Shape Equations for Two-Dimensional Manifolds through a Moving Frame Variational Approach

Paul Bracken
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac

Part of the Mathematics Commons

Recommended Citation

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Mathematical and Statistical Sciences Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.
Shape Equations for Two-Dimensional Manifolds through a Moving Frame Variational Approach

Paul Bracken
Department of Mathematics,
University of Texas,
Edinburg, TX
78540, USA
paul.bracken@utrgv.edu

Abstract

A variational approach is considered which can be applied to functionals of a general form to determine a corresponding Euler-Lagrange or shape equation. It is the intention to formulate the theory in detail based on a moving frame approach. It is then applied to a functional of a general form which depends on both the mean and Gaussian curvatures as well as the area and volume elements of the manifold. Only the case of a two-dimensional closed manifold is considered. The first variation of the functional is calculated in terms of the variations of the basic variables of the manifold. The results of the first variation allow for the second variation of the functional to be evaluated.

Keywords: metric, geometry, manifold, curvature, shape equations, variational, moving frame

Mathematics Subject Classification: 49Q10, 53A05, 53Z05
1 Introduction

A membrane with or without a freely exposed edge can be thought of as a surface or differentiable manifold of dimension two in three-dimensional Euclidean space. The case in which the surface is closed so the boundary is the empty set can be formulated as a variational problem [1]. The result of carrying this out is a mathematical description of a surface in the form of differential equations. Equations derived in this manner are usually referred to as shape equations. Exterior differential forms are introduced to describe the surface in terms of a set of structure equations [2–4]. This mathematical approach has been used to discuss the relationship between non-linear partial differential equations and the theory of surfaces in terms of their applications [5].

The functional which is introduced and studied has a very general structure of the form

\[ I = \int_M E(2H(\mathbf{r}), K(\mathbf{r})) \, dA + p \int_V dV. \]  

(1.1)

In (1.1), the functions \( H \) and \( K \) are the mean curvature and Gaussian curvature at point \( \mathbf{r} \) of \( M \) and \( p \) is a constant, \( M \) refers to integration on the surface and \( V \) is the volume enclosed within the surface. The mean curvature is the average of the principal curvatures, and the Gaussian curvature is the product of these two curvatures. The function \( E \) in the integrand of (1.1) should be differentiable with respect to both slots. A specific form for (1.1) which has been studied already is the case in which \( E \) is proportional to the square of the mean curvature. This functional gives the Willmore energy or the classical binding energy which comes up in many applications in many areas of science as diverse as biology [6] and string theory [7]. Associated with this functional is the Willmore conjecture. This is one of the more prominent results in the study of Willmore energies and has been proved by Marques and Neves [8] by applying min-max theory of minimal surfaces. The energy expresses how much the surface has deviated from a round sphere. The minimizers of the Willmore functional are referred to as Willmore surfaces [9, 10]. These correspond to the solutions of the resulting Euler-Lagrange equation corresponding to (1.1) in this Willmore case [11]. This Willmore energy is important in the context of conformal geometry, since it is known to be invariant under the conformal transformations of \( E^3 \).

To put some of this in a more physical context, liquid crystal structures in physics can be
regarded as a smooth surface as well, with or without boundary depending on the nature of the system under consideration [12]. Examples of these appear in very distinct areas such as condensed matter physics and biology [13]. Both lipid bilayers and cell membranes are referred to collectively as bio-membranes. The geometric formalism that is proposed here is very well suited to investigate the shapes and stability of such membranes. These objects might be described as closed surfaces, or bilayers with exposed edges, which in a variational framework can be treated as a boundary term. Physical quantities such as the total free energy can be assigned to these structures. Theoretical study of such structures has the objectives of producing differential equations called shape equations by varying a given functional such as (1.1). The shape equations can be given in terms of a few parameters which can be used to model these kinds of physical systems.

The intention here is to first introduce the necessary concept of the moving frame which appears in from differential geometry and necessary information pertaining to variational theory of two-dimensional manifolds. The variations of the all the differential forms have to be defined. The work is primarily devoted to the case of closed manifolds. The general functional (1.1) shall undergo a variational treatment to formulate an Euler-Lagrange equation in the basic surface variables. This allows the discussion of the equilibrium shapes and mechanical stabilities of closed surfaces and admit the type of application already mentioned. The first and second variations of functional (1.1) is obtained first. The first variation produces the Euler-Lagrange equation corresponding to the associated functional. These results can be used later to produce shape equations of various kinds which are relevant to the study of many physical systems [14–16].

2 Surfaces in Three-Dimensional Euclidean Space

Let $M$ be a smooth orientable manifold in three-dimensional Euclidean space $\mathbb{E}^3$. At every point $P$ of $M$ an orthonormal system $e_1, e_2, e_3$ can be constructed such that $e_3$ is normal to the surface so they satisfy $e_i \cdot e_j = \delta_{ij}$. The set $\{P, e_1, e_2, e_3\}$ is called a moving frame for the manifold.

The difference between two frames at points $P$ and $P'$ very close to $P$ is given as

$$dr = \omega_1 e_1 + \omega_2 e_2,$$  \hspace{1cm} (2.1)
\[
\text{de}_i = \omega_{ij} \text{e}_j, \quad i = 1, 2, 3, \quad (2.2)
\]
where \(\omega_1, \omega_2\) and \(\omega_{ij} \ (i, j = 1, 2, 3)\) are 1-forms.

From \(\text{e}_i \cdot \text{e}_j = \delta_{ij}\) it follows that \(\omega_{ij} = -\omega_{ji}\), and from \(d\mathbf{r} = 0\), the structure equations of the surface satisfied by these differential forms follow,

\[
d\omega_1 = \omega_{12} \wedge \omega_2, 
\]
\[
d\omega_2 = \omega_{21} \wedge \omega_1, 
\]
\[
\omega_1 \wedge \omega_{13} + \omega_2 \wedge \omega_{23} = 0, \quad (2.5)
\]
\[
d\omega_{ij} = \omega_{ik} \wedge \omega_{kj}, \quad i, j = 1, 2, 3. \quad (2.6)
\]
By Cartan’s lemma, (2.5) implies that there exist functions on \(M\) such that \(\omega_{13}\) and \(\omega_{23}\) can be written

\[
\omega_{13} = a\omega_1 + b\omega_2, \quad \omega_{23} = b\omega_1 + c\omega_2. \quad (2.7)
\]

The area form on \(M\) which appears in (1.1) is given by

\[
d A = \omega_1 \wedge \omega_2, \quad (2.8)
\]
Using these basis differential forms, the three fundamental forms for the surface can be expressed as

\[
I = \omega_1 \otimes \omega_1 + \omega_2 \otimes \omega_2, \quad II = a\omega_1 \otimes \omega_1 + 2b\omega_1 \otimes \omega_2 + c\omega_2 \otimes \omega_2, \quad III = \omega_{31} \otimes \omega_{31} + \omega_{32} \otimes \omega_{32}. \quad (2.9)
\]
In terms of the functions \(a, b\) and \(c\), the mean curvature \(H\) and Gaussian curvature \(K\) of \(M\) are defined to be

\[
H = \frac{1}{2}(a + c), \quad K = ac - b^2. \quad (2.10)
\]
The operator \(*\) will appear frequently. It is called the Hodge operator and it is defined on \(M\) so that if \(f\) and \(g\) are ordinary functions, then

\[
*f = f \omega_1 \wedge \omega_2, \quad *\omega_1 = \omega_2, \quad *\omega_2 = -\omega_1. \quad (2.11)
\]
The operator $\ast$ can be used to define differential operators on $M$ such as
\[
d \ast df = \nabla^2 f \omega_1 \wedge \omega_2,
\]
where $\nabla^2$ is the Laplace-Beltrami operator.

With respect to a basis of one-forms $\omega_1, \omega_2$, the differential $df$ is expressed as
\[
df = f_1 \omega_1 + f_2 \omega_2,
\]
which serves to define the derivatives $f_i$. The Gauss map $G : M \to S^2$ is defined as $G(r) = e_3(r)$, where $S^2$ is the unit sphere. It induces a linear map denoted $G^* : \Lambda^1 \to \Lambda^1$ of forms so that using (2.13),
\[
G^* \omega_1 = \omega_{13}, \quad G^* \omega_2 = \omega_{23} \quad G^* df = f_1 G^* \omega_1 + f_2 G^* \omega_2.
\]
Consequently, a new differential operator denoted $\tilde{d} = G^* d$ can be defined with respect to (2.13) as
\[
\tilde{df} = f_1 \omega_{13} + f_2 \omega_{23}.
\]
To represent this more effectively, an operator $\tilde{\ast}$ is defined such that $\tilde{\ast} \omega_{13} = \omega_{23}$ and $\tilde{\ast} \omega_{23} = -\omega_{13}$. Since $d \tilde{\ast} \tilde{df}$ is a two form, there is a corresponding operator $\nabla \cdot \tilde{\nabla}$ defined such that
\[
d \tilde{\ast} \tilde{df} = \nabla \cdot \tilde{\nabla} f \omega_1 \wedge \omega_2.
\]

The variational theory of surfaces which is required will be introduced. If we let $M$ undergo an infinitesimal deformation such that every point $r$ of $M$ has a displacement $d \mathbf{r}$, a new surface $M' = \{ r' | r' = r + \delta r \}$ is obtained. The quantity $\delta r$ is called the variation of the surface $M$ and may be expressed as
\[
\delta \mathbf{r} = \delta_1 \mathbf{r} + \delta_2 \mathbf{r} + \delta_3 \mathbf{r}, \quad \delta_i \mathbf{r} = \Omega_{ij} e_i,
\]
and the repeated index is not summed in (2.17).

The following definition will be used. If $f$ is a generalized function of $\mathbf{r}$, that is a scalar, vector function, an even $r$-form dependent on a point $\mathbf{r}$, define $\delta_i^{(p)}$ to have the action
\[
\delta_i^{(p)} f = p! \mathcal{L}^{(p)}[f(\mathbf{r} + \delta_i \mathbf{r}) - f(\mathbf{r})]
\]
and \( p = 1, 2, 3, \ldots \), with the \( p \)-order variation of \( f \) as

\[
\delta^{(p)} f = p! \mathcal{L}^{(p)}[f(r + \delta r) - f(r)], \tag{2.19}
\]

where \( \mathcal{L}^{(q)}[\cdots] \) represents the terms of \( \Omega_1^{p_1} \Omega_2^{p_2} \Omega_3^{p_3} \) in a Taylor series of what is in the square bracket, with \( p = p_1 + p_2 + p_3 \) and \( p_1, p_2, p_3 \) non-negative integers.

Some consequences of these definitions which are useful to know are that \( \delta^{(p)}_i \) and \( \delta^{(q)}_j \), \( p, q = 1, 2, 3, \ldots \) are linear operators; the operators \( \delta^{(1)}_1, \delta^{(1)}_2, \delta^{(1)}_3 \) and \( \delta^{(1)} \) all commute; finally

\[
\delta_i f(g(r)) = \left( \frac{\partial f}{\partial g} \right) \delta_i g, \tag{2.20}
\]

and \( \delta^p = (\delta_1 + \delta_2 + \delta_3)^p \).

Due to the deformation of \( M \), the vectors \( e_i \) are also altered. The changes are denoted

\[
\delta_i e_i = \Omega_{iij} e_j. \tag{2.21}
\]

Clearly the fact that \( e_i \cdot e_j = \delta_{ij} \) implies \( \Omega_{iij} = -\Omega_{iji} \). As the operators \( \delta_i \) are a set of linear mappings from \( M \) to \( M' \), they commute with the exterior differential operator \( d \); that is, \( d\delta_i r = \delta_i dr \) and \( d\delta_i e_j = \delta_i de_j \), and \( f \) a function, \( \delta_i d f = d\delta_i f \). Finally, it remains to define how the \( \omega_i, \omega_{ij} \) are to be varied under the operation of the \( \delta_i \). The following set of relations will be used frequently in many of the calculations that follow.

\[
\delta_1 \omega_1 = d\Omega_1 - \omega_2 \Omega_{121}, \tag{2.22}
\]

\[
\delta_1 \omega_2 = \Omega_1 \omega_{12} - \omega_1 \Omega_{112}, \tag{2.23}
\]

\[
\Omega_{113} = a\Omega_1, \quad \Omega_{123} = b\Omega_1, \tag{2.24}
\]

\[
\delta_2 \omega_1 = \Omega_2 \omega_{21} - \omega_2 \Omega_{221}, \tag{2.25}
\]

\[
\delta_2 \omega_2 = d\Omega_2 - \omega_1 \Omega_{212}, \tag{2.26}
\]

\[
\Omega_{213} = b\Omega_2, \quad \Omega_{223} = c\Omega_2, \tag{2.27}
\]

\[
\delta_3 \omega_1 = \Omega_3 \omega_{31} - \omega_2 \Omega_{321}, \tag{2.28}
\]

\[
\delta_3 \omega_2 = \Omega_3 \omega_{32} - \omega_1 \Omega_{312}, \tag{2.29}
\]
\[ d\Omega_3 = \Omega_{313}\omega_1 + \Omega_{323}\omega_2; \quad (2.30) \]
\[ \delta_i\omega_{ij} = d\Omega_{lij} + \Omega_{lik}\omega_{kj} - \omega_{ik}\Omega_{lkj}. \quad (2.31) \]

These equations will be used in all the variational calculations that follow.

3 The First Variation of I

The first order variation of the functional (1.1) is calculated first. The general variational theory of surfaces requires the computation of

\[ \delta I = \delta_1 I + \delta_2 I + \delta_3 I. \quad (3.1) \]

Each of the variations on the right have to be calculated independently. Since \( I \) in (1.1) is a sum of two integrals, the first term is referred to as \( I_e \) and the volume term as \( I_v \). To calculate (3.1), we begin with the variations

\[ \delta_i I_e = \int_M \left[ \frac{\partial E}{\partial (2H)} \delta_i(2H)\omega_1 \wedge \omega_2 + \frac{\partial E}{\partial K} \delta_i K \omega_1 \wedge \omega_2 + E \delta_i(\omega_1 \wedge \omega_2) \right]. \quad (3.2) \]

To obtain \( \delta_i I_v \), it suffices to calculate \( \delta_i(dV) \) for \( i = 1, 2, 3 \). To carry out the first step of working out (3.2), the \( \delta_i(2H) \), \( \delta_i K \), as well as \( \delta_i(\omega_1 \wedge \omega_2) \) must be determined. Finally the variations of \( dV \) are obtained.

3.1 The Variation \( \delta_1 \)

Theorem 3.1:

\[ \delta_1(\omega_1 \wedge \omega_2) = d(\Omega_1\omega_2), \quad \delta_2(\omega_1 \wedge \omega_2) = -d(\Omega_2\omega_1). \quad (3.3) \]

Proof: Using the rules from (2.22) to (2.27) it follows that

\[ \delta_1(\omega_1 \wedge \omega_2) = \delta_1 \omega_1 \wedge \omega_2 + \omega_1 \wedge \delta_1 \omega_2 = (d\Omega_1 - \omega_2\Omega_{121}) \wedge \omega_2 + \omega_1 \wedge (\Omega_1\omega_{12} - \omega_1\Omega_{112}) \]
\[ = d\Omega_1 \wedge \omega_2 + \Omega_1\omega_1 \wedge \omega_{12} = d\Omega_1 \wedge \omega_2 + \Omega_1 d\omega_2 = d(\Omega_1\omega_2). \]
\[ \delta_2(\omega_1 \wedge \omega_2) = (\Omega_2\omega_{21} - \omega_2\Omega_{221}) \wedge \omega_2 + \omega_1 \wedge (d\Omega_2 - \omega_1\Omega_{212}) = -d(\Omega_2\omega_1). \]

\[ \Box \]
The next large step is to calculate $\delta_i(2H)$ and $\delta_iK$ for the cases $i = 1, 2$. Begin with $\omega_{1\bar{3}}$ so using (2.7), we obtain

$$\delta_1\omega_{1\bar{3}} = (\delta_1 a)\omega_1 + a(\delta_1 \omega_1) + (\delta_1 b)\omega_2 + b(\delta_1 \omega_2)$$

$$= (\delta_1 a)\omega_1 + a(d\Omega_1 + \omega_2 \Omega_{12}) + (\delta_1 b)\omega_2 + b(\Omega_1 \omega_{12} - \omega_1 \Omega_{12}).$$

(3.4)

Another expression for $\delta_1\omega_{1\bar{3}}$ can be found by using (2.31),

$$\delta_1\omega_{1\bar{3}} = d(a\Omega_1) + \Omega_{12} \omega_{3\bar{2}} - \omega_{12}(b\Omega_1) = (da)\Omega_1 + ad\Omega_1 + \Omega_{12}(b\omega_1 + c\omega_2) - b\Omega_1 \omega_{12}. \quad (3.5)$$

Equating (3.4) and (3.5), a single equation is found

$$(\delta_1 a)\omega_1 + (\delta_1 b)\omega_2 + a\Omega_{12} \omega_2 + 2b\Omega_1 \omega_{12} - 2b\Omega_{112} \omega_1 = (da)\Omega_1 + c\Omega_{112} \omega_2. \quad (3.6)$$

Based on (3.6), the wedge product on the right with $\omega_1$ and $\omega_2$ is calculated giving the following two equations

$$- (\delta_1 b)\omega_1 \wedge \omega_2 - (a - c)\Omega_{112} \omega_1 \wedge \omega_2 + 2b\Omega_1 \omega_{12} \wedge \omega_1 = \Omega_1 da \wedge \omega_1, \quad (3.7)$$

$$\quad (\delta_1 a)\omega_1 \wedge \omega_2 + 2b\Omega_1 \omega_{12} \wedge \omega_2 - 2b\Omega_{112} \omega_1 \wedge \omega_2 = \Omega_1 da \wedge \omega_2. \quad (3.8)$$

Beginning with $\omega_{2\bar{3}}$ in (2.7) and proceeding in exactly the same way, we calculate the pair

$$\delta_1\omega_{2\bar{3}} = (\delta_1 b)\omega_1 + b(d\Omega_1 - \omega_2 \Omega_{12}) + (\delta_1 c)\omega_2 + c(\Omega_1 \omega_{12} - \omega_1 \Omega_{12}), \quad (3.9)$$

$$\delta_1\omega_{2\bar{3}} = d\Omega_{12} + \Omega_{12k} \omega_{k\bar{3}} - \Omega_{1k3} \omega_{2k} = d(b\Omega_1) + \Omega_{121} \omega_{13} - a\Omega_1 \omega_{21}. \quad (3.10)$$

Equating (3.9) and (3.10) a single equation results

$$(\delta_1 b)\omega_1 + b\Omega_{112} \omega_2 + (\delta_1 c)\omega_2 + (c - a)\Omega_1 \omega_{12} - c\Omega_{112} \omega_1 = (db)\Omega_1 - \Omega_{112} \omega_{13}. \quad (3.11)$$

The wedge product of $\omega_1$ and then $\omega_2$ can be calculated as was done with $\omega_{1\bar{3}}$ to give two more equations. Let us summarize equations (3.7) and (3.8) along with these two new equations using (2.3) and (2.4):

$$-(\delta_1 b)\omega_1 \wedge \omega_2 - (a - c)\Omega_{112} \omega_1 \wedge \omega_2 - 2b\Omega_1 d\omega_2 = \Omega_1 (da) \wedge \omega_1, \quad (3.12)$$
\[
(\delta_1 a)\omega_1 \land \omega_2 + 2b\Omega_1 d\omega_1 - 2b\Omega_{112}\omega_1 \land \omega_2 = \Omega_1(da) \land \omega_2, \tag{3.13}
\]
\[
-(2b)\Omega_{112}\omega_1 \land \omega_2 - (\delta_1 c)\omega_1 \land \omega_2 - (c-a)\Omega_1 d\omega_2 = \Omega_1(db) \land \omega_1, \tag{3.14}
\]
\[
(\delta_1 b)\omega_1 \land \omega_2 + (c-a)\Omega_1 d\omega_1 + (a-c)\Omega_{112}\omega_1 \land \omega_2 = \Omega_1(\delta b) \land \omega_2. \tag{3.15}
\]

It is now a straightforward procedure to apply these equations to obtain the variations we need.

**Lemma 3.1:** The following constraint equations hold

\[
(db) \land \omega_1 + 2b\ d\omega_1 = (a-c)\ d\omega_2 - (dc) \land \omega_2, \quad (db) \land \omega_2 + 2b\ d\omega_2 = (c-a)\ d\omega_1 - (da) \land \omega_1. \tag{3.16}
\]

**Proof:** Add (3.12) and (3.15) to produce the second equation in (3.16) immediately. The first equation appears as a consequence of structure equation (2.6) by equating \(d\omega_{23} = b\omega_1 + b\ d\omega_1 + dc \land \omega_2 + cd\omega_2\) and \(\omega_{21} \land \omega_{23} = a\omega_{21} \land \omega_1 + b\omega_{21} \land \omega_2\).

\(\square\)

**Theorem 3.2:** The variations \(\delta_1(2H)\) and \(\delta_1 K\) are given by

\[
\delta_1(2H)\omega_1 \land \omega_2 = d(2H) \land \omega_2 \Omega_1, \quad (\delta_1 K)\omega_1 \land \omega_2 = dK \land \omega_2 \Omega_1. \tag{3.17}
\]

**Proof:** Take the linear combination of (3.13) and (3.14) and use the definition of mean curvature to get

\[
\delta_1(2H)\omega_1 \land \omega_2 + 2b\Omega_1 d\omega_1 + (c-a)\Omega_1 d\omega_2 = \Omega_1 da \land \omega_2 - \Omega_1 db \land \omega_1. \tag{3.18}
\]

Using the results from Lemma 3.1, substitute \(2b\ d\omega_1\) in (3.18) to obtain

\[
\frac{1}{\Omega_1} \delta_1(2H)\omega_1 \land \omega_2 - db \land \omega_1 - dc \land \omega_2 = da \land \omega_2 - db \land \omega_1. \tag{3.19}
\]

Equation (3.19) simplifies to the first equation in (3.17).

From the definition of the Gaussian curvature, it follows that \(\delta_1 K = c(\delta_1 a) + a(\delta_1 c) - 2b(\delta_1 b)\), write the linear combination \(c (3.13) - a (3.14) + b (3.12) - b (3.15)\) as follows

\[
c(\delta_1 a)\omega_1 \land \omega_2 + 2bc\Omega_1 d\omega_1 - 2bc\Omega_{112}\omega_1 \land \omega_2 + 2ab\Omega_{112}\omega_1 \land \omega_2 + a(\delta_1 c)\omega_1 \land \omega_2 + a(c-a)\Omega_1 d\omega_2
\]

\[
- b(\delta_1 b)\omega_1 \land \omega_2 - b(a-c)\Omega_{112}\omega_1 \land \omega_2 - 2b^2\Omega_1 d\omega_2 - b(\delta_1 b)\omega_1 \land \omega_2 - b(c-a)\Omega_1 d\omega_1 - b(a-c)\Omega_{112}\omega_1 \land \omega_2
\]

\[9\]
Collect like terms to find that those containing $\Omega_{112}$ cancel out. Using the equations from Lemma 3.1, we get

$$
\frac{1}{\Omega_1}(\delta_1 K)\omega_1 \wedge \omega_2 + (c + a) b d\omega_1 + (a(c - a) - 2b^2) d\omega_2
= \Omega_1 (c da \wedge \omega_2 - adb \wedge \omega_1 + bda \wedge \omega_1 - bdb \wedge \omega_2).
$$

Upon simplifying this the second result in (3.17) appears. □

**Theorem 3.3:**

$$
\delta_1 I_e = \int_M d(E\omega_2 \Omega_1).
$$

**Proof:** Using the result in (3.2) and Theorem 3.2, we obtain that

$$
\delta_1 I_e = \int_M \left[ \frac{\partial E}{\partial (2H)} \delta_1 (2H)\omega_1 \wedge \omega_2 + \frac{\partial E}{\partial K} \delta_1 K\omega_1 \wedge \omega_2 + Ed(\Omega_1 \omega_2) \right]
= \int_M \left[ dE \wedge \omega_2 \Omega_1 + E d(\omega_2 \Omega_1) \right]
= \int_M d(E\omega_2 \Omega_1).
$$

□

As a consequence of Theorem 3.3, it follows that since $M$ is a closed manifold,

$$
\delta_1 I_e = 0.
$$

### 3.2 The Variation $\delta_2$

In exactly the same manner, acting on $\omega_{13}$ and $\omega_{23}$ with $\delta_2$ and projecting out with respect to $\omega_1, \omega_2$, the following four equations emerge

$$
\frac{1}{\Omega_2}(\delta_2 b)\omega_1 \wedge \omega_2 - \frac{\Omega_{221}}{\Omega_2} (a - c)\omega_1 \wedge \omega_2 - (a - c) d\omega_2 = -(db) \wedge \omega_1,
$$

$$
\frac{1}{\Omega_2}(\delta_2 a)\omega_1 \wedge \omega_2 + \frac{\Omega_{221}}{\Omega_2} 2b \omega_1 \wedge \omega_2 - (a - c) d\omega_1 = (db) \wedge \omega_1,
$$

$$
\frac{1}{\Omega_2}(\delta_2 c)\omega_1 \wedge \omega_2 - (2b) \frac{\Omega_{221}}{\Omega_2} \omega_1 \wedge \omega_2 - 2b d\omega_2 = -(dc) \wedge \omega_1,
$$

$$
\frac{1}{\Omega_2}(\delta_2 b)\omega_1 \wedge \omega_2 - \frac{\Omega_{221}}{\Omega_2} (a - c)\omega_1 \wedge \omega_2 - 2b d\omega_1 = (dc) \wedge \omega_2.
$$
If the linear combination (3.26) minus (3.23) is calculated, the first equation of (3.16) appears.

**Theorem 3.4:**

\[ \delta_2(2H)\omega_1 \wedge \omega_2 = -d(2H) \wedge \omega_1 \Omega_2, \quad \delta_2(K)\omega_1 \wedge \omega_2 = -dK \wedge \omega_1 \Omega_2. \quad (3.27) \]

**Proof:** To obtain the first member of (3.27), add (3.24) and (3.25) together

\[(db) \wedge \omega_2 - (dc) \wedge \omega_1 + (a - c) d\omega_1 + 2b d\omega_2 = \frac{1}{\Omega_2} \delta_2(2H)\omega_1 \wedge \omega_2. \]

Eliminate \( db \wedge \omega_2 \) using constraint equation (3.16) and then simplify.

Solve (3.23)-(3.26) for the \( \delta_2 \) variations and then form the combination \( \delta_2 = c(\delta_2 a) + a(\delta_2 c) - 2b(\delta_2 b) \). After simplifying we have

\[ \frac{1}{\Omega_2} \delta_2 K = (c(a - c) - 2b^2) d\omega_1 + (2ab - b(a - c)) d\omega_2 + cdb \wedge \omega_2 - a dc \wedge \omega_1 + b(db) \wedge \omega_1 - b(dc) \wedge \omega_2. \]

Using (3.16) once more, this turns into

\[ \frac{1}{\Omega_2} \delta_2 K = (c(a - c) - 2b^2) d\omega_1 + (2ab - b(a - c)) d\omega_2 - (2bc)d\omega_2 + c(c - a) d\omega_1 \]

\[ -c(da) \wedge \omega_1 - a(dc) \wedge \omega_1 + b(db) \wedge \omega_1 - b(a - c) d\omega_2 + 2b^2 d\omega_1 + b(db) \wedge \omega_1 \]

\[ = -(c da + a dc - b db - b db) \wedge \omega_1 = -dK \wedge \omega_1. \]

This is exactly the second equation in (3.27). □

**Theorem 3.5:**

\[ \delta_2 I_e = \int_M d(E\omega_1 \Omega_2). \quad (3.28) \]

The proof of (3.28) proceeds in exactly the same way as that of (3.21). Since \( M \) is a closed manifold, this theorem implies that

\[ \delta_2 I_e = 0. \quad (3.29) \]

### 3.3 The Variation \( \delta_3 \)

Since it has been shown that \( \delta_i I_e = 0 \) when \( i = 1, 2 \), the variation \( \delta I_e \) is given entirely by means of the operator \( \delta_3 \). To determine this variation, proceed as in the previous cases, but use the formulas for \( \delta_3 \) and (2.28)-(2.30) and (2.31).
Lemma 3.2:

\[ \delta_3 (\omega_1 \wedge \omega_2) = -2H \Omega_3 \omega_1 \wedge \omega_2. \]  \hspace{1cm} (3.30)

Proof:

\[ \delta_3 (\omega_1 \wedge \omega_2) = \delta_3 \omega_1 \wedge \omega_2 + \omega_1 \wedge \delta_3 \omega_2 = (\Omega_3 \omega_31 - \omega_2 \Omega_321) \wedge \omega_2 + \omega_1 \wedge (\Omega_3 \omega_32 - \omega_1 \Omega_312) \]

\[ = \Omega_3 (\omega_31 \wedge \omega_1 + \omega_1 \wedge \omega_32). \]

Substituting (2.7), we see that \( \omega_{13} \wedge \omega_2 + \omega_1 \wedge \omega_{32} = -(2H) \omega_1 \wedge \omega_2 \), (3.30) follows. \( \Box \)

Lemma 3.3:

\[ d(*d\Omega_3) = d\Omega_3 \wedge \omega_2 + \Omega_3 d\omega_2 - d\Omega_3 \wedge \omega_1 - \Omega_3 d\omega_1, \]  \hspace{1cm} (3.31)

\[ d* \tilde{d}\Omega_3 = d\Omega_3 \wedge (b \omega_1 + c \omega_2) + \Omega_3 a d\omega_2 - \Omega_3 b d\omega_1 - d\Omega_3 \wedge (a \omega_1 + b \omega_2) + \Omega_3 b d\omega_2 - \Omega_3 c d\omega_1. \]  \hspace{1cm} (3.32)

Proof: Since \( d\Omega_3 = \Omega_3 \omega_31 + \Omega_3 \omega_32 \), we have \( *d\Omega_3 = \Omega_3 \omega_32 - \Omega_3 \omega_31 \). Differentiating with respect to \( d \) gives (3.31).

Since \( \tilde{d}\Omega_3 = \Omega_3 \omega_13 + \Omega_3 \omega_{23} \), then \( *d\tilde{d}\Omega_3 = \Omega_3 \omega_{23} - \Omega_3 \omega_13 \). Differentiating once again with respect to \( d \) gives

\[ d* \tilde{d}\Omega_3 = d\Omega_3 \wedge \omega_{23} + \Omega_3 d\omega_{23} - d\Omega_3 \wedge \omega_13 - \Omega_3 d\omega_13. \]

Substituting \( \omega_13 \) and \( \omega_{23} \) from (2.7) and using (2.3)-(2.4), equation (3.32) results. \( \Box \)

A system of equations can be obtained in a similar way to those obtained for \( \delta_1 \) and \( \delta_2 \). Calculating \( \delta_3 \omega_{13} = (\delta_3 a) \omega_1 + a(\delta_3 \omega_1) + (\delta_3 b) \omega_2 + b(\delta_3 \omega_2) \) and equating it to the expression obtained from (2.31), we obtain

\[ (\delta_3 a) \omega_1 + a(-\Omega_3 (a \omega_1 + b \omega_2) - \omega_2 \Omega_321) + (\delta_3 b) \omega_2 + b(-\Omega_3 (b \omega_1 + c \omega_2) - \omega_1 \Omega_312) \]

\[ = d\Omega_313 - \Omega_321 (b \omega_1 + c \omega_2) - \omega_12 \Omega_323. \]  \hspace{1cm} (3.33)

Similarly, using \( \omega_{23} \), we deduce that

\[ (\delta_3 b) \omega_1 + b(-\Omega_3 (a \omega_1 + b \omega_2) - \omega_2 \Omega_321) + (\delta_3 c) \omega_2 + c(-\Omega_3 (b \omega_1 + c \omega_2) - \omega_1 \Omega_312) \]
\[ = d\Omega_{323} + \Omega_{321}(a\omega_1 + b\omega_2) - \Omega_{313}\omega_{21}. \]  

(3.34)

Taking (3.33) and (3.34) and projecting on \( \omega_1 \) and \( \omega_2 \) using the wedge product, each of these equations produces two equations and these are summarized here

\[ \Omega_3(ab + \frac{\Omega_{321}}{\Omega_3}(a - c) - \frac{\delta_3b}{\Omega_3} + bc)\omega_1 \wedge \omega_2 = d\Omega_{313} \wedge \omega_1 + \Omega_{323}d\omega_2, \]  

(3.35)

\[ \Omega_3(\frac{\delta_3a}{\Omega_3} - a^2 - b^2 - 2b\frac{\Omega_{312}}{\Omega_3})\omega_1 \wedge \omega_2 = d\Omega_{313} \wedge \omega_2 - \Omega_{323}d\omega_1, \]  

(3.36)

\[ \Omega_3(b^2 + 2b\frac{\Omega_{321}}{\Omega_3} - \frac{\delta_3c}{\Omega_3} + c^2)\omega_1 \wedge \omega_2 = d\Omega_{323} \wedge \omega_1 - \Omega_{313}d\omega_2, \]  

(3.37)

\[ \Omega_3(\frac{\delta_3b}{\Omega_3} - ab - bc - (c - a)\frac{\Omega_{312}}{\Omega_3})\omega_1 \wedge \omega_2 = d\Omega_{323} \wedge \omega_2 + \Omega_{313}d\omega_1. \]  

(3.38)

**Theorem 3.6:**

\[ \delta_3(2H)\omega_1 \wedge \omega_2 = (4H^2 - 2K)\Omega_3\omega_1 \wedge \omega_2 + d \ast d\Omega_3. \]  

(3.39)

**Proof:** Calculate the linear combination (3.36) minus (3.37) to obtain

\[ \Omega_3(\frac{\delta_3a}{\Omega_3} - a^2 - b^2 + 2b\frac{\Omega_{321}}{\Omega_3} - b^2 - 2b\frac{\Omega_{321}}{\Omega_3} + \frac{\delta_3c}{\Omega_3} - c^2)\omega_1 \wedge \omega_2 = d\Omega_{313} \wedge \omega_2 + \Omega_{313}d\omega_2 - d\Omega_{323} \wedge \omega_1 - \Omega_{313}d\omega_1. \]

Using Lemma 3.3, this can be put in the form,

\[ \Omega_3(\frac{\delta_3(2H)}{\Omega_3} - a^2 - 2ac - c^2 + 2ac - 2b^2)\omega_1 \wedge \omega_2 = d \ast d\Omega_3. \]

Since \( 4H^2 - 2K = a^2 + 2ac + c^2 - 2ac + 2b^2 \), this is (3.39). □

**Theorem 3.7:**

\[ \delta_3K\omega_1 \wedge \omega_2 = 2HK\omega_1 \wedge \omega_2 \Omega_3 + d \ast d\Omega_3. \]  

(3.40)

**Proof:** Form the linear combination of equations \(-a\) (3.37) + \( c\) (3.36) + \( b\) (3.35) \(-b\) (3.38) and simplify to arrive at

\[ (a\delta_3c + c\delta_3a - b\delta_3b - b\delta_3b + \Omega_3(ab^2 + b^2c - 2ac^2))\omega_1 \wedge \omega_2 = (\delta_3K - 2HK\Omega_3)\omega_1 \wedge \omega_2. \]

Here the equation \((2H)K = (ac - b^2)(a + c) = 2ac^2 - ab^2 - b^2c\) has been used. □

Using Theorems 3.6 and 3.8 we arrive at the following important Theorem.
Theorem 3.8:

\[ \delta_3 I_e = \int_M \left( (4H^2 - 2K) \frac{\partial E}{\partial (2H)} + (2HK) \frac{\partial E}{\partial K} - 2HE \right) \Omega_3 \omega_1 \wedge \omega_2 \]

\[ + \int_M \left[ \frac{\partial E}{\partial (2H)} d \ast d\Omega_3 + \frac{\partial E}{\partial K} \tilde{d} \ast \tilde{d}\Omega_3 \right]. \tag{3.41} \]

Proof:

\[ \delta_3 I_e = \int_M \delta_3 E \omega_1 \wedge \omega_2 + \int_M E \delta_3 (\omega_1 \wedge \omega_2) \]

\[ = \int_M \frac{\partial E}{\partial (2H)} \delta_3 (2H) \omega_1 \wedge \omega_2 + \frac{\partial E}{\partial K} \delta_3 (K) \omega_1 \wedge \omega_2 + E \delta_3 (\omega_1 \wedge \omega_2) \]

\[ = \int_M \left( (4H^2 - 2K) \frac{\partial E}{\partial (2H)} + 2HK \frac{\partial E}{\partial K} - 2HE \right) \Omega_3 \omega_1 \wedge \omega_2 \]

\[ + \int_M \left[ \frac{\partial E}{\partial (2H)} d \ast d\Omega_3 + \frac{\partial E}{\partial K} \tilde{d} \ast \tilde{d}\Omega_3 \right]. \]

Corollary 3.1: For a closed surface \(M\),

\[ \delta_3 I_e = \int_M \left[ (\nabla^2 + 4H^2 - 2K) \frac{\partial E}{\partial (2H)} + (\nabla \cdot \tilde{\nabla} + 2HK) \frac{\partial E}{\partial K} - 2HE \right] \Omega_3 \omega_1 \wedge \omega_2. \tag{3.42} \]

Proof: Use (2.12) and (2.16) in the last term of (3.41), then applying Green’s identity and Stokes Theorem. Namely, it follows that if \(M\) is a closed manifold, then for functions \(f\) and \(h\),

\[ \int_M f \ d \ast dh = \int_M h \ d \ast df, \quad \int_M f \tilde{d}h = \int_M h \tilde{d}df. \]

Result (3.42) follows immediately. \(\square\)

3.4 Variation of \(I_p\)

To finish, it remains to calculate the variation of \(I_p\). This amounts to calculating the variations of element \(dV\), which is not trivial.

Lemma 3.4:

\[ \delta_1 \int_V dV = \frac{1}{3} \int_M d(r \cdot e_3 \Omega_1 \omega_2), \quad \delta_2 \int_V dV = -\frac{1}{3} \int_M d(r \cdot e_3 \Omega_2 \omega_1). \tag{3.43} \]

Proof: Since \(M\) is closed, Stokes’s theorem implies that, with \(M = \partial V\),
\[ \int_V 3\,dV = \int_V \nabla \cdot \mathbf{r} \,dV = \int_M \mathbf{r} \cdot \mathbf{n} \omega_1 \wedge \omega_2. \quad (3.44) \]

Dividing by 3 and applying \( \delta_1 \) to both sides yields

\[ \delta_1 \int_V dV = \frac{1}{3} \int_M (\delta_1 \mathbf{r} \cdot \mathbf{e}_3 \omega_1 \wedge \omega_2 + \mathbf{r} \cdot (\delta_1 \mathbf{e}_3) \omega_1 \wedge \omega_2 + (\mathbf{r} \cdot \mathbf{e}_3) \delta_1 \omega_1 \wedge \omega_2). \]

The first and third terms are \( \delta_1 \mathbf{r} \cdot \mathbf{e}_3 (\omega_1 \wedge \omega_2) = \Omega_1 \mathbf{e}_1 \cdot \mathbf{e}_3 \omega_1 \wedge \omega_2 = 0 \) and \( \mathbf{r} \cdot \mathbf{e}_3 \delta_1 (\omega_1 \wedge \omega_2) = \mathbf{r} \cdot \mathbf{e}_3 d(\Omega_1 \omega_2) \). To obtain the second term, note that \( d\mathbf{r} = \omega_1 \mathbf{e}_1 + \omega_2 \mathbf{e}_2 \) so \( \mathbf{e}_3 \cdot d\mathbf{r} = 0 \). Moreover, \( d\mathbf{e}_3 = \omega_{3j} \mathbf{e}_j = \omega_{31} \mathbf{e}_1 + \omega_{32} \mathbf{e}_2 \) and so \( \delta_1 \mathbf{e}_3 = \Omega_{13j} \mathbf{e}_j = -\Omega_1 (a\mathbf{e}_1 + b\mathbf{e}_2) \). Therefore, using (2.7)

\[ \mathbf{r} \cdot \delta_1 \mathbf{e}_3 \omega_1 \wedge \omega_2 = -\Omega_1 (\mathbf{r} \cdot \mathbf{e}_1 \omega_1 + \mathbf{r} \cdot \mathbf{e}_2 \omega_1) \wedge \omega_2 = \Omega_1 (\mathbf{r} \cdot \mathbf{e}_1 \omega_1 + \mathbf{r} \cdot \mathbf{e}_2 \omega_2) \wedge \omega_2 = \Omega_1 \mathbf{r} \cdot d\mathbf{e}_3 \wedge \omega_2. \]

Substituting these into the variation formula above,

\[ \delta_1 \int_V dV = \frac{1}{3} \int_M (\Omega_1 \mathbf{r} \cdot d\mathbf{e}_3 \wedge \omega_2 + (\mathbf{r} \cdot \mathbf{e}_3) d(\Omega_1 \omega_2)) = \frac{1}{3} \int_M d(\Omega_1 \mathbf{r} \cdot \mathbf{e}_3 \omega_2). \]

□

Since the variations in (3.43) have opposite signs, their contribution cancels out. The only contribution arises from variation \( \delta_3 \).

**Lemma 3.5:**

\[ \delta_3 \int_V dV = \int_M \Omega_3 \omega_1 \wedge \omega_2. \quad (3.45) \]

**Proof:** Begin with (3.44) and apply \( \delta_3 \)

\[ \delta_3 \int_V dV = \frac{1}{3} \int_M [\delta_3 \mathbf{r} \cdot \mathbf{e}_3 \omega_1 \wedge \omega_2 + \mathbf{r} \cdot (\delta_3 \mathbf{e}_3) \omega_1 \wedge \omega_2 + (\mathbf{r} \cdot \mathbf{e}_3) \delta_3 (\omega_1 \wedge \omega_2)] \quad (3.46) \]

Using the facts that \( \delta_3 \mathbf{r} = \Omega_3 \mathbf{e}_3 \) and \( \delta_3 \mathbf{e}_3 = \Omega_{33j} \mathbf{e}_j \), the first and last terms are \( (\delta_3 \mathbf{r}) \cdot \mathbf{e}_3 \omega_1 \wedge \omega_2 = \Omega_3 \mathbf{e}_3 \cdot \mathbf{e}_3 \omega_1 \wedge \omega_2 = \Omega_3 \omega_1 \wedge \omega_2 \) and \( \mathbf{r} \cdot \mathbf{e}_3 \delta_3 (\omega_1 \wedge \omega_2) = -(2H) \mathbf{r} \cdot \mathbf{e}_3 \omega_1 \wedge \omega_2 \), respectively. Now \( d\Omega_3 = -(\Omega_{331} \omega_1 + \Omega_{332} \omega_2) \), so the second term in (3.46) is

\[ \mathbf{r} \cdot (\delta_3 \mathbf{e}_3) \omega_1 \wedge \omega_2 = (\Omega_{331} \mathbf{r} \cdot \mathbf{e}_1 + \Omega_{332} \mathbf{r} \cdot \mathbf{e}_2) \omega_1 \wedge \omega_2. \quad (3.47) \]

From the equations \( d\Omega_3 \wedge \omega_1 = \Omega_{332} \omega_1 \wedge \omega_2 \) and \( d\Omega_3 \wedge \omega_2 = -\Omega_{331} \omega_1 \wedge \omega_2 \), we obtain \( -d\Omega_3 \wedge (-\mathbf{r} \cdot \mathbf{e}_2 \omega_1 + \mathbf{r} \cdot \mathbf{e}_1 \omega_2) = (\mathbf{r} \cdot \mathbf{e}_2 \Omega_{332} + \mathbf{r} \cdot \mathbf{e}_1 \Omega_{331}) \omega_1 \wedge \omega_2 \). Comparing this with (3.18), we conclude that

\[ \mathbf{r} \cdot \delta_3 \mathbf{e}_3 \omega_1 \wedge \omega_2 = -d\Omega_3 \wedge (-\mathbf{r} \cdot \mathbf{e}_2 \omega_1 + \mathbf{r} \cdot \mathbf{e}_1 \omega_2) \]
Putting this in the integral then applying integration by parts and Stokes’s Theorem, we arrive at
\[
\int_M d\Omega_3 \wedge (-r \cdot e_2 \omega_1 + r \cdot e_1 \Omega_2) = \int_M \Omega_3 d(-r \cdot e_2 \omega_1 + r \cdot e_2 \omega_2). \tag{3.48}
\]

Differentiating with \(d\) and using the structure equations, we get
\[
d(-r \cdot e_2) \wedge \omega_1 - (r \cdot de_2) \wedge \omega_1 - (r \cdot e_2) d\omega_1 + (dr \cdot e_1) \wedge \omega_2 + (r \cdot de_1) \wedge \omega_2 + (r \cdot e_1) d\omega_2
\]
\[
= -\omega_2 \wedge \omega_1 - (r \cdot e_j) \omega_{2j} \wedge \omega_1 - (r \cdot e_2) \omega_{12} \wedge \omega_2 + \omega_1 \wedge \omega_2 + (r \cdot e_j) \omega_{1j} \wedge \omega_2 + (r \cdot e_1) \omega_{21} \wedge \omega_1
\]
\[
= 2 \omega_1 \wedge \omega_2 - c (r \cdot e_3) \omega_2 \wedge \omega_1 + a (r \cdot e_3) \omega_1 \wedge \omega_2
\]
\[
= 2\omega_1 \wedge \omega_2 + (2H) (r \cdot e_3) \omega_1 \wedge \omega_2.
\]

Therefore, we have found that
\[
- \int_M d\Omega_3 \wedge (-r \cdot e_2 \omega_1 + r \cdot e_1 \omega_2) = \int_M \Omega_3 [2 + 2H(r \cdot e_3)] \omega_1 \wedge \omega_2 \tag{3.49}
\]

So the required variation is given by
\[
\delta_3 \int_M dV = \frac{1}{3} \int_M [\Omega_3 \omega_1 \wedge \omega_2 - 2H(r \cdot e_3) \Omega_3 \omega_1 \wedge \omega_2 + \Omega_3 [2 + 2H(r \cdot e_3) \omega_1 \wedge \omega_2]]
\]
\[
= \int_M \Omega_3 \omega_1 \wedge \omega_2.
\]

Putting Theorem 3.8 and Lemmas 3.3-3.5 together, the variation \(\delta I\) is given as
\[
\delta I = \int_M [\nabla^2 + 4H^2 - 2K] \frac{\partial E}{\partial (2H)} + (\nabla \cdot \tilde{\nabla} + 2HK) \frac{\partial E}{\partial K} - 2HE + p] \Omega_3 \omega_1 \wedge \omega_2. \tag{3.50}
\]

This implies the following shape equation corresponding to (1.1).

**Theorem 3.9**: The Euler-Lagrange equation corresponding to functional \(I\) in (1.1) is given by
\[
[\nabla^2 + 4H^2 - 2K] \frac{\partial}{\partial (2H)} + (\nabla \cdot \tilde{\nabla} + 2HK) \frac{\partial}{\partial K} - 2HE + p = 0. \tag{3.51}
\]

\[\square\]
4 Second Order Variation of $I$

The second order variation of (1.1) is determined. The calculations will be complete but concisely presented. It has already been shown that $\delta_1 I = \delta_2 I = 0$ for a closed $M$, so it follows that $\delta \delta_1 I = \delta \delta_2 I = 0$ and it suffices to calculate $\delta^2 I = \delta_3^2 I$. Notice that $\Omega_3$ can come into and out of the expressions acted on by the operator $\delta_3$ freely. To get this explicitly, the following two Lemmas are required.

**Lemma 4.1:** For every function $f$, the variation $\delta_3 (d * df)$ is given by

$$\delta_3 (d * df) = d * d\delta_3 f + d(2H \Omega_3 * df) - 2d(\Omega_3 \tilde{\delta} f).$$  \hspace{1cm} (4.1)

**Proof:** Since $df = f_1 \omega_1 + f_2 \omega_2$ and $*df = f_1 \omega_2 - f_2 \omega_1$, we find $\tilde{df} = f_1 \omega_{13} + f_2 \omega_{23}$ and $\tilde{\delta} f = f_1 \omega_{23} + f_1 \omega_{13}$. First of all we calculate $\delta_3 * df$,

$$\delta_3 * df = \delta_3 f_1 \omega_2 + f_1 (\delta_3 \omega_2) - (\delta_3 f_2) \omega_1 - f_2 (\delta_3 \omega_1)$$

$$= (\delta_3 f_1) \omega_2 - (\delta_3 f_2) \omega_1 - \Omega_{312}(f_1 \omega_1 + f_2 \omega_2) + \Omega_3 (f_1 \omega_{32} - f_2 \omega_{31})$$

$$= (\delta_2 f_1) \omega_2 - (\delta_3 f_2) \omega_1 - \Omega_{312} df + \Omega_3 [f_2 (a \omega_1 + b \omega_2) - f_1 (b \omega_1 + c \omega_2)]$$  \hspace{1cm} (4.2)

and $\delta_3 df$ is given by,

$$\delta_3 df = (\delta_3 f_1) \omega_1 + f_1 (\delta_3 \omega_1) + (\delta_3 f_2) \omega_2 + f_2 (\delta_3 \omega_2)$$

$$= (\delta_3 f_1) \omega_1 + (\delta_3 f_2) \omega_2 + f_1 (\Omega_3 \omega_{31} - \omega_2 \Omega_{31}) + f_2 (\Omega_3 \omega_{32} - \omega_1 \Omega_{32})$$

$$= (\delta_3 f_1) \omega_1 + (\delta_3 f_2) \omega_2 + \Omega_{312}[f_1 \omega_2 - f_2 \omega_1] + \Omega_3 [f_1 (-a \omega_1 - b \omega_2) + f_2 (-b \omega_1 - c \omega_2)].$$  \hspace{1cm} (4.3)

Therefore, since the Hodge operator satisfies $*^2 = -1$, we have

$$*\delta_3 df = (\delta_3 f_1) \omega_2 - (\delta_3 f_2) \omega_1 - \Omega_{312} df + \Omega_3 [f_1 (b \omega_1 - a \omega_2) + f_2 (c \omega_1 - b \omega_2)]$$  \hspace{1cm} (4.4)

The difference of (4.2) and (4.4) follows at once,

$$\delta_3 * df - *\delta_3 df = \Omega_3 [-2b f_1 \omega_1 + 2b f_2 \omega_2 - c f_1 \omega_2 - c f_2 \omega_1 + a f_1 \omega_2 + a f_2 \omega_1].$$  \hspace{1cm} (4.5)
The following equation has a very important application. Using the definition of mean curvature, we have \((2H) \ast df = (a + c)(f_1 \omega_2 - f_2 \omega_1)\), so

\[
2H \ast df - 2\tilde{\omega} \tilde{d}f = af_1 \omega_2 + cf_1 \omega_2 - af_2 \omega_1 - cf_2 \omega_1 - 2f (b \omega_1 + c \omega_2) + 2f_2 (a \omega_1 + b \omega_2)
\]

\[
= -2bf_1 \omega_1 + 2bf_2 \omega_2 - cf_1 \omega_2 - cf_2 \omega_1 + af_1 \omega_2 + af_2 \omega_1. \tag{4.6}
\]

Using (4.6) in (4.5) we obtain

\[
\delta_3 \ast df - *\delta_3 df = (2H) \ast df \Omega_3 - 2\tilde{\omega} \tilde{d}f \Omega_3. \tag{4.7}
\]

Differentiating both sides of (4.7) with respect to \(d\) and using the fact that \(\delta_3\) and \(d\) commute, (4.1) follows. □

**Lemma 4.2:** For every function \(f\) then

\[
\delta_3 \ast \tilde{d}f = d\left[\delta_3 (2H) \ast df + 2H \delta_3 \ast df + 2K \Omega_3 \ast df - 2H \Omega_3 \ast \tilde{d}f - *\delta_3 f\right]. \tag{4.8}
\]

**Proof:** Beginning with \(*\tilde{d}f = (af_1 + bf_2)\omega_2 - (bf_1 + cf_2)\omega_1\) and (2.31),

\[
\delta_3 \ast \tilde{d}f = \delta_3 (af_1 + bf_2)\omega_2 - \delta_3 (bf_1 + cf_2)\omega_1 + (af_1 + b \omega_2) \delta_3 \omega_2 - (bf_1 + c \omega_2) \delta_3 \omega_1
\]

\[
= \delta_3 (af_1 + bf_2)\omega_2 - \delta_3 (bf_1 + cf_2)\omega_1 - \Omega_{312} [f_1 (a \omega_1 + b \omega_2) + f_2 (b \omega_1 + c \omega_2)] + \Omega_3 [(af_1 + bf_2)\omega_{32} - (bf_1 + cf_2)\omega_{31}]. \tag{4.9}
\]

The last term in (4.9) is given by

\[
(af_1 + bf_2)\omega_{32} - (bf_1 + cf_2)\omega_{31} = -(af_1 + bf_2)(b \omega_1 + c \omega_2) + (bf_1 + cf_2)(a \omega_1 + b \omega_2)
\]

\[
= (b^2 - ac)(-f_2 \omega_1 + f_1 \omega_2) = -K \ast df. \tag{4.10}
\]

Using (4.10) in (4.9), it has been shown that

\[
\delta_3 \tilde{d}f = \delta_3 (af_1 + bf_2)\omega_2 - \delta_3 (bf_1 + cf_2)\omega_1 - \Omega_{312} \tilde{d}f - \Omega_3 K \ast df. \tag{4.11}
\]

Since \(\tilde{d}f = f_1 \omega_{13} + f_2 \omega_{23}\), we find that

\[
\delta_3 \tilde{d}f = \delta_3 (af_1 + bf_2)\omega_1 + \delta_3 (bf_1 + cf_2)\omega_2 - \Omega_3 [(af_1 + bf_2)\omega_{13} + (bf_1 + cf_2)\omega_{23}]
\]
\[ + \Omega_{312}[(af_1 + bf_2)\omega_2 - (bf_1 + cf_2)\omega_1] \]

The following result will be required below

\[-(a + c)(f_1 * \omega_{13} + f_2 * \omega_{23}) + (ac - b^2)(f_1\omega_2 - f_2\omega_1) \]

\[ = -(a^2 f_1 + abf_2 + b^2 f_1 + bc f_1)\omega_2 + (ab f_1 - b^2 f_2 + bc f_1 + c^2 f_2)\omega_1. \]

Now apply \( \ast \) to both sides of this to obtain

\[ *\delta_3 \tilde{d}f = \delta_3(a f_1 + b f_2)\omega_2 - \delta_3(b f_1 + c f_2)\omega_1 - \Omega_{312}(f_1\omega_{13} + f_2\omega_{23}) - \Omega_3[(a^2 f_1 + ab f_2 + b^2 f_1 + bc f_2)\omega_2 \]

\[ - (ab f_1 + b^2 f_2 + bc f_1 + c^2 f_2)\omega_1] \]

\[ = \delta_3(a f_1 + b f_2)\omega_2 - \delta_3(b f_1 + c f_2)\omega_1 - (a + c)(f_1 * \omega_{13} + f_2 * \omega_{23}) + (ac - b^2)(f_1\omega_2 - f_2\omega_1) \]

\[ = \delta_3(a f_1 + b f_2)\omega_2 - \delta_3(b f_1 + c f_2)\omega_1 - (2H)\Omega_3 * \tilde{d}f + K\Omega_3 * df - \Omega_{312}\tilde{d}f. \quad (4.12) \]

The difference of (4.12) and (4.11) is given as

\[ *\delta_3\tilde{d}f - \delta_3 * \tilde{d}f = 2K\Omega_3 * df - (2H)\Omega_3 * \tilde{d}f. \quad (4.13) \]

It is the case that

\[ *\tilde{d}f + \tilde{d}f = f_1 * \omega_{13} + f_2 * \omega_{23} + f_1\omega_{13} - f_2\omega_{13} = f_1(a + c)\omega_1 - f_2(a + c)\omega_1 = 2H * df. \quad (4.14) \]

Consequently, \( *\tilde{d}f + \tilde{d}f = (2H) * df \) and so

\[ d\delta_3 * \tilde{d}f + d\delta_3\tilde{d}f = d\delta_3(2H * df). \quad (4.15) \]

Differentiating (4.13) with the operator \( d \), it is found that

\[ d * \delta_3\tilde{d}f - d\delta_3 * \tilde{d}f = d(2K\Omega_3 * df) - d(2H\Omega_3 * \tilde{d}f). \quad (4.16) \]

Adding (4.15) and (4.16), we find that

\[ d\delta_3\tilde{d}f = d[\delta_3(2H * df) + 2K\Omega_3 * df - 2H\Omega_3 * \tilde{d}f - \delta_3\tilde{d}f] \]

\[ = d[\delta_3(2H) * df + (2H) \delta_3 * df + 2K\Omega_3 * df - (2H)\Omega_3 * \tilde{d}f - \delta\tilde{d}f]. \]
Acting on $\delta_3 I_e$ with $\delta_3$ again allows us to write
\[
\delta_3^2 I_e = \int_M \delta_3[(4H^2 - 2K) \frac{\partial E}{\partial(2H)} + 2HK \frac{\partial E}{\partial K} - 2HK]\Omega_3 \omega_1 \wedge \omega_2 \\
+ \int_M [(2H^2 - 2K) \frac{\partial E}{\partial(2H)} + 2HK \frac{\partial E}{\partial K} - 2HK] \Omega_3\delta_3(\omega_1 \wedge \omega_2) \\
+ \int_M \delta_3\frac{\partial E}{\partial(2H)} d \ast d\Omega_3 + \int_M \frac{\partial E}{\partial(2H)} \delta_3(d \ast d\Omega_3) + \int_M \delta_3\frac{\partial E}{\partial K} d\ast d\Omega_3 \\
+ \int_M \frac{\partial E}{\partial K} \delta_3(d\ast d\Omega_3).
\] (4.17)

Lemmas 4.1-4.2 are required for the simplification of the last line of (4.17) so replacing function $f$ by $\Omega_3$ in Lemmas 4.1 and 4.2 and simplifying we obtain,
\[
\delta_3 d \ast d\Omega_3 = [\nabla(2H\Omega_3) \cdot \nabla\Omega_3 + (2H)\Omega_3 \nabla^2\Omega_3 - 2\nabla\Omega_3 \tilde{\nabla}\Omega_3 - 2\Omega_3 \nabla \cdot \tilde{\nabla}\Omega_3]\omega_1 \wedge \omega_2.
\] (4.18)

Recalling that $\delta_3(2H) = (4H^2 - 2K)\Omega_3 + \nabla^2\Omega_3$, using Lemmas 4.1, 4.2 and $\delta_3 \ast d\Omega_3 = (2H)\Omega_3 \ast d\Omega_3 - 2\Omega_3 \tilde{\nabla}d\Omega_3 + \ast \delta_3 d\Omega_3$ it follows that
\[
\delta_3(2H) \ast d\Omega_3 + 2H(2H\Omega_3 \ast d\Omega_3 - 2\Omega_3 \tilde{\nabla}d\Omega_3) + 2K\Omega_3 \ast d\Omega_3 - 2H\Omega_3 \ast \tilde{d}\Omega_3
\]
\[
= [\delta_3(2H) + 4H^2\Omega_3 + 2K\Omega_3] \ast d\Omega_3 - 4H\Omega_3 \tilde{\nabla}d\Omega_3 - 2H\Omega_3 \ast \tilde{d}\Omega_3
\] (4.19)
\[
= [8H^2\Omega_3 + \nabla^2\Omega_3] \ast d\Omega_3 - 4H\Omega_3 \tilde{\nabla}d\Omega_3 - 2H\Omega_3 \ast \tilde{d}\Omega_3.
\]

Operating on this result with the operator $d$ gives an alternate expression for $d\delta_3 \ast \tilde{d}\Omega_3$ in Lemma 4.2,
\[
d\delta_3 \ast \tilde{d}\Omega_3 = [\nabla(8H^2\Omega_3 + \nabla^2\Omega_3) \nabla\Omega_3 + (8H^2\Omega_3 + \nabla^2\Omega_3) \nabla^2\Omega_3 - \nabla \ast 4H\Omega_3] \cdot \tilde{\nabla}\Omega_3 \\
-(4H)\Omega_3 \nabla \cdot \tilde{\nabla}\Omega_3 - \nabla(2H\Omega_3) \cdot \tilde{\nabla}\Omega_3 - (2H)\Omega_3 \nabla \cdot \tilde{\nabla}\Omega_3]\omega_1 \wedge \omega_2.
\] (4.20)

Substituting the known results for the variations $\delta_3(2H)$ and $\delta_3 K$ given in Theorems 3.6-3.7 into $\delta_3^2 I_e$ then using the results of the Lemmas 4.1, 4.2, we obtain, after collecting terms, $\delta_3^2 I_e$,
\[
\int_M [(4H^2 - 2K)^2 \frac{\partial^2 E}{\partial(2H)^2} + (4H(4H^2 - 2K) - 4HK - 2H(4H^2 - 2K) - 2H(4H^2 - 2K)) \frac{\partial E}{\partial(2H)}]
\]
Collecting like terms and simplifying the coefficients in this we arrive at the following Theorem pertaining to the second order variation of $I_e$.

**Theorem 4.3:** The second order variation of the functional $I_e$ in (1.1) is given as

$$
\delta^2 I = \int_M \left[ (4H^2 - 2K)^2 \frac{\partial^2 E}{\partial (2H)^2} - 4HK \frac{\partial E}{\partial (2H)} - 2K^2 \frac{\partial^2 E}{\partial K^2} \right] \omega_1 \wedge \omega_2
+ 4HK(4H^2 - 2K) \frac{\partial^2 E}{\partial (2H) \partial K} + 4(KH)^2 \frac{\partial^2 E}{\partial K^2} + 2K E - 2H p \right] \omega_1 \wedge \omega_2
+ \int_M \Omega_3 \nabla^2_\Omega_3 [4H \frac{\partial E}{\partial (2H)} + 4(2H^2 - E) \frac{\partial E}{\partial (2H)^2} + K \frac{\partial E}{\partial K} + 4HK \frac{\partial E}{\partial K \partial (2H)} - E + 8H^2 \frac{\partial E}{\partial K}] \omega_1 \wedge \omega_2
+ \int_M \left[ 2(4H^2 - 2K) \frac{\partial^2 E}{\partial (2H)^2} - 4 \frac{\partial E}{\partial (2H)} + 4HK \frac{\partial^2 E}{\partial K^2} - 4H \frac{\partial E}{\partial K} \right] \Omega_3 \nabla \cdot \tilde{\nabla} \Omega_3 \omega_1 \wedge \omega_2
+ \int_M \left( \frac{\partial^2 E}{\partial (2H)^2} + \frac{\partial E}{\partial K} \right) \nabla^2_\Omega_3 \omega_1 \wedge \omega_2 + \int_M \left( \frac{\partial^2 E}{\partial (2H)^2} \nabla^2 \Omega_3 \cdot \nabla \tilde{\nabla} \Omega_3 + \frac{\partial E}{\partial (2H)} \nabla (2H \Omega_3) \cdot \nabla \Omega_3 \right) \omega_1 \wedge \omega_2
+ \int_M \left( \frac{\partial^2 E}{\partial K^2} \left( \nabla \cdot \tilde{\nabla} \Omega_3 \right)^2 - 2 \frac{\partial E}{\partial (2H)} \left( \nabla \Omega_3 \right) \cdot \left( \tilde{\nabla} \Omega_3 \right) \right) \omega_1 \wedge \omega_2
+ \int_M \frac{\partial E}{\partial K} \left[ \nabla (8H^2 \Omega_3 + \nabla^2 \Omega_3) \cdot \nabla \Omega_3 - \nabla (4H \Omega_3) \cdot \tilde{\nabla} \Omega_3 - 4H \Omega_3 \nabla \cdot \tilde{\nabla} \Omega_3 \right. \\
- \nabla (2H \Omega_3) \cdot \tilde{\nabla} \Omega_3 - 2H \Omega_3 \nabla \cdot \tilde{\nabla} \Omega_3 \left. \right] \omega_1 \wedge \omega_2
$$

\( \square \)
5 Conclusions

A variational approach to obtaining the Euler-Lagrange or shape equation from a given functional under deformations of the underlying manifold has been developed here. This leads to many other things to be done and many directions this could take. It is some work to take the differential operators that were produced in this process and give tensor forms to them. This will result in differential equations which can also be studied and solutions found as well. The closed manifolds tested here can be perturbed so that boundaries appear which leads to a new variational problem, that of including boundary terms in the functional defining the problem.

6 References