧ ω2 + f(α2 + (1 + g2)ω1 − fgω2 − fω3)∧ ω2 − fgω3 ∧ ω1

+(α1 + fgω1 − (1 + f2)ω2 + gω3) ∧ ω3 − fω1 ∧ ω2.

= −2g α2 ∧ ω1 + gα1 ∧ ω2 + fα2 ∧ ω2 + α1 ∧ ω3.

By putting identically equal to zero one or more basic one-forms in the set
(8.33) of a group, one immediately obtains members of an interesting class
of nonlinear systems generated by two-forms having constant coefficients and
closed under exterior differentiation. These are often referred to as canonical
systems. For the remainder of this section, such a system is considered. At
this point, we set φ3 = 0 in (8.33) and call the resulting ideal Ĩ such that

ϑ̃1 = dω1 + ω2 ∧ ω3,

ϑ̃2 = dω2 + ω3 ∧ ω1,

ϑ̃3 = dω3 + ω1 ∧ ω2,

ϑ̃4 = dφ1 − ω3 ∧ φ2,

ϑ̃5 = dφ2 + ω3 ∧ φ1,

ϑ̃6 = ω1 ∧ φ2 − ω2 ∧ φ1.

(8.36)
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Using Theorem 8.2, two auxilliary variables f , g can be introduced to enlarge
the ideal to the form

dφ1 − f(ω1 ∧ φ2 − ω2 ∧ φ1)− ω2 ∧ φ2,

dφ2 − g(ω1 ∧ φ2 − ω2 ∧ φ1) + ω3 ∧ φ1,

dω1 + ω2 ∧ ω3,

dω2 + ω3 ∧ ω1,

dω3 + ω1 ∧ ω2,

df − fgω1 + (1 + f2)ω2 − gω3,

dg − (1 + g2)ω1 + fgω2 + fω3,

ω1 ∧ φ2 − ω2 ∧ φ1.

Finally, the immersion ideal can be written for surfaces of constant negative
curvature as

ϑ̃1 = dω1 + ω2 ∧ ω3,

ϑ̃2 = dω2 + ω3 ∧ ω1,

ϑ̃3 = dω3 + ω1 ∧ ω2,

ϑ̃4 = dφ1 − ω3 ∧ φ2,

ϑ̃5 = dφ2 + ω3 ∧ φ1,

ω1 ∧ φ2 − ω2 ∧ φ1,

ω1 ∧ ω2 + φ1 ∧ φ2.

(8.37)

This remains closed and so forms a canonical system. The final step is to ob-
serve that, because this ideal has a Cauchy characteristic vector, a prolonga-
tion one-form can be added to the ideal without introducing any prolongation
variable. The one-form introduced by Chern and Terng introduced into the
study of the Sine-Gordon equation is given by

Ψ = φ2 + sin τ ω3 + cos τ ω2,

where τ is an arbitrary parameter. Call this augmented ideal ĨB . Thus there
will be a Bäcklund correspondence between solutions of these subideals.

Knowing that the search for two-dimensional integral submanifolds of ĨB
is a well-posed problem, by picking suitable coordinates the resulting partial
differential equations can be examined, in particular the sine-Gordon equation
is studied. In the preceding, the view has been adopted that {ϑ̃i} can be set
identically equal to zero. This defines a basis set in a space, and the remaining
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algebraic forms can be treated as fields there. Now going in a slightly different
direction, choose an algebraically degenerate coordinate representation of the
basis forms in terms of two independent variables u1 and u2 with correspond-
ing basis one-forms du1 and du2 such that the second set of forms in ĨB is
identically zero, and the partial differential equations arise from the first set,
{ϑ̃i}.

Introduce now the following set of one-forms

φ1 = cosψ cosαdu1 + sinψ sinαdu2,

φ2 = − cosψ sinαdu1 + sinψ cosαdu2,

ω1 = − sinψ sinαdu1 − cosψ cosαdu2, (8.38)

ω2 = − sinψ cosαdu1 + cosψ sinαdu2,

sin τω3 = (cosψ sinα+cos τ sinψ cosα) du1−(sinψ cosα+cos τ cosψ sinα) du2.

Theorem 8.3. With respect to the basis set of forms (8.38), all of the
{ϑ̃i}51 can be expressed in the form of linear combinations of the two-forms
χ1 and χ2 defined by

χ1 = (dψ − dα) ∧ (du1 + du2) +
1 + cos τ

sin τ
sin(ψ + α) du1 ∧ du2,

χ2 = (dψ + dα) ∧ (du1 − du2)− 1− cos τ

sin τ
sin(ψ − α) du1 ∧ du2.

(8.39)

Proof: The calculations for two of them will be outlined. By straightfor-
ward exterior differentiation,

dω1 = − sin(ψ+α)(dψ+dα)∧(du1−du2)+sin(ψ−α)(dψ−dα)∧(du1 +du2).

Using trigonometric identities, it follows as well that,

sin τ ω2 ∧ ω3 = sin(ψ + α) sin(ψ − α) du1 ∧ du2.

Therefore, ϑ̃1 is given by,

ϑ̃1 = dω1 + ω2 ∧ ω3 = −1

2
sin(ψ + α)(dψ + dα) ∧ (du1 − du2)

+
1

2
sin(ψ− α)(dψ− dα)∧ (du1 − du2) +

1

sin τ
sin(ψ+ α) sin(ψ− α) du1 ∧ du2

= −1

2
sin(ψ + α)χ1 −

1

2
sin(ψ − α)χ2.

Similarly, differentiation of ω2 gives,

2dω2 = − cos(ψ+α)(dψ+dα)∧(du1−du2)−cos(ψ−α)(dψ−dα)∧(du1+du2),
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and
sin τ ω3 ∧ ω1 = −(sinα cosα+ cos τ cosψ sinψ) du1 ∧ du2.

Therefore,

ϑ̃2 = dω2 + ω3 ∧ ω1 = −1

2
cos(ψ + α)(dψ + dα) ∧ (du1 ∧ du2)

−1

2
cos(ψ−α)(dψ−dα)∧(du1+du2)− 1

sin τ
(sinα cosα+cos τ cosψ sinψ) du1∧du2

= −1

2
cos(ψ − α)χ1 −

1

2
cos(ψ + α)χ2.

Similar linear combinations can be found for the other cases.
Now let us take the two-forms χi to an integral manifold and obtain the

equation implied by the representation (8.38). As an intermediate step, a
Bäcklund transformation for the equation will be generated. First of all,

dψ − dα = (ψu1 − αu1 − ψu2 + αu2) du1 ∧ du2,

dψ + dα = −(ψu1
+ αu1

+ ψu2
+ αu2

) du1 ∧ du2.

Equating the coefficient of du1 ∧ du2 to zero in each χi in (8.39) and then
using these results, the following pair of first order equations results,

ψu1
− αu1

− ψu2
+ αu2

+
1 + cos τ

sin τ
sin(ψ + α) = 0,

ψu1
+ αu1

+ ψu2
+ αu2

+
1− cos τ

sin τ
sin(ψ − α) = 0.

(8.40)

This is one version of the Bäcklund. To make everything more concise, intro-
duce the following pair of variables

β = ψ − α, γ = ψ + α.

In terms of these new variables, (8.40) is transformed into the pair of equa-
tions,

βu1 − βu2 +
1 + cos τ

sin τ
sin γ = 0,

γu1 + γu2 +
1− cos τ

sin τ
sinβ = 0.

(8.41)

Each of the equations in (8.41) will be differentiated in turn with respect to
u1 and u2. The first equation in β yields

βu1u1 − βu2u1 +
1 + cos τ

sin τ
cos γ γu1 = 0,

βu1u2
− βu2u2

+
1 + cos τ

sin τ
cos γ γu2

= 0.
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Adding this pair of equations, the βu1u2
terms cancel, and we are left with,

βu1u1 − βu2u2 +
1 + cos τ

sin τ
cos γ(γu1 + γu2) = 0. (8.42)

Replacing γu1
+ γu2

from the second equation of (8.41) into (8.42), we get,

βu1u1
− βu2u2

− sinβ cos γ = 0. (8.43)

Following exactly the same procedure for the second equation of (8.41) pro-
duces the result for γ,

γu1u1
− γu2u2

− cosβ sin γ = 0. (8.44)

Adding the equations in (8.43) and (8.44) together, a version of the sine-
Gordon equation in the new variable β + θ = 2ψ is obtained

(β + γ)u1u1
− (β + γ)u2u2

= sin(β + γ). (8.45)

Moreover, there is a Bäcklund correspondence given by (8.41).
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9 Generation of Integrable Systems and Hierarchies.

Completely integrable systems arise from many different areas of physics and
mathematics and constitute a very active area of investigation at the moment.
Although somewhat more algebraic in scope than the geometric topics of the
previous chapters, it is of both theoretical and practical value to find as many
new integrable systems as possible and to expand in depth their algebraic
and geometric properties. This has been a subject of considerable interest
recently [55]. The idea here is to illustrate how Lie algebras play a role in
generating integrable systems. In fact, it will be shown that these ideas lead to
the production of hierarchies of equations. Thus, on the basis of the gradation
and decomposition of an element of the algebra A, the solvability in V ∈ A
is shown for the equation Vx = [U, V ] for a class of elements U ∈ A. The
solution V together with the gradation of A leads then to an element which
is modified further by the introduction of a modification quantity and leads
to a new hierarchy of integrable systems [56].

9.1 Definition of the Algebra.

Consider a loop algebra Ã, that is, the affine Lie algebra without center given
as

Ã = A⊗ C(λ, λ−1).

A basis for Ã will be taken as follows

{h(n), e(n), f(n)|n ∈ Z}. (9.1)

where Z stands for the set of integers and x(n) = x⊗λn for x ∈ A. Finally, h,
e and f represent a basis of A which has a matrix representation of the form

h =
1

2

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
(9.2)

From these definitions, it follows that

[h, e] = e, [h, f ] = −f, [e, f ] = 2h. (9.3)

Moreover, since x(n) = x⊗ λn, these brackets imply that

[h(m), e(n)] = e(m+ n),

[h(m), f(n)] = −f(m+ n), [e(m), f(n)] = 2h(m+ n). (9.4)

The basis set {h(n), e(n), f(n)|n ∈ Z} can be transformed into the following
related set

{h(n), e+(n), e−(n)|n ∈ Z},

e±(n) = 1
2 (e(n− 1)± f(n)),

(9.5)
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e(n) = e+(n+ 1) + e−(n+ 1), f(n) = e+(n)− e−(n).

The commutators of the algebra elements in (9.5) are given by

[h(m), e±(n)] =
1

2
[h(m), e(n− 1)± f(n)] =

1

2
[h(m), e(n− 1)]± 1

2
[h(m), f(n)]

=
1

2
(e(m+ n− 1)∓ f(m+ n)) = e∓(m+ n).

[e−(m), e+(n)] = h(m+ n− 1).

Introduce the following gradation on the basis elements {h(n), e+(n), e−(n)}
with deg h(n) = 2n and deg e±(n) = 2n−1. From the bracket relations above,
it follows that

deg[h(m), e±(n)] = deg h(m) + deg e±(n),

deg[e−(m), e+(n)] = deg e−(m) + deg e+(n).

In this way, the loop algebra Ã is made into a graded Lie algebra with respect
to the gradation given above. For a summation

M =
∑
m∈Z

Ch(m) + C e+(m) + C e−(m),

in Ã, we write

M+ =
∑
m≥0

Ch(m) + C e+(m) + C e−(m),

and M− = M −M+. In these expressions C represents some scalars taken
from the complex field, or in other words, M+ is obtained from M by keeping
all terms of gradations greater than or equal to one. To any Lie algebra L and
an element Λ ∈ L, we have

K = ker adΛ = {x|x ∈ L, [Λ, x] = 0},

K⊥ = = adΛ = {x|x ∈ L,∃ y ∈ L, x = [Λ, y]}.

In particular, for L = Ã and

Λ = 2e+(1),

it is clear that, from the bracket relations,

K =
∑
n∈Z

C e+(n), K⊥ =
∑
n∈Z

(C e−(n) + Ch(n)).

Hence for the above specific choice, the following result is valid.
Lemma 9.1. (i) K is a commutative subalgebra. (ii) L = K ⊕K⊥.
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9.2 A Hierarchy of Evolution Equations.

Begin with the linear problem defined to be,

Ψx = U Ψ, Ψ =

(
ψ1

ψ2

)
,

U = Λ+Q, Λ = 2e+(1), Q = ue+(0) + ve−(0),

(9.6)

where u = u(x, t) and v = v(x, t) are two independent potentials, in other
words, the dependent variables in the equations of the intended hierarchy.
Note that we have,

degΛ = 1, degQ = −1.

Suppose a, b and c are scalar-valued but depend on u, v and the parameter
λ, in the following way a = a(u, v, λ), b = b(u, v, λ), c = c(u, v, λ). Let V be
given by

V = ah(0) + be+(0) + ce−(0) (9.7)

be a solution of the equation

Vx = [U, V ]. (9.8)

Observing that e+(n) = e+(0)λn and then using the definition of U given in
(9.6),

U = (2λ+ u)e+(0) + ve−(0), (9.9)

then equation (9.8) becomes,

axh(0)+ bxe+(0)+cxe−(0) = [2λ+u)e+(0)+ve−(0), ah(0)+ be+(0)+ce−(0)]

= (2λ+u)a[e+(0), h(0)]+av[e−(0), h(0)]+bv[e−(0), e+(0)]+(2λ+u)c[e+(0), e−(0)]

= −a(2λ+ u)e−(0)− ave+(0) + bvh(0)λ−1 − c(2λ+ u)h(0)λ−1.

Equating coefficients of h(0) and e±(0) on both sides of this result, we obtain

ax = bvλ−1 − 2c− cuλ−1, bx = −av, cx = −2aλ− au. (9.10)

Let a, b and c have the expansions in λ given by

a =
∑
m≥0

amλ
−m, b =

∑
m≥0

bmλ
−m, c =

∑
m≥0

cmλ
−m. (9.11)

Substituting these into the first equation of (9.10), it is found that

a0,x+
∑
m≥1

am,xλ
−m = v

∑
m≥1

bm−1λ
−m−2c0−2

∑
m≥1

cmλ
−m−u

∑
m≥1

cm−1λ
−m.

Equating powers of λ on both sides of this result generates the system of
equations
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a0,x = −2c0, am,x = vbm−1 − 2cm − ucm−1, m ≥ 1. (9.12)

Substituting (9.11) into the second equation, we get∑
m≥0

bm,xλ
−m = −v

∑
m≥0

amλ
−m.

This relation implies that
bm,x = −vam. (9.13)

Finally, doing the same thing with the last equation of (9.10) gives∑
m≥0

cm,xλ
−m = −2a0λ− 2

∑
m≥0

am+1λ
−m − u

∑
m≥0

amλ,

and therefore,
a0 = 0, cm,x = −2am+1 − uam. (9.14)

Equivalently, going from the third to the first, each of these can be solved for
am+1, bm+1 and cm+1 respectively, to give the coupled system,

am+1 =
1

2
(−uam − cm,x),

bm+1 = −∂−1(vam+1), cm+1 =
1

2
(vbm − ucm − am+1,x), (9.15)

introducing the notation ∂ ≡ ∂/∂x and ∂−1 is the inverse operation, that is
integration.

Starting from the initial values a0 = 0, b0 = β and c0 = 0, where β is a
constant, am+1 is calculated first after am, bm and cm have been recurrently
calculated. From the last two recursions, bm+1 and cm+1 are obtained. The
integral constant occurring in the calculation of bm+1 can be taken to be zero.
The first few ai, bi and ci are given next setting ui = ∂iu and vi = ∂iv,

a0 = 0, b0 = β, c0 = 0,

a1 = 0, b1 = 0, c1 =
1

2
βv,

a2 = −β
4
v1, b2 =

β

8
v2, c2 =

β

8
(v2 − 2uv).

Now take this set of equations (9.15) and eliminate all am. To do this,
begin by solving the second for am+1

am+1 = −1

v
∂bm+1.

Substituting this into the first equation of (9.15), am can be entirely elimi-
nated to yield,



Geometry and Partial Differential Equations 105

−∂bm+1 =
1

2
u∂bm −

1

2
v∂cm.

In integrated form, this reads,

−bm+1 =
1

2
∂−1(u∂bm)− 1

2
∂−1(v∂cm).

Similarly, substituting these results into the third equation gives,

cm+1 =
1

2
(vbm − ucm + ∂(

1

v
∂bm+1)) =

1

4
(2v − ∂(

u

v
)∂)bm −

1

4
(2u− ∂2)cm.

It will turn out to be useful in what follows to put these results in the form
of a single matrix equation, namely,(

−bn+1

cn+1

)
= −1

4

(
2∂−1u∂ 2∂−1v∂

2v − ∂(
u

v
)∂ 2u− ∂2

)(
−bn
cn

)
. (9.16)

Using the expansions (9.11) in V given in (9.7), V takes the form,

V =
∑
m≥0

amh(0)λ−m +
∑
m≥0

bme+(0)λ−m +
∑
m≥0

cme−(0)λ−m

=
∑
m≥0

(amh(−m) + bme+(−m) + cme−(−m)).

From Vx = [U, V ] it follows that,

−(λnV )+,x + [U, (λnV )+] = (λnV )−,x − [U, (λnV−].

Observing that the terms on the left-hand side are of gradation greater than
or equal −2, while the terms on the right-hand side are of gradation less than
or equal to −1, it is concluded that both sides contain only terms of gradation
−1 and −2, so that

−(λnV )+,x + [U, (λnV )+] ∈ {Ce+(0) + Ce−(0) + Ch(−1)}.

In fact, the quantity on the left-hand side can be calculated exactly in terms
of the elements of the algebra.

Theorem 9.1.

−(λnV )+,x + [U, (λnV )+] = (vbn − ucn)h(−1) + 2an+1e−(0).

Proof: Write out U and (λnV )+ explicitly in terms of e+(0), e−(0) and
h(0), there results,

U = 2e+(0)λ+ ue+(0) + ve−(0),
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(λnV )+ =

n∑
m=0

(amh(0)λn−m + bme+(0)λn−m + cme−(0)λn−m).

These results go into the bracket, which can be expressed as

[2e+(0)λ+ue+(0)+ve−(0),

n∑
m=0

(amh(0)λn−m+bme+(0)λn−m+cme−(0)λn−m)]

= −2

n∑
m=0

ame−(0)λn−m+1−2

n∑
m=0

cmh(−1)λn−m+1+u

n∑
m=0

am(−e−(0))λn−m

−u
n∑

m=0

cmh(−1)λn−m + v

n∑
m=0

am(−e+(0))λn−m + v

n∑
m=0

bmh(−1)λn−m.

Now substitute the result for this bracket into the equation

−(λnV )+,x + [U, (λnV )+]

= −
n∑

m=0

(am,xh(0)λn−m + bm,xe+(0)λn−m + cm,xe−(0)λn−m)

−2

n∑
m=0

ame−(0)λn−m+1 − 2

n∑
m=0

cmh(−1)λn−m−1 − u
n∑

m=0

ame−(0)λn−m

−u
n∑

m=0

cmh(−1)λn−m − v
n∑

m=0

ame+(0)λn−m + v

n∑
m=0

bmh(−1)λn−m.

Substituting the known derivatives am,x, bm,x and cm,x, this becomes,

−
n∑

m=0

((−2cm − ucm−1 + vbm−1)h(0)λn−m − amve+(0)λn−m

+(−2am+1−amu)e−(0)λn−m)−2

n∑
m=0

ame−(0)λn−m+1−2

n∑
m=0

cmh(−1)λn−m+1

−u
n∑

m=0

ame−(0)λn−m − u
n∑

m=0

cmh(−1)λn−m − v
n∑

m=0

ame+(0)λn−m

+v

n∑
m=0

bmh(−1)λn−m.

= u

n∑
m=0

cm−1h(0)λn−m − u
n∑

m=0

cmh(0)λn−m−1 − v
n∑

m=0

bm−1h(0)λn−m

+v

n∑
m=0

bmh(0)λn−m−1 − 2

n∑
m=0

am+1e−(0)λn−m − 2

n∑
m=0

ame−(0)λn−m+1
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= u

n−1∑
m=0

cmh(0)λn−m−1 − u
n∑

m=0

cmh(0)λn−m−1 − v
n−1∑
m=0

bmh(0)λn−m+1

+v

n∑
m=0

bmh(0)λn−m−1 + 2

n−1∑
m=0

ame−(0)λn−m+1 − 2

n∑
m=0

ame−(0)λn−m+1

= −ucnh(0)λ−1 + vbnh(0)λ−1 + 2an+1e−(0)

= (vbn − ucn)h(−1) + 2an+1e−(0).

Thus, by direct calculation, it has been shown that

−(λnV )+,x + [U, (λnV )+] = (vbn − ucn)h(−1) + 2an+1e−(0).

This is exactly the statement given in the Theorem. ♣
To cancel the term h(−1) in this result, let us consider introducing the

additional term
χ ≡ (

u

v
cn − bn) e+(0). (9.17)

Next define the modified operator

V (n) = (λnV )+ + χ. (9.18)

Using (9.18), the following can be calculated,

−V (n)
x + [U, V (n)] = −(λnV )+,x − χx + [U, (λnV )+ + χ]

= −(λnV )+,x + [U, (λnV )+]− χx + [U, χ]

= (vbn − ucn)h(−1) + 2an+1e−(0)− (
u

v
cn − bn)xe+(0)

+[2e+(0)λ+ ue+(0) + ve−(0), (
u

v
cn − bn)e+(0)]

= (vbn−ucn)h(−1)+2an+1e−(0)−(
u

v
cn−bn)xe+(0)+(ucn−vbn)[e−(0), e+(0)]

= (vbn − ucn)h(−1) + 2an+1e−(0)− (
u

v
cn − bn)xe+(0) + (ucn − vbn)h(−1).

Therefore,

−V (n)
x + [U, V (n)] = 2an+1e−(0)− (

u

v
cn − bn)xe+(0).

Now with U given by (9.9), the t derivative of U is

Ut = ute+(0) + vte−(0).

Substituting Ut into
Ut − V (n)

x + [U, V (n)] = 0, (9.19)

then (9.19) becomes,
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ute+(0) + vte−(0) = (
u

v
cn − bn)xe+(0)− 2an+1e−(0). (9.20)

Equating the coefficients of e+(0) and e−(0) on both sides of (9.20) and using
(9.15), the following hierarchy of equations comes out,

ut = (
u

v
cn − bn)x, vt = −2an+1 = uan + cn,x. (9.21)

The relation (9.19) is exactly the integrability condition for the following pair
of linear problems

Ψx = UΨ, Ψt = V (n)Ψ. (9.22)

Let us now take the three basic equations

am,x = −2cm−ucm−1+vbm−1, bm,x = −amv, cm,x = −2am+1−amu,

and eliminate the quantities aj in order to develop a recursion relation. First
of all,

bn+1 = −∂−1van+1 =
1

2
∂−1(uvan − 2van+1 − uvan) =

1

2
∂−1(−u∂bn + v∂cn).

Next, we get

cn+1 =
1

2
(vbn−ucn−∂an+1) =

1

2
(vbn−ucn+

1

2
(−∂(

u

v
(−anv))+∂(−2an+1−anu)))

=
1

2
(vbn − ucn +

1

2
(−∂(

u

v
∂bn) + ∂2cn)) =

1

4
(2vbn − ∂(

u

v
∂bn)− 2ucn + ∂2cn).

These two results imply the following recurrence relations for the quantities b
and c which in matrix form read,(

−bn+1

cn+1

)
= −1

4

(
2∂−1u∂ 2∂−1v∂

2v − ∂(
u

v
)∂ 2u− ∂2

)(
−bn
cn

)
= L

(
−bn
cn

)
. (9.23)

This last equation (9.23) also serves to define the matrix operator L. Beginning
with the equality relation in (9.23), apply the operator L to both sides of it
to give (

−bn+2

cn+2

)
= L

(
−bn+1

cn+1

)
= L2

(
−bn
cn

)
.

Applying L a total of m times to the basic relation produces,(
−bn+m
cn+m

)
= Lm

(
−bn
cn

)
. (9.24)

Therefore, with J defined to be

J =

 ∂ ∂(
u

v
)

(
u

v
)∂ ∂

 ,
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it follows that

J

(
−bn+m
cn+m

)
=

(
∂((

u

v
)cn+m − bn+m)

uan+m + ∂cn+m

)
=

(
∂((

u

v
)cn+m − bn+m)

−2an+m+1

)
=

(
ũ
ṽ

)
t

.

It can be verified that

J∗ = −J, JL = L∗J, (9.25)

where A∗ represents the formal conjugation of the matrix differential operator
A, that is, (Aij)

∗ = (A∗ji) and (
∑
ai∂

i)∗ =
∑

(−∂)iai for scalars ai. The
existence of the operators J and L, which satisfy condition (9.25), is essential
to the establishment of the Hamiltonian structure of the hierarchy of equations
later.

Taking n = 1 and β = 2 in recursion (9.21) we obtain that

(
ut
vt

)
=

 ∂ ∂(
u

v
)

(
u

v
)∂ ∂

(0
v

)
=

(
∂u
∂v

)

Taking n = 2 and β = 8, we get,

(
ut
vt

)
= −1

4

 ∂ ∂(
u

v
)

(
u

v
)∂ ∂

( 2∂−1u∂ 2∂−1v∂

2v − ∂(
u

v
)∂ 2u− ∂2

)(
0
4v

)

=

(
∂((

u

v
)∂2v − v2 − 2u2)

∂3v − 2∂u v − 4u∂v

)
.

This implies the following coupled pair of nonlinear evolution equations for u
and v,

ut = (
u

v
vxx − 2u2 − v2)x, vt = vxxx − 2uxv − 4uvx. (9.26)

If u = v in (9.26), the equations reduce to,

ut = uxxx − 3(u2)x, ut = uxxx − 2uxu− 4uux.

Both of these are equivalent to ut = (uxx − 3u2)x. If u = −v, then

ut = (uxx − 3u2)x, −ut = −uxxx + 2uxu+ 4uux.

Thus, in both cases, when u = ±v the nonlinear evolution equations reduce
to the KdV equation.

Setting u = vw in (9.26), there results the pair

(vw)t = (wvxx − 2v2w2 − v2)x, vt = vxxx − 2(vw)x − 4vwvx.
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The first equations is wvt+vwt = (wvxx)x−2(v2w2)x− (v2)x, so substituting
for vt, this becomes

wvxxx − 2vw(vw)x − 2w2(v2)x + vwt = vvxvxx + wvxxx − 4(vw)xvw − (v2)x.

This simplifies to

vwt = wxwxx − v2(w2)x + (w2 − 1)(v2)x.

To summarize these two equations, we have

vt = vxxx − 6wvvx − 2wxv
2, wt =

1

v
wxvxx − 2vwwx + 2(w2 − 1)vx.

9.3 A Set of Conserved Densities.

A set of conserved densities will be derived which are common to the entire
hierarchy of equations,

ut = (
u

v
cn − bn)x, vt = −2an+1. (9.27)

To carry this out, it is required to write U given by (9.9) in matrix form.
Based on the representation of (9.2) and (9.5), we have

e+(1) =
1

2

(
0 1
λ 0

)
, e+(0) =

1

2

(
0 λ−1

1 0

)
, e−(0) =

1

2

(
0 λ−1

−1 0

)
.

(9.28)
Moreover, define y to be

y =
ψ2

ψ1
. (9.29)

To obtain an expression for yx, it is necessary to calculate ψ1,x and ψ2,x from
the associated linear problem in (9.6). To calculate U explicitly, the matrix
forms for e+(1), e+(0) and e−(0) are substituted into the expression for U
giving

U = 2e+(1) + ue+(0) + ve−(0)

=

(
0 1 +

1

2λ
(u+ v)

λ+ 1
2 (u− v) 0

)
=

(
0 1 +

1

2λ
u+

λ+ 1
2u− 0

)
. (9.30)

In (9.30), u± is defined to be u± = (u± v)/2. Therefore, the required deriva-
tives of ψ1 and ψ2 in terms of u± are given by

ψ1,x = (1 +
u+
2λ

)ψ2, ψ2,x = (λ+
u−
2

)ψ1.

Then differentiating y given by (9.29) with respect to x, we obtain,

yx =
ψ2,x

ψ1
− ψ2

ψ2
1

ψ1,x = λ+
u−
2
− (1 +

u+
2λ

)y2. (9.31)
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To carry out expansions, it is convenient to introduce µ2 = λ, so from (9.31),
y must satisfy the equation

yx − (µ2 + u−) + (1 + u+µ
−2)y2 = 0. (9.32)

Expanding y in inverse powers of µ,

y = µ+

∞∑
i=0

yiµ
−i, (9.33)

and it follows from this that,

yx =

∞∑
i=0

yi,xµ
−i, y2 = µ2 + 2µ

∞∑
i=0

yiµ
−i + (

∞∑
i=0

yiµ
−i)2,

(

∞∑
i=0

yiµ
−i)2 =

∞∑
n=0

(

n∑
k=0

ykyn−k)µ−n ≡
∞∑
n=0

cnµ
−n.

The Cauchy product formula has been used to obtain a formula for the cn.
Substituting this information into (9.31), it takes the form,

∞∑
i=0

yi,xµ
−i − µ2 − u− + µ2 + 2µ

∞∑
i=0

yiµ
−i+1 + (

∞∑
i=0

yiµ
−i)2 + u+

+2u+

∞∑
i=0

yiµ
−i−1 + u+µ

−2(

∞∑
i=0

yiµ
−i)2 = 0.

Since u+ + u− = u and u+ − u− = v, using the Cauchy product formula and
reindexing the sums, it is found that

∞∑
i=0

yi,xµ
−i + v + 2

∞∑
i=−1

yi+1µ
−i + 2u+

∞∑
i=1

yi−1µ
−i +

∞∑
i=0

(

i∑
k=0

ykyi−k)µ−i

+u+

∞∑
i=2

i−2∑
k=0

(ykyi−2−k)µ−i = 0. (9.34)

Expanding out the first terms, this equation takes the form

y0,x + y1,xµ
−1 +

∞∑
i=2

yi,xµ
−i + v

+2y0µ+ 2y1 + 2y2µ
−1 + 2

∞∑
i=2

yi+1µ
−i + 2u+y0µ

−1 + 2u+

∞∑
i=2

yi−1µ
−i
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+y20 + 2y0y1µ
−1 +

∞∑
i=2

(

i∑
k=0

ykyi−k)µ−i + u+

∞∑
i=2

i−2∑
k=0

(ykyi−k−2)µ−i = 0.

Equating the coefficients of the three lowest powers (−1, 0, 1) of µ in this to
zero, the following system of three equations is obtained,

y1,x + 2y2 + 2y0y1 = 0, y0,x + v + 2y1 + y20 = 0, 2y0 = 0. (9.35)

Substituting y0 = 0 back into the first two equations of (9.35), it is clear that
this system reduces to,

y0 = 0, y1 = −1

2
v, y2 = −1

2
y1,x =

1

4
vx. (9.36)

Imposing these results, what is left of the general recursion above is given by

∞∑
n=2

(yn,x + 2yn+1 + 2u+yn−1 + (

n∑
k=0

ykyn−k) + u+(

n−2∑
k=0

ykyn−k−2))µ−n = 0.

Requiring that the coefficient of each remaining power of µ−n in this vanish
for each n ≥ 2 implies the following recursion relation,

yn,x+2yn+1+2u+yn−1+

n∑
k=0

ykyn−k+u+

n−2∑
k=0

ykyn−k−2 = 0, n ≥ 2. (9.37)

As an example, put n = 2 in (9.37). Then given (9.36), the result becomes

y2,x + 2y3 + 2u+y1 + (y0y2 + y21 + y2y0) + u+y
2
0 = 0.

Hence, solving for 2y3 in this gives,

2y3 = −y2,x − 2u+y1 − y21 =
1

8
(−vxx + 2uv + v2).

Now the conserved densities H̃i can be derived for the hierarchy (9.27). The
generating function for H̃i is given by

H̃ = (1 + u+λ
−1)y = (1 + u+µ

−2)y. (9.38)

This must match exactly the expansion

H̃ = µ+

∞∑
i=1

H̃iµ
−i. (9.39)

Substituting (9.33) into (9.38) so the coefficients of the two expressions can
be compared, we obtain

H̃ = µ+

∞∑
i=0

yiµ
−i + u+µ

−1 + u+

∞∑
i=2

yiµ
−i−2
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= µ+ (y1 + u+)µ−1 +

∞∑
i=2

(yi + u+yi−2)µ−i. (9.40)

Equating the coefficients of like powers of µ on both sides of (9.39) and (9.40),
the following results are obtained,

H̃1 = y1 + u+ =
1

2
u,

H̃2 = y2 +
1

2
(u+ v)y0 =

1

4
vx,

H̃3 = y3 +
1

2
(u+ v)y1 = −1

8
vxx −

1

8
v2.

9.4 Hamiltonian Structures.

Let the Hamiltonian be given by (9.38) and (9.32). The constrained variational
calculus will be applied to deduce the equation which K and S should satisfy.
Proceeding in this direction, K and S are given as

K =
δH̃

δu
, S =

δH̃

δv
,

To calculate K and S, introduce the Lagrange multipliers θ1 and θ2, and form
the sum

W = H̃ + θ1(H̃ − (1 + u+λ
−1)y) + θ2(yx − (λ+ u−) + H̃y). (9.41)

Evaluating δW/δH̃ and δW/δy and then setting them to zero, two equations
result,

1 + θ1 + yθ2 = 0, −θ1(1 + u+λ
−1)− θ2x + θ2H̃ = 0.

Differentiating H̃, K and S result,

K =
δH̃

δu
=
δW

δu
= −1

2
(λ−1θ1y + θ2), S =

δH̃

δv
=
δW

δv
= −1

2
(λ−1θ1y − θ2).

From the equation 1 + θ1 + yθ2 = 0, we have an expression for θ1 = −1− yθ2.
Using θ1 in this form, it can be eliminated from K and S in favor of θ2

K =
1

2
λ−1y(1 + yθ2)− 1

2
θ2, S =

1

2
λ−1y(1 + yθ2) +

1

2
θ2. (9.42)

The equation −θ1(1 + u+λ
−1) − θ2x + θ2H̃ = 0 yields an expression for θ2x.

Therefore,

θ2x = (1 + yθ2)(1 + u+λ
−1) + θ2(1 + u+λ

−1)y = (1 + 2yθ2)(1 + u+λ
−1),

yx = λ+ u− − (1 + u+λ
−1)y2.

(9.43)
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With θ2x and yx from (9.43), both K and S as well as their derivatives can
be represented in terms of y and θ2. This has just been done for K and S.
For the derivatives, this can be done as well. Differentiating K, we have

Kx =
1

2
λ−1yx(1 + yθ2) +

1

2
λ−1y(yxθ2 + yθ2x)− 1

2
θ2x,

Replacing yx, θ2x and u± by their expressions preceding, we obtain,

Kx = − v

2λ
(1 + 2θ2y).

Similarly, differentiating S, there results,

Sx =
1

2
λ−1yx(1 + yθ2) +

1

2
λ−1y(yxθ2 + yθ2x) +

1

2
θ2x =

1

2
(2 +

u

λ
)(1 + 2θ2y).

Summarizing the results for Kx and Sx,

Kx = − v

2λ
(1 + 2θ2y), Sx =

1

2
(2 +

u

λ
)(1 + 2θ2y). (9.44)

Based on the results for K, S and Kx, Sx, the following quantities are calcu-
lated,

2(vxK + uxS) = vxλ
−1y(1 + yθ2)− vxθ2 + uxλ

−1y(1 + yθ2) + uxθ2

= (ux − vx)θ2 + (ux + vx)λ−1y(1 + yθ2). (9.45)

Similarly,

2(vKx + uSx) = −v2λ−1(1 + 2θ2y) + u(2 + uλ−1)(1 + 2θ2y)

= (2u+
u2

λ
− v2

λ
)(1 + 2θ2y). (9.46)

Also, we can form

4λSx = (2u+4λ)(1+2yθ2),
u

v
Kx+Sx = − u

2λv
(1+2θ2y)+

1

2
(2+

u

λ
)(1+2θ2y)

(9.47)
= 1 + 2θ2y.

Differentiating the second equation in (9.47), we obtain

∂(
u

v
Kx + Sx) = 2θ2xy + 2θ2yx

= 2(1 + 2yθ2)(1 + u+λ
−1)y + 2θ2(λ+ u− − (1 + u+λ

−1)y2)

Differentiating this once more, the second derivative is found to be

∂2(
u

v
Kx + Sx)
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= 4(yxθ2 + yθ2x)(1 + u+λ
−1)y + (1 + 2yθ2)(ux + vx)λ−1y

+2(1 + 2yθ2)(1 + u+λ
−1)yx + 2θ2x(λ+ u− − (1 + u+λ

−1)y2)

+θ2(ux − vx − λ−1(ux + vx)y2 − 2(1 + u+λ
−1)2yyx)

=
1

λ
(2λ+u+v)(2λ+u−v)(1+2yθ2)+θ2(ux−vx)+

1

λ
(1+y2θ2)(ux+vx). (9.48)

Based on these results, the following expressions can be calculated,

(2∂v∂−1 − ∂2(
u

v
))Kx + (2∂u∂−1 − ∂2 + 4λ)Sx

= 2(vxK + uxS) + 2(vKx + uSx) + 4λSx − ∂2(
u

v
Kx + Sx) = 0.

A similar calculation yields

(2u+ 4λ)Kx + 2vSx = −vλ−1(u+ 2λ)(1 + 2θ2y) + v(2 +
u

λ
)(1 + 2θ2y)

= (− v
λ

(u+ 2λ) + v(2 + uλ−1))(1 + 2θ2y) = 0.

These last two results can be summarized in the form of a 2× 2 matrix. The
system is(

2u+ 4λ 2v

2∂v∂−1 − ∂2(
u

v
) 2∂u∂−1 − ∂2 + 4λ

)(
Kx

Sx

)
=

(
0
0

)
. (9.49)

Theorem 9.2. The matrix system defined by (9.49) is equivalent to the
following matrix equation given by

∂[−

(
2∂−1u∂ 2∂−1v∂

2v − ∂(
u

v
)∂ 2u− ∂2

)
−
(

4λ 0
0 4λ

)
]

(
K
S

)
=

(
0
0

)
. (9.50)

Proof: It suffices to verify that (9.50) holds one row at a time. The first
row of (9.50) can be written out in the form,

−∂(2∂−1u∂K + 2∂−1v∂S + 4λK) = 0.

Bringing the operator through the bracket, this assumes the form

2uKx + 2vSx + 4λKx = 0.

This is exactly the first row of system (9.49).
The second row of (9.50) is given by

−∂(2vK − ∂(
u

v
)Kx + 2uS − ∂2S + 4λSx) = 0.

Taking the operator through the bracket, this assumes the form,
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2(∂v)∂−1Kx − ∂2(
u

v
)Kx + 2∂(u∂−1Sx)− ∂2S + 4λSx = 0.

In fact, this equation is exactly the second row implied by (9.49), and this
completes the proof. ♣

If L is the operator defined in (9.23), then the matrix problem (9.50) in
Theorem 9.2 may be expressed very succinctly in the form,

∂(L− λ)

(
K
S

)
=

(
0
0

)
. (9.51)

Equation (9.51) implies that

(L− µ2)

(
K
S

)
= −µ

(
K̃1

S̃1

)
− µ2

(
K̃2

S̃2

)
, (9.52)

where K̃i and S̃i, i = 1, 2 are to be determined. Since H̃ has an expansion of
the form (9.39), it follows that,

K =
δH̃

δu
=

∞∑
i=1

δH̃i

δu
µ−i =

∞∑
i=1

K̃iµ
−i, S =

δH̃

δv
=

∞∑
i=1

δH̃i

δv
µ−i =

∞∑
i=1

S̃iµ
−i.

(9.53)
Substituting (9.53) into (9.52), the corresponding relations for the K̃i and S̃i
can be obtained,

L

(∑∞
i=1 K̃iµ

−i∑∞
i=1 S̃iµ

−i

)
=

(∑∞
i=1 K̃iµ

−i+2∑∞
i=1 S̃iµ

−i+2

)
− µ

(
K̃1

S̃1

)
− µ2

(
K̃2

S̃2

)
,

that is,

L

(∑∞
i=1 K̃iµ

−i∑∞
i=1 S̃iµ

−i

)
= µ

(
K̃1

S̃1

)
+

(
K̃0

S̃0

)
+

(∑∞
i=3 K̃iµ

−i+2∑∞
i=3 S̃iµ

−i+2

)
−µ
(
K̃1

S̃1

)
−µ2

(
K̃2

S̃2

)
.

The term in µ cancels on the right hand side, and we are left with simply,

L

(∑∞
i=1 K̃iµ−i∑∞
i=1 S̃iµ

−i

)
= −µ2

(
K̃2

S̃2

)
+

(
K̃0

S̃0

)
+

(∑∞
i=1 K̃i+2µ

−i∑∞
i=1 S̃i+2µ

−i

)
.

In order for these to possibly be able to match from both sides, it follows that
K̃0 = S̃0 = 0 and K̃2 = S̃2 = 0.

Definition 9.1. The notation f ∼ g implies that f − g ∼ ∂h for some
polynomial h of ui and vi, so f ∼ 0 means f = ∂h, that is, f is a total
derivative.

The results so far are leading to a claim about the properties of the H̃2k,
which we state now.

Theorem 9.3. The set of H̃2k satisfy

H̃2k ∼ 0.
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Proof: Since H̃2 ∼ 0, it follows of course that K̃2 = S̃2 = 0, and thus

K̃2k = S̃2k = 0, k ≥ 1.

This is equivalent to H̃2k ∼ 0. This leaves precisely

L

(
K̃i

S̃i

)
=

(
K̃i+2

S̃i+2

)
, i = 1, 2, · · · .

Alternatively, this in turn implies that K̃2k = S̃2k = 0, k ≥ 1, which is
equivalent to H̃2k ∼ 0. ♣

One can determine as well(
K̃1

S̃1

)
= − 1

2β

(
−b0
c0

)
. (9.54)

Replacing i by 2k − 1, the recursion becomes

L

(
K̃2k−1
S̃2k−1

)
=

(
K̃2k+1

S̃2k+1

)
. (9.55)

Setting
Kn = K̃2n−1, Sn = S̃2n−1,

recursion (9.55) can be written in the form,

L

(
Kn

Sn

)
=

(
Kn+1

Sn+1

)
, n ≥ 1,

K = µ

∞∑
i=1

Kiλ
−i, S = µ

∞∑
i=1

Siλ
−i.

Comparing this with (9.23), it can be seen that both pairs (Kn, Sn) and
(−bn, cn) satisfy the same homogeneous recurrence relations, and moreover
(9.54) holds for their initial values. It may then be concluded that(

Kn

Sn

)
= − 1

2β

(
−bn
cn

)
= Ln

(
1
2
0

)
.

From this, it is deduced that bn, cn and hence an are polynomials in ui and
vi.

Therefore, the hierarchy of equations (9.27) is a pure differential one in
spite of the fact that the operator L used in the derivation of the hierarchy
is intego-differential, a fact common to many integrable nonlinear evolution
equations.

Thus with matrix J defined just below (9.24) the hierarchy assumes the
form
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(
u
v

)
t

= J

(
−bn
cn

)
= J

δHn

δu
δHn

δv

 , Hn = −2βH̃2n−1. (9.56)

Introduce the inner product defined by

〈A,B〉 =

∫
ATB dx.

By means of this inner product, the following generalized Poisson bracket can
be introduced

{G,H} = 〈δG
δq
, J
δH

δq
〉 = (

δG

δq
)TJ

δH

δq
= (

δG

δu
,
δG

δv
)J(

δH

δu
,
δH

δv
)T

= (
δG

δu
,
δG

δv
)J

δHδuδH
δv

 .

Since J∗ = −J , JL = L∗J , the following bracket can be worked out,

− 1

4β2
{Hn, Hm} = 〈

(
Kn

Sn

)
, J

(
Km

Sm

)
〉 = 〈

(
Kn

Sn

)
, JL

(
Km−1
Sm−1

)
〉

= 〈
(
Kn

Sn

)
, L∗J

(
Km−1
Sm−1

)
〉 = 〈L

(
Kn

Sn

)
, J

(
Km−1
Sm−1

)
〉

= 〈
(
Kn+1

Sn+1

)
, J

(
Km−1
Sm−1

)
〉 = − 1

4β2
{Hn+1, Hm−1}.

This immediately implies that

{Hn, Hm} = {Hn+1, Hm−1}. (9.57)

The equality in effect represents equality with respect to the equivalence
classes, so f = g is interpreted as f = g ( mod ∂h) or f ∼ g, as in Defi-
nition 9.1. Applying the result above repeatedly, it follows that

{Hn, Hm} = {Hm, Hn}.

However, the bracket clearly satisfies {Hn, Hm} = −{Hm, Hn} due to the
antisymmetry of the operator J . Therefore, it is the case that the Hn satisfy

{Hn, Hm} =

∫
(
δHn

δq
)TJ(

δHm

δq
) dx = 0. (9.58)

Thus, it has been proved that the conserved densities Hn are pairwise in invo-
lution. Using the time variable tk to distinguish the equations of the hierarchy,
we write,
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qtk = J
δHk

δq
. (9.59)

Consequently,

(Hn)tk = (
δHn

δq
)T qtk = 〈δHn

δq
, J
δHk

δq
〉 = {Hn, Hk} = 0. (9.60)

The result in (9.60) implies that the {Hn} are common conserved densities
for the entire hierarchy (9.59).
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10 The Laplacian and Heat Operators on Riemannian
Manifolds.

Let (M, g) be a Riemannian manifold and let C1,2(M) be the space of
functions f : (0,∞) × M → R, which are continuous on [0,∞) × M , C1-
differentiable in the first variable, and C2-differentiable in the second variable.
The Laplacian written out in a coordinate system {xi} is given by

∆f = − 1
√
g

∂

∂xj
(
√
ggij

∂f

∂xi
). (10.1)

Definition 10.1. The operator P =
∂

∂t
+∆ defined on the space C1,2(M)

is called the heat operator on (M, g).
In order to invert the heat operator, it is required to study the fundamental

solution [57,58].
Definition 10.2. A fundamental solution K for the heat operator P =

∂t + ∆y is a function K : M × M × (0,∞) → R which has the following
properties:

(i) K ∈ C(M ×M × (0,∞)), C2 in first variable, C1 in second.

(ii) (
∂

∂t
+∆y)K(x, y, t) = 0 for all t > 0.

(iii) limt↘0 K(x, y, t) = δ(x− y), ∀x ∈M ,
where δx is the Dirac distribution centered at x and the limit (iii) is considered
in the distribution sense,

lim
t↘0

∫
M

K(x, y, t)φ(x)dv(x) = φ(y), ∀φ ∈ C0(M), ∀x ∈M,

and C0(M) denotes the set of smooth functions with compact support, and if
{xi} is a coordinate system for M , the volume form is

dv(x) =
√
|gij(x)| dx1 ∧ · · · ∧ dxn.

10.1 The Heat Operator on Compact Manifolds.

Let (M, g) be a compact Riemannian manifold. An inner product on M can
be defined as

(f, g)0 =

∫
M

fg dv(x). (10.2)

Set ||f ||L2 = (f, f)1/2, then the space L2(M) is obtained from F(M) = {f :
M → R, f ∈ C∞} by invoking completeness with respect to the norm || · ||L2 .

The real numbers λ for which there is a non-zero smooth function f such
that ∆f = λf are called eigenvalues [57]. Let Vλ(M, g) = {f : M → R :
∆f = λf} be the vector space of the eigenfunctions together with the zero
function. The number mλ = dim Vλ(M, g) is called the multiplicity of λ.
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The fundamental solution of P will be found here for the case of a compact
manifold. Hence, the following spectral theorem holds for the Laplace operator
on Riemannian manifolds.

Theorem 10.1. (i) The eigenvalues are nonnegative and form a countable
infinite set

0 = λ0 < λ1 < λ2 < λ3 < · · · ,

such that λk → +∞ as k → +∞. Moreover, the series∑
k≥1

1

λ2k

converges.
(ii) Each eigenvalue λk has finite multiplicitymk. The eigenspaces Vλk(M, g)

and Vλj (M, g), k 6= j are orthogonal with respect to the inner product (, )0.
(iii) By means of the Gram-Schmidt procedure beginning with the set

of eigenfunctions, a complete orthonormal system of eigenfunctions may be
obtained {fkj : k ∈ N, j = 1, · · · ,mk} such that

h =

∞∑
k=0

mk∑
j=1

akjfkj , ∀h ∈ L2(M),

where akj = (h, fkj)0. In particular, the Parseval identity holds,

||h||20 =

∞∑
k=0

mk∑
j=1

(h, fkj)
2
0.

The following result provides a formula for the fundamental solution on a
compact Riemannian manifold.

Proposition 10.1. Let {ϕi : i ∈ N} be a complete orthonormal system of
eigenfunctions for the Laplace operator on a compact Riemannian manifold
(M, g) such that

λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · .

Then the fundamental solution is given by

K(x, y, t) =

∞∑
i=0

e−λitϕi(x)ϕi(y). (10.3)

Proof: Since the system {ϕi : i ∈ N} is an orthonormal basis of the Hilbert
space L2(M), the existence of a fundamental solution is assumed for fixed x
and t. Thus,

K(x, ·, t) =

∞∑
i=0

ρi(x, t)ϕi,

where
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ρi(x, t) =

∫
M

K(x, y, t)ϕi(y) dv(y)

Differentiating ρi with respect to t yields,

∂ρi
∂t

=

∫
M

∂K

∂t
(x, y, t)ϕi(y)dv(y) = (

∂K

∂t
, ϕi)0 = −(∆yK,ϕi) = −(K,∆yϕi)0

= −λi(K,ϕi)0 = −λiρi.

This is a differential equation which can be solved to yield ρi(x, t) = ci(x)e−λit.
The functions ci(x) satisfy

lim
t↘0

ρi(, x, t) = lim
t↘0

∫
M

K(x, y, t)ϕi(y) dv(y) =

∫
M

δ(y−x)ϕi(y)dv(y) = ϕi(x).

On the other side,
lim
t↘0

ρi(x, t) = ci(x),

and hence ci(x) = ϕi(x). This proves (10.3).
♣
This proof assumes the existence of a fundamental solution for the heat

operator. The series
∑∞
i=0 ρi(x, t)ϕi(y) is pointwise convergent on (0,∞) ×

M ×M and its sum is K(x, y, t).
It may be of interest to solve the initial value problem for the heat operator:

Given a continuous function g ∈ C0(M), find a function f ∈ C1,2(M) such
that

(I) ( ∂∂t +∆)f = 0,
(II) limt↘0 f(x, t) = g(x), ∀x ∈M .
Proposition 10.2. The solution to the initial value problem (I)-(II) is

given by the expression

f(x, t) =

∫
M

K(x, y, t)g(y) dv(y), (10.4)

where K is given by (10.3).
Proof:

∂

∂t
f(x, t) =

∂

∂t

∫
M

∞∑
i=0

e−λit ϕi(x)ϕi(y)g(y) dv(y).

The Laplacian of f with respect to x is,

∆xf(x, t) = ∆x

∫
M

∞∑
i=0

e−λitϕi(x)ϕi(y)g(y) dv(y)

=

∫
M

∞∑
i=0

e−λit∆x ϕi(x)ϕi(y)g(y) dv(y) =

∫
M

∞∑
i=0

λie
−λitϕi(x)ϕi(y)g(y)dv(y).
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Adding these two expressions gives the heat equation,

(
∂

∂t
+∆)f = 0.

It remains to be shown that

lim
t↘0

f(x, t) = g(x).

Using the third part of Definition 10.2, it follows that

lim
t↘0

f(x, t) = lim
t↘0

∫
M

K(x, y, t)g(y) dv(y) =

∫
M

lim
t↘0

K(x, y, t)g(y)dv(y)

=

∫
M

δ(y − x)g(y) dv(y) = g(x).

10.2 Heat Kernel on Radially Symmetric Spaces.

It has been seen that Rn equipped with the standard metric is a radially
symmetric space. This means that the scalar curvature of the geodesic sphere
depends only on its radius. It is known that the fundamental solution in this
case is given by,

K(x, y, t) = (4πt)−n/2 e−
|x−y|2

4t , t > 0. (10.5)

The result (10.5) is a product between the volume function v(t) = t−n/2 and
an exponential function which has exponent

−|x− y|
2

4t
= −1

2
S.

Here, S is the classical action between the points x and y within time t.
Lemma 10.1. For any smooth function ϕ on a Riemannian manifold

(M, g), it is the case that

∆eϕ = eϕ (∆ϕ− |∇ϕ|2). (10.6)

Proof: It is shown that ∇eϕ = eϕ∇ϕ. This arises out of the definition of
the gradient. For any vector field X,

g(∇eϕ, X) = X(eϕ) =
∑
i

Xi∂xie
ϕ = eϕX(ϕ)

= eϕg(∇ϕ,X) = g(eϕ∇ϕ,X).

Using the formula,

div(fX) = fdiv(X) + g(∇f,X),
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it follows by taking f = eϕ, X = ∇ϕ, that,

∆eϕ = −div(∇eϕ) = −div(eϕ∇ϕ) = −eϕdiv∇ϕ− g(∇eϕ,∇ϕ).

Since ϕ is a function on M , ∆f = −div(∇f), so −∆ϕ = div∇ϕ, and thus,

∆eϕ = eϕ∆ϕ− g(eϕ∇ϕ,∇ϕ) = eϕ(∆ϕ− g(∇ϕ,∇ϕ)) = eϕ(∆ϕ− |∇ϕ|2).

♣
Let d = d(x0, x) be the Riemannian distance between the points x0 and

x ∈M . Let

f =
1

2
d2(x0, x).

Now the distance function satisfies |∇d2|2 = 4d2, hence the function f satisfies
the equation

|∇f |2 = 2f.

The classical action starting at x0 is written as

S = S(x0, x, t) =
d2(x0, x)

2t
=
f

t
. (10.7)

Then it follows that,

|∇S|2 = |∇f
t
|2 =

1

t2
|∇f |2 =

2f

t2
=

2S

t
= 2E,

where E = 1
2t2 d

2(x0, x) is the energy.
A fundamental solution of the form,

K(x0, x, t) = V (t)ekS (10.8)

will be sought where k ∈ R is a constant, V (t) is a differentiable function and
S is the action in (10.7). Differentiating K and applying the Hamilton-Jacobi
equation St = −E, it follows that

∂K

∂t
=
∂V

∂t
ekS + kV ekS

∂S

∂t
= ekS(

∂V

∂t
− kV E).

Lemma 10.1 implies that,

∆(V (t)ekS) = V (t)ekS(∆(kS)− |∇kS|2) = ekSV (t)(k∆S − 2k2E).

Therefore,

(
∂

∂t
+∆)(V (t)ekS) = ekS

∂V

∂t
− kekSV E + ekSV (t)(k∆S − 2k2E)

= ekSV (t)(
V ′(t)

V (t)
+ k∆S − (2k + 1)kE).
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Choose k = −1/2 and let V (t) satisfy the equation

Vt
V

+ k∆S = 0,

which can be rewritten in the form,

Vt =
1

2
∆SV (t).

As the manifold (M, g) is radially symmetric, ∆S is a function of only the t
variable. Thus there is a function h(t) such that,

h(t) =
1

2
∆S =

n− 1

2
α(t),

where α(t) = α(c(t)) is the mean scalar curvature of the geodesic sphere
centered at x0 with radius t. The solution is given by

V (t) = V (t0)e
∫ t
t0
h(u) du

.

Theorem 10.2. Let (M, g) be a radially symmetric space about the point
x0 ∈M . Then the fundamental solution for the heat operator is given by

K(x0, x, t) = CV (t)e−
1
2S = CV (t)e−

d2(x0,x)
4t , (10.9)

where V (t) is the solution of Vt = 1
2∆SV (t) under the condition that

limt↘0 t
n/2V (t) = 1 and

1

C
= 2n

∫ ∞
0

e−y
2

ω(x0, y) dy (10.10)

where ω is defined as

volS(x0, 2
√
ty) ≈ (2

√
t)nω(x0, y), t↘ 0, (10.11)

and S(x0, 2
√
ty) is a geodesic sphere centered at x0.

This result leads to a nice proof of part (iii) of Definition 10.2 by taking
y = d(x0, x)/2

√
t and x ∈ d−1(2

√
ty) = S(x0, 2

√
ty), the geodesic sphere

centered at x0. As φ has compact support, set D = support (φ). Then let
δ = maxx∈D d(x0, x) and y ∈ [0, δ/2

√
t]. Using (10.11), the required limit can

be calculated,

lim
t↘0

∫
M

K(x0, x, t)φ(x)dv(x) = C lim
t↘0

V (t)

∫
M

e−
d2(x0,x)

4t φ(x)dv(x)

= C lim
t↘0

V (t)

∫ δ/2
√
t

0

∫
S(x0,2

√
ty)

e−y
2

φ(x)dσxdy
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= C lim
t↘0

V (t)

∫ δ/2
√
t

0

e−y
2

φ(xt)volS(x0, 2
√
ty) dy

= C lim
t↘0

2ntn/2V (t)φ(xt)

∫ ∞
0

e−y
2

ω(x0, y) dy = φ(x0).

Here Fubini’s theorem has been applied and the mean value theorem for in-
tegrals to obtain xt ∈ S(x0, 2

√
ty).

10.3 Heat Kernel for the Casimir Operator.

The Casimir operator treated here is defined as an elliptic operator given by

∆cas =
1

2
(X2

1 +X2
2 + T 2),

where X1, X2 and T are vector fields given by

X1 = ∂1 + x2∂t, X2 = ∂2 − 2x2∂t, T = ∂t.

These are left invariant vector fields with respect to the Heisenberg group law
defined as (x, t) ◦ (x′, t′) = (x+ x′, t+ t′ + 2x′1x2 − 2x1x

′
2).

Theorem 10.3. There is a constant c such that the fundamental solution
for the operator ∂τ −∆cas is

K(y, s, x, t, τ) = K(0, 0, (y, s)−1 ◦ (x, t), τ),

where ◦ is the Heisenberg group law defined above and

K(0, 0, x, t, τ) =
2c

sinh(2τ)
e−

1
2 (−it+

τ
2 |x|

2 coth(2τ)),

and x = (x1, x2) and y = (y1, y2).

10.4 Heat Kernel for Operators with Potential.

The action and volume functions shall now be computed explicitly for some
heat operators with potential. This procedure will produce closed form solu-
tions.

(1) The first operator to be considered is ∂t − ∂2x ± b2x2. Start with the
operator

L =
d2

dx2
− a2x2,

in which a ∈ R+ is a nonnegative real parameter. Now associate the Hamil-
tonian function to this as half the principle symbol, that is,

H(ξ, x) =
1

2
(ξ2 − a2x2).
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The Hamiltonian system of equations is given by

ẋ = Hξ = ξ, ξ̇ = −Hx = a2x.

It is required to find the geodesic between the points x0, x ∈ R, so x(s) will
satisfy the boundary problem,

ẍ = a2x, x(0) = x0, x(t) = x.

Based on the Hamiltonian, conservation of energy implies that

1

2
ẋ(s)2 − 1

2
a2x(s)2 = E, (10.12)

This can be used to obtain an ordinary differential equation for the solution,

dx

ds
=
√

2E + a2x2.

Integrating this between s = 0 and s = t, with x(0) = x0 and x(t) = x yields,∫ x

x0

du√
2E + a2u2

= t.

The integral is given by

ax√
2E

=
ax0√
2E

cosh(at) +

√
1 +

a2x20
2E

sinh(at).

To solve this for E, we write

a(x− x0 cosh(at))

sinh(at)
=
√

2E + a2x20.

Squaring both sides, this can be solved for E,

2E =
a2(x− x0 cosh(at))2

sinh2(at)
− a2x20 =

a2(x2 + x20 − 2xx0 cosh(at))

sinh2(at)
.

Proposition 10.3. The energy along a geodesic derived from the Hamil-
tonian H(ξ, x) between the points x0 and x is

E =
a2(x2 + x20 − 2xx0 cosh(at))

2 sinh2(at)
. (10.13)

The energy along a geodesic derived from the hamiltonian H(ξ, x) joining the
origin x0 = 0 and x is given by

E =
a2x2

2 sinh2(at)
. (10.14)
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In the limit a→ 0, the Euclidean energy is obtained

lim
a→0

E =
(x− x0)2

2t2
.

The action can now be determined. Let S = S(x0, x, t) be the action
for initial point x0 and final point x, within time t. The action satisfies the
Hamilton-Jacobi equation

∂tS +H(∇S) = 0.

Since,

H =
1

2
(ξ2 − a2x2) =

1

2
ẋ2 − 1

2
a2x2 = E,

and hence ∂tS = −E. Using E from (10.13), we obtain the differential equa-
tion for S,

∂S

∂t
= −a

2(x2 + x20 − 2xx0 cosh(at))

2 sinh2(at)
.

Integrating both sides of this with respect to t gives,

S(x0, x, t) =
a

2
[(x2 + x20) coth(at)− 2xx0

sinh(at)
]. (10.15)

Note also that in the limit a tends to zero,

lim
a→0

S(x0, x, t) =
(x− x0)2

2t
,

the Euclidean action is obtained.

Lemma 10.2. (a) (∂xS)2 = a2x2 + 2E, (b) ∂2xS = a coth(at).

Proof: (a) Differentiation of S(x0, x, t) with respect to x yields,

∂xS =
a

sinh(at)
(x cosh(at)− x0).

Squaring both sides gives,

(∂xS)2 =
a2(x2 cosh2(at) + x20 − 2xx0 cosh(at))

sinh2(at)

= a2x2 +
a2(x2 + x20 − 2xx0 cosh(at))

sinh2(at)
= a2x2 + 2E.

(b) Differentiating ∂xS again gives

∂2xS =
a

sinh(at)
cosh(at) = a coth(at).
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A fundamental solution of the form

K(x0, x, t) = V (t)ekS(x0,x,t) (10.16)

is sought, where V (t) satisfies a volume function equation and k is a real
constant. On account of Lemma 10.3, we have the derivatives,

∂tK = V ′(t)ekS + V (t)kekS∂tS = ekS(V ′(t)− kV (t)E),

∂xe
kS = kekS∂xS,

∂2xe
kS = k2ekS(∂xS)2 + kekS∂2xS = kekS [k(a2x2 + 2E) + a coth(at)].

The heat kernel shall be found by using a multiplier method. Let

P = ∂t − ∂2x + αax2, (10.17)

where α is a real multiplier, which will be determined such that PK(x0, x, t) =
0 for any t > 0. Consequently,

PK(x0, x, t)

= ekS(V ′(t)−kEV (T ))−kekS(k(a2x2+2E)+a coth(at))V (t)+αa2x2ekSV (t)

= ekSV (t)[
V ′(t)

V (t)
− kE − k2(a2x2 + 2E)− ka coth(at) + αa2x2]

= ekSV (t)[
V ′(t)

V (t)
− kE(2k + 1) + (α− k2)a2x2 − ka coth(at)].

In order to eliminate the middle two terms in the bracket on the right, we
choose k = −1/2 and α = 1/4. Let b = a/2 > 0 so that the operator P
becomes,

P = ∂t − ∂2x + b2x2,

and

PK(x0, x, t) = K(x0, x, t)(
V ′(t)

V (t)
+ b coth(2bt)).

The function V (t) is chosen to satisfy the equation,

V ′(t)

V (t)
= −b coth(2bt), t > 0.

Integration of this equation yields,

lnV (t) = −1

2
ln(sinh(2bt)), V (t) =

C√
sinh(2bt)

.

Using the action given by (10.15), the fundamental solution for K takes the
form,
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K(x0, x, t) =
C√

sinh(2bt)
e−

1
4t

2bt
sinh(2bt) [(x2 + x20) cosh(2bt)− 2xx0]. (10.18)

The constant C can be determined by investigating the limit b → 0, such
that the operator P becomes the usual one-dimensional operator ∂t − ∂2x. As
2bt/ sinh(2bt)→ 1, the above fundamental solution takes the form,

K(x0, x, t) ∼
C√
2bt

e
1
4t (x−x0)

2

, b→ 0.

By comparison with the fundamental solution for the usual heat operator,
which is

1√
4πt

e
1
4t (x−x0)

2

,

it is found that C =
√

b
2π , and the following result can be stated.

Proposition 10.4. Let b > 0. The fundamental solution for the operator
P = ∂t − ∂2x + b2x2 is

K(x0, x, t) =
1√
4πt

√
2bt

sinh(2bt)
e−

bt
2t sinh(2bt)

[(x2+x2
0) cosh(2bt)−2xx0], t > 0.

(10.19)
The computations are similar for the case in which b = −iβ. Using

cosh(iβt) = cos(βt) and sinh(2iβt) = i sin(2βt), a dual theorem results.
Proposition 10.5. Let β ≥ 0. The fundamental solution for the operator

P = ∂t − ∂2x − β2x2 is

K(x0, x, t) =
1√
4πt

√
2βt

sin(2βt)
e−

βt
2t sin(2βt)

[(x2+x2
0) cos(2βt)−2xx0], t > 0.

(10.20)
(2) The kernel of the operator ∂t −

∑
∂2xi ± a|x|

2 can be found. Consider
the operator

∆n − a2|x|2 = ∂2x1
+ · · ·+ ∂2xn − a

2(x21 + · · ·+ x2n), a ≥ 0.

The associated Hamiltonian is given by

H =
1

2
(ξ21 + · · ·+ ξ2n)− a2

2
(x21 + · · ·+ x2n),

with the Hamiltonian system of equations

ẋj = Hξj = ξj , ξ̇j = −Hxj = a2xj , j = 1, · · · , n.

The geodesic x(s) starting at x0 = (x01, · · · , x0n) and having final point x =
(x1, · · · , xn) satisfies the system,

ẍj = a2xj , xj(0) = xj , xj(t) = xj , j = 1, · · · , n.
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As in the one-dimensional case, the law of conservation of energy is

ẋ2j (s)− a2x2j (s) = 2Ej , j = 1, · · · , n,

where Ej is the energy constant for the j-th component. The total energy,
which is the Hamiltonian, is given by

H =

n∑
j=1

(
1

2
ẋ2j −

1

2
a2x2j ) = E1 + · · ·+ En = E,

where E is constant. Proposition 10.3 yields,

Ej =
a2[x2j + (x0j )

2 − 2xjx
0
j cosh(at)]

2 sinh2(at)
,

and hence,

H = E =

n∑
j=1

Ej =
a2[|x|2 + |x0|2 − 2〈x, x0〉 cosh(at)]

2 sinh2(at)
.

where |x|2 =
∑n
j=1 x

2
j and 〈x, x0〉 =

∑n
j=1 xjx

0
j . The action between x0 and

x in time t satisfies the equation ∂tS = −E or

∂S

∂t
= −a

2[|x|2 + |x0|2 − 2〈x, x0〉 cosh(at)]

2 sinh2(at)

=
∂

∂t
[
a

2
(|x|2 + |x0|2) coth(at)− a〈x, x0〉

sinh(at)
].

Hence, we can choose

S =
a

2 sinh(at)
[(|x|2 + |x0|2) cosh(at)− 2〈x, x0〉]. (10.21)

Set
Sj =

a

2 sinh(at)
[x2j + (x0j )

2) cosh(at)− 2xjx
0
j ].

Then S = S1 + · · ·+ Sn and ∂xjS = ∂xjSj so that Lemma 10.3 yields,

n∑
j=1

(∂xjS)2 =

n∑
j=1

(∂xjSj)
2 =

n∑
j=1

(a2x2j + 2Ej) = a2|x|2 + 2E,

n∑
j=1

∂2xjS =

n∑
j=1

∂2xjSj = na coth(at).

A kernel of the form
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K(x0, x, t) = V (t)ekS(x0,x,t), k ∈ R

is to be found. A calculation similar to the one-dimensional case yields,

∂tK = ekS(V ′(t)− kEV (t)), ∂2xje
kS = ekSk[k(∂xjS)2 + ∂2xjS].

Therefore, we have that

∆ne
kS = kekS [k(a2|x|2 + 2E) + na coth(at)].

In order to obtain the kernel for the heat operator, a multiplier method is
employed. Consider the parabolic operator

Pn = ∂t −∆n + αa2|x|2,

where α is a multiplier to be determined later. Then,

PnK

= ekS [V ′(t)−kEV (t)]−kekS [k(a2|x|2+2E)+na coth(at)]V (t)+αa2|x|2V (t)ekS

= ekSV (t)[
V ′(t)

V (t)
− kE(1 + 2k) + (α− k2)a2|x|2 − kna coth(at)].

Now choose k = −1/2 and α = 1/4 and let b = a/2 ≥ 0, then we have

PnK = ekSV (t)[
V ′(t)

V (t)
+
na

2
coth(at)].

For this to vanish, we choose V (t) to satisfy,

V ′(t)

V (t)
= −nb coth(2bt), t > 0.

This can be integrated to yield,

V (t) =
C

sinhn/2(2bt)
.

Hence, it is concluded that the fundamental solution for the operator Pn =
∂t −∆n + b2|x|2 expressed in the form K(x0, x, t) is given by

K(x0, x, t) =
C

(2bt)n/2
(2bt)n/2

sinhn/2(2bt)
e−

b
2 sinh(2bt)

((|x|2+|x0|2) cosh(2bt)−2〈x,x0〉).

When b→ 0, the kernel of the heat operator ∂t−∆n should be obtained. This
is

1

(4πt)n/2
e−

1
4t |x−x0|2 , t > 0.

By comparison, the following value is obtained for the constant C,
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C =
bn/2

(2π)n/2
.

Proposition 10.6. Let b ≥ 0 and ∆n =
∑n
j=1 ∂

2
xj . The fundamental

solution for the operator Pn = ∂t −∆n + b2|x|2 is for t > 0,

K(x0, x, t) =
1

(4πt)n/2
(

2bt

sinh(2bt)
)n/2e−

b
2t sinh(2bt)

[(|x|2+|x0|2) cosh(2bt)−2〈x,x0〉].

(10.22)
In a similar way as with the one-dimensional case, choosing b = −iβ gives

rise to the following result.
Proposition 10.7. Let β ≥ 0 and ∆n =

∑n
j=1 ∂

2
xj . The fundamental

solution for the operator P = ∂t −∆n − β2|x|2 when t > 0 is given by

K(x0, x, t) =
1

(4πt)n/2
(

2βt

sin(2βt)
)n/2e−

β
2 sin(2βt)

[(|x|2+|x0|2) cos(2βt)−2〈x,x0〉].

(10.23)

10.5 The Laplacian and Some Geometric Implications.

The Laplacian has many remarkable properties on its own and can be used
in conjunction with other information to discuss properties of differentiable
manifolds. The results presented here overlap with many other areas, such as
Hodge theory and cohomolgy theory. To this end, the Laplace operator will
be examined from a geometric point of view [60]. Most of the short theorems
which will be developed here will involve vector fields and one-forms. Some
background information will be required first.

Given a vector field X which has local components Xi, there is associated
with it a one form η defined by writing

η = gijX
idxj = Xi dx

i.

The codifferential of η is given by

δη = −∇iXi = −gji∇jXi. (10.24)

This is also denoted as δX. Frequent use will be made of the following form
of Green’s theorem, which has been adapted to the case of vector fields.

Theorem 10.4 (Green) In a compact, orientable Riemannian manifold
M without boundary, ∫

M

(δX) dv = 0, (10.25)

for any vector field X. In terms of components, (10.25) is given as∫
M

(∇iXi) dv =

∫
M

gij∇iXj dv = 0.
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Here dv is the volume form on M .
Given a function f on M , the codifferential δdf of df can be formed. This

is called the Laplacian of f and in terms of coordinates, it reads,

∆f = −gji∇j∇if. (10.26)

In fact, it can be shown that (10.26) is identical to (10.1). Regarding Xi = ∇if
as a vector field, Theorem 10.4 leads to Theorem 10.5.

Theorem 10.5 In a compact and orientable Riemannian manifold M
without boundary, ∫

M

∆f dv = 0, (10.27)

for any function f on M .
Definition 10.3. A p-form ω is said to be harmonic if it satisfies

dω = 0, δω = 0. (10.28)

Definition 10.3 implies that the Laplacian, which can be written intrinsi-
cally as well in the form

∆ = δd+ dδ

vanishes on a harmonic p-form, ∆ω = 0. The existence of harmonic p-forms
in M is closely related to the topology of M .

Theorem 10.6. (Hodge) In a compact and orientable Riemannian mani-
fold, the number of linearly independent, with constant real coefficients, har-
monic p-forms is equal to the p-th dimensional Betti number bp of the mani-
fold.

The integral formula (10.27) holds for any function f in M , with ∆f
defined by (10.26). Thus, if ∆f ≥ 0 or ∆f ≤ 0 in M , it must be that ∆f = 0.
Since

1

2
∆f2 = (∆f)f − |∇f |2,

invoking (10.27) again implies that∫
M

[(∆f)f − |∇f |2] dv = 0. (10.29)

Thus, if ∆f ≥ 0 or ∆f ≤ 0 in M , since it has been concluded that ∆f = 0 in
M by the remark above, then from (10.29) it follows that,∫

M

|∇f |2 dv = 0.

This of course implies that ∇f = 0, and therefore f = C in M , where C is a
constant.

Lemma 10.3. If ∆f ≥ 0 or ∆f ≤ 0 in M , then f is constant in M .
Suppose for a real nonzero constant c the function f in M satisfies
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∆f = cf. (10.30)

Substituting (10.30) into (10.29), it is found that∫
M

[cf2 − |∇f |2] dv = 0.

Clearly, for this to hold, the constant c must be positive.
Lemma 10.4. If ∆f = cf for a nonconstant function f in M , the constant

c must be positive.
Let X be a vector field in M and define the function f = |X|2 = g(X,X).

Taking the covariant derivative of f , we obtain

∇j∇if = 2∇jXs∇iXs + 2Xs∇j∇iXs.

Contracting this with the metric gives

∆f = gji∇j∇if = 2(|∇X|2 +Xsg
ji∇j∇iXs). (10.31)

Integrating (10.31) over M and applying (10.27) proves Theorem 10.7.
Theorem 10.7.∫

M

[(gji∇j∇iXs)Xs + |∇X|2] dv = 0. (10.32)

From (10.32), if the second covariant derivative ∇∇X of a vector field X
vanishes, then it must be that the first covariant derivative ∇X vanishes.

As introduced at the start, with a vector field X on M is associated a
one-form η = Xi dx

i. For this one-form, the Laplacian is determined to be

(∆η)i = −gkj∇k∇jXi + gkj(∇k∇i −∇i∇k)Xj . (10.33)

If R is the Riemann curvature tensor for the manifold M , then for a one-form
ω with components ωi,

(∇k∇i −∇i∇k)ωj = −gstRkijtωs.

Using η as the one-form,

(∇k∇i −∇i∇k)Xj = −gstRkijtXs = gstRkitj Xs. (10.34)

Contracting both sides with the metric, (10.34) becomes,

gkj(∇k∇i −∇i∇k)Xj = gstRitXs. (10.35)

Substituting (10.35) into (10.33), the Laplacian of the one-form η is given by

(∆η)i = −gkj∇k∇jXi +R t
i Xt. (10.36)
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A remarkable series of results can be obtained by starting with a vector field
X = Xi∂i in M and forming a related vector field

Xj(∇jXi)− (∇jXj)Xi. (10.37)

Applying ∇i to (10.37), it is found that

∇i[Xj(∇jXi)− (∇jXj)Xi]

= Xi(∇j∇iXj −∇i∇jXj) + (∇iXj)(∇jXi)−∇jXj ∇iXi.

For a vector field W i, it is the case that ∇k∇jW s −∇j∇kW s = gstRkjitW
i.

Substituting this into the result above, the following equation comes out.

∇i[Xj(∇jXi)−(∇jXj)Xi] = RisX
iXs+(∇jXi)(∇iXj)−(∇jXj)2. (10.38)

Applying the result in (10.25) to (10.38), the following theorem is proved.
Theorem 10.8. Let X be a vector field in M , then∫

M

[RijX
iXj + (∇jXi)(∇iXj)− (∇jXj)2] dv = 0. (10.39)

Two other equivalent forms of (10.39) can also be written:∫
M

[R(X,X)− 1

2
|dη|2 + |∇X|2 − (δη)2] dv = 0. (10.40)

If LX represents Lie differentiation with respect to X, then∫
M

[R(X,X) +
1

2
|LXg|2 − |∇X|2 − (δX)2] dv = 0. (10.41)

Proof: It remains to prove (10.40) and (10.41), as (10.39) has been shown.
Since

|dη|2 = (∇jXi −∇iXj)(∇jXi −∇iXj) = 2(∇jXi)
2 − 2(∇iXj)(∇jXi).

Therefore, this implies that

(∇iXj)(∇jXi) = (∇jXi)
2 − 1

2
|dη|2. (10.42)

Therefore, substituting (10.42) into integral formula (10.39) using δη =
−∇jXj , (10.40) is obtained.

To show (10.41), the Lie derivative with respect to X of gij is given by

LX gij = ∇jXi +∇iXj . (10.43)

Therefore, from (10.43), it is found that,

|LXg|2 = (∇jXi +∇iXj)(∇jXi +∇iXj) = 2∇iXj∇iXj + 2∇iXj∇jXi.
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Solving this, the following alternate expression is found,

∇iXj∇jXi =
1

2
|LXg|2 − |∇X|2. (10.44)

Substituting (10.44) into integral formula (10.38), the result in (10.41) is ob-
tained.

Corollary 10.1.∫
M

[g(∆X,X)− 1

2
|dη|2 − (δX)2] dv = 0. (10.45)

Proof: This follows by subtracting (10.26) from (10.40).
Theorem 10.8 has very important consequences in the case in which the

vector field is harmonic or if it is Killing. Each case will be examined in turn.
The definition of a harmonic form appears in Definition 10.3.

1. Suppose that a harmonic one-form η is the differential of a function f ,
so that η = df . Then it follows that δη = ∆f = 0, since η is harmonic. Lemma
3 then implies that f is constant. Consequently, η vanishes identically.

Theorem 10.9. If a harmonic one-form in M is the differential of a func-
tion, then it is identically zero.

Theorem 10.10. For a vector field X in M ,∫
M

[R(X,X) + |∇X|2] dv ≥ 0, (10.46)

with equality if and only if X is a harmonic vector.
This is an obvious consequence of (10.40). In the case of equality in (10.46),

the following proposition can be stated.
Theorem 10.11. If the Ricci curvature in M satisfies R(X,X) ≥ 0, then

a harmonic vector field X in M has a vanishing covariant derivative. If the
Ricci curvature in M is positive definite, then a harmonic vector field other
than zero does not exist in M.

Based on the statement of Hodge Theorem 10.6, this theorem combined
with Theorem 10.11 gives the following result.

Theorem 10.12. In a compact and orientable manifold with positive Ricci
curvature, the first Betti number vanishes.

Suppose that X is a harmonic vector field which means that (10.28) holds,
where η is the one-form associated with X. Then it follows that

∆η = 0, gkj∇k∇jXs −R s
i X

i = 0. (10.47)

Conversely, if ∆η = 0, then from integral formula (10.45),∫
M

[
1

2
|dη|2 + |δη|2] dv = 0. (10.48)

From (10.48), it follows that dη = 0, δη = 0. Therefore, X is a harmonic
vector field, and this is summarized below.
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Theorem 10.13. In order that a vector field X be harmonic, it is neces-
sary and sufficient that

∆η = 0, gkj∇k∇jXs −R s
i X

i = 0, (10.49)

where η is the one-form associated with X.
2. A vector field X is Killing if it satisfies

LXgij = ∇jXi +∇iXj = 0. (10.50)

Contracting (10.50) with gij gives

∇iXi = 0. (10.51)

This is an important result, since it implies that if X is Killing, then δX =
0. Suppose that a one-form associated with a Killing vector field X is the
differential of a function Xi = ∇if , then ∆f = 0, which implies that f is
constant so X = 0.

Lemma 10.5. If the one-form associated with a Killing vector field is the
differential of a function, then it is identically zero.

Proof: |LXg|2 ≥ 0 so (10.41) implies Lemma 10.5.
Lemma 10.6. For a vector field X in M ,∫

M

[R(X,X)− |∇X|2 − (δX)2] dv ≤ 0, (10.52)

with equality if and only if X is Killing.
When X is Killing, (10.51) holds hence∫

M

[R(X,X)− |∇X|2] dv = 0. (10.53)

From equation (10.53), the following Theorem follows.
Theorem 10.14. If the Ricci curvature in M satisfies R(X,X) ≤ 0, then

a Killing vector field X in M has vanishing covariant derivative. If the Ricci
curvature in M is negative definite, then a Killing vector field other than zero
does not exist in M .

Another interesting integral formula can be obtained by adding (10.32)
and (10.41). It will be used in the following Theorem and is given by∫

M

[(gji∇j∇iXt +R h
t Xh)Xt − 1

2
|LXg|2 + (δX)2] dv = 0. (10.54)

Theorem 10.15. A vector field will be Killing if and only if

gij∇i∇jXk +R t
kXt = 0, δX = 0. (10.55)

Proof: Suppose that X is a Killing vector field on M . Applying definition
(10.50) to the second right-hand term of (10.34), we have,
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∇k∇iXj +∇i∇jXk = −gstRkijtXs.

Contract both sides of this with gij to obtain

∇k∇iXi + gij∇i∇jXk = −R t
kXt.

Using (10.51), the first term is gone, and so putting all terms on one side
yields the first equation of (10.55). The second equation in (10.55) need not
be assumed when X is Killing on account of (10.51).

Conversely, substituting the first equation of (10.55) and δη = 0, where η
is the one-form associated with X, into (10.54), it then follows that LXg = 0.
This is the condition (10.50) that X must satisfy to be Killing.

Theorem 10.16. For a harmonic one-form ω and a Killing vector field
X, the inner product ω(X) is constant over the manifold.

Proof: In terms of components,

−gji∇j∇i(ωsXs)

= −(gji∇j∇iωs)Xs − gji∇iωs∇jXs − gji∇jωs∇iXs − ωsgji(∇j∇iXs)

= −R i
sωiX

s −∇iωs∇iXs −∇iωs∇iXs + ωsR
s
i X

i

= −∇iωs∇iXs +∇iωs∇sXi = −∇iωs∇iXs +∇sωi∇sXi = 0.

To simplify this, (10.55), (10.50) and ∇iωs = ∇sωi have been substituted.
Therefore, by Lemma 10.3, it follows that ωiX

i is constant over M .
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