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Abstract 

A 3D DEM model using Particle Flow Code (PFC3D) software was developed utilizing a 

bonded-ball flexible membrane approach to study cohesionless soil as a discontinuous discrete 

material. This approach is not yet widely used because of its complexity and high 

computational cost, but it allowed the authors to observe the stress-strain curves of triaxial 

specimens, to single out effects of individual factors on the strength and strain properties, and 

to observe the formation of the shear band and failure surface. The 3D model was calibrated 

and verified with experimental data, and a sensitivity analysis was carried out for the 

microparameters. Triaxial tests were simulated to observe the stress-strain curves and 

volumetric changes, as well as the strength parameters of soils consisting of spherical particles 

with different gradations but the same porosity. The authors investigated the effects of mean 

particle size, larger particle size, smaller particle size, and soil gradation on three soil 

parameters: peak deviatoric stress, internal friction angle, and dilatancy angle. Four different 

cases with different soil gradations and particle sizes were studied: a uniform soil, a soil with 

randomly created particle sizes, and two soils each contains two particle sizes. For two out of 

the four cases studied, peak deviatoric stress, internal friction angle, and dilatancy angle 

increased when the mean particle size D50 increased. For the other two cases, the parameters 

decreased when the mean particle size D50 increased. One important finding is that the 

relationships between particle size and deviatoric stress, internal friction angle, and dilatancy 

angle were found to be linear. These relationships can provide predictions on soil strength and 

strain properties when the particle size changes. Observations and discussions on the formation 

of shear bands during shear testing are also presented. A step-by-step delineation of the DEM 

model development is also presented with the development process of a flexible membrane 

carefully described.  

Keywords: Triaxial test simulation, grain size, cohesionless soil, flexible membrane, 

numerical analysis, DEM. 

 

1. Introduction 

The strength and strain properties of cohesionless soil which is a granular, discontinuous, and 

heterogeneous material, are of importance and are usually determined using laboratory tests. 

Laboratory testing, such as the axisymmetric drained triaxial test, is time-consuming and may 

require the involvement of highly skilled personnel with expensive instruments. Numerical 

modeling is another approach to obtaining the cohesionless soil’s stress-strain relationship, 
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strength, and volume change. Numerical methods such as the finite element method (FEM) and 

discrete element method (DEM) have been used for decades to simulate geotechnical 

laboratory tests to investigate the constitutive laws that apply to this type of soil [1-7]. For 

modeling granular materials, FEM, which utilizes continuum mechanical analyses, has some 

major disadvantages. FEM does not account for the geometry and behavior of a particle as an 

isolated entity [3]. Moreover, FEM is not capable of modeling physical phenomena such as 

anisotropy, micro-fractures, and localized instabilities [7]. Kishino (1988) stated that the 

determination of a constitutive model for FEM modeling is significantly difficult [2]. With 

FEM, a constitutive model based on the continuum approach usually requires some material 

input or model parameters that sometimes do not have a clear physical meaning. Also, FEM 

cannot solve the model if the displacement between elements is relatively large since it is 

formulated by small strain theory. DEM, on the other hand, has better modeling capabilities to 

capture the mechanical behavior of granular material better than FEM does [4,6]. DEM has 

also proven to be a reliable approach to delineating the distinct elements that dictate the 

constitutive behavior of granular materials [6]. DEM can define different particle shapes and 

sizes: spherical, flaky, elongated, or irregular, small or large. For these advantages, DEM was 

employed in this study for the analyses of strength and strain properties of cohesionless soil by 

modeling triaxial testing.  

Behaviors of a triaxial test specimen can be significantly affected by the type of confining 

membrane, especially in terms of reaching peak strength and dilation [8-11]. Membrane 

properties significantly affect the movement of particles at the outer edge of a specimen under 

the application of loads. Vermeer (1990) revealed that the formed shear bands during shear 

failure are highly dependent on membrane flexibility, i.e., “flexible” or “rigid” [12]. For lab 

testing, researchers have successfully implemented flexible boundaries to plane strain 

compression tests [11,13-16]. The traditional rigid boundary model in DEM analyses has 

drawbacks compared to the flexible membrane boundary because: (1) a rigid cylindrical wall 

cannot enable local strain displacement during triaxial shearing, and (2) non-uniform stress 

distributions exist along the boundary wall due to the forced alignment of particles located near 

the rigid wall [17]. Simulated triaxial models with a rigid wall boundary underestimate the 

deviator stress in the post-elastic zone [18,19]. With the rigid wall, the actual failure surface 

and the volume change cannot be determined. The DEM flexible membrane model best reflects 

the real working condition of a triaxial test, but the modeling approach is complicated and 

computationally expensive. Nevertheless, because of its advantages, the flexible modeling 

approach was adopted for this study.  

The effects of particle size on the behavior of discontinuous granular materials have generated 

much research for many years [20-23] with both experiments and modeling. As Ben et al. 

(2010) and Cundall and Hart (1993) stated, the effects of particle size must be identified to 

obtain accurate predictions of the behavioral characteristics of granular soil[24,4]. However, 

studies on the effects of particle size have been somewhat inconsistent and contradictory. 

Kirkpatric (1965) and Marschi et al. (1972) concluded from experimental studies that the 

friction angle decreases with increasing uniform particle size [25,26]. Xiaofeng et al. (2013) 

investigated the effect of coarse-grained content on the stress-strain response of gravel soil and 

concluded that shear strength increases with the increase of coarse gravel content in the 

specimen [27]. Kim and Ha, (2014) performed large direct shear tests and concluded that a 

larger particle size results in higher shear strength [28]. However, Sitharam and Nimbkar 

(2000) with DEM triaxial test simulations observed no significant changes in shear strength 

and volume change due to particle size for parallel gradations; shear strength decreases to a 

considerable extent for a wider gradation which results in a decrease in the angle of internal 

friction [29]. Bagherzadeh-Khalkhali and Mirghasemi (2009) using a DEM model to simulate 
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direct shear test reported that internal friction angle and dilation increase due to particle size is 

more significant by scalping gradation than parallel gradation [30]. Mishra and Mahmud (2017) 

performed DEM direct shear test simulations to study particle size effects on two commonly 

used ballast gradations for railroad tracks, Arema #4 and Arema #24 [31]. Significant changes 

in internal friction angle due to particle size were observed for Arema #4 ballast material; 

however, no consistent trend was found for gradually changing gradation for Arema #24. Islam 

et al. (2011) performed a series of direct shear tests considering uniform particles and graded 

particles, and observed that with the increase of particle size, angle of internal friction angle 

increases for both uniform sands and graded sands [32].  

One important condition that must be met when performing experiments or simulations on 

the effects of particle size is to make sure that the initial void ratio/porosity remains the same 

for the different gradations. Some research pertaining to particle size effects on shear strength 

parameters was not reliable because this condition was not met [33,29]. A reason for the 

contradictory results is that it is difficult to single out one factor from others, and on occasion, 

the models did not correctly reflect the working condition of the soil, especially when using a 

fixed boundary for triaxial DEM models. 

Based on the preceding records of inconsistencies, this paper addresses the need for further 

study on the effects of particle size on the strength and strain properties of granular soil. To 

close this information gap, this paper presents DEM simulations on triaxial tests with flexible 

membranes used to investigate the impacts of particle size on the stress-strain behaviors and 

strength and strain properties of soil. The developed DEM model, verified with experimental 

data, can create soil specimens with the same porosity, and can single out individual factors 

that affect soil strength and strain properties. This research is also an important first step toward 

modeling the stress-strain behaviors of reinforced soil in a mechanically stabilized earth (MSE) 

retaining wall or in a geosynthetic reinforced soil (GRS) mass. 

2. Background 

For a laboratory triaxial test, a flexible rubber or latex membrane is usually used to cover the 

specimen for the application of hydrostatic confining pressure. With this flexible boundary, 

triaxial shearing causes substantial bulging which in turn results in the formation of the shear 

failure bands. When simulating the laboratory test using DEM, if the rigid boundary was used, 

the specimen was created within that rigid boundary, which means the bulging condition could 

not be observed. Movement of the rigid wall was controlled by a servomechanism to maintain 

a constant confining pressure (𝜎3), and the shear band at the end of simulation could not be 

observed. These issues were addressed by using a flexible membrane; however, modeling a 

flexible membrane is complicated and computationally expensive. Figure 1 shows a triaxial 

test before and after triaxial shearing with the typical bulging shape. Using flexible membrane 

modeling, the failure surfaces and shear bands can be viewed clearly. Qu et al. (2019) 

mentioned two major difficulties in modeling latex/rubber membranes during triaxial testing 

by DEM: (1) the precise application of hydrostatic confining pressure while simultaneously (2) 

ensuring the free deformation of the membrane boundary [34]. This problem has led to the 

creation of different methods for modeling a flexible membrane in DEM by researchers 

wanting to better understand the behaviors of soil. 
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(a) Specimen before shearing (b) Specimen after shearing 

Fig. 1. Flexible boundary before and after shearing 

Stack wall method:  Zhao and Evans (2009) utilized several stress-controlled rigid planar walls 

(stack wall) to confine specimens by controlling their individual velocities by a numerical 

servomechanism [35]. Li et al. (2015) also used this method to simulate the torsional shear test 

[36]. Later, Khoubani and Evans (2018) significantly improved the flexibility of the stacked-

wall boundary [19], however, this approach only created a semi-flexible membrane as the walls 

continued to move in a horizontal direction instead of the vertical direction. Thus, the method 

cannot replicate the ’clamped’ effects at the two ends of the triaxial specimen as discussed by 

Qu et al. (2019) [34].  

Method of applying forces on boundary particles: Equivalent forces of confining stress are 

calculated and applied to the outermost particles which act as the membrane. Bardet and 

Proubet (1991) first introduced this technique in DEM modeling of triaxial testing [17] and 

later other researchers proposed algorithms to improve this method [37,38]. Cheung and 

O’Sullivan (2008) used the Voronoi polygon projection technique to sort out the periphery 

particles of the specimen to label it as a boundary to apply hydrostatic confining pressure [38]. 

However, the main disadvantage of this method is that the properties of membrane and the 

specimen particles cannot be assigned independently, and all the particles are treated as the 

same material. Binesh et al., (2018) proposed a new algorithm based on linking MATLAB and 

PFC3D codes to identify the boundary particles by using cellular division and irradiation from 

the specimen’s centerline; then, confining pressure is exerted directly to boundary particles via 

concentrated forces [39]. However, the proposed algorithm cannot replicate the Latex 

membrane in triaxial tests, since confining forces are exerted directly to the boundary particles 

[39]. 

Bonded-ball method: This method was used by Iwashita and Oda (1998) to model flexible 

membranes to simulate biaxial simulation [40]. Such a flexible membrane was composed of 

spherical balls that were ‘glued’ together with contact bonds. Bono et al. (2012), De Bono and 

McDowell (2014) were able to use a similar technique to model flexible membrane and thereby 

simulate triaxial tests [41,42]. Similar results were reported in other studies [18,43]. The 

bonded-ball approach allows assigning specific properties to the boundary particles (i.e. 

different from specimen particles). The confining pressure was applied by converting the 

confining pressure to equivalent forces as described by Cil and Alshibli (2014) [18]. Membrane 

particles are first modeled as a cage; then, specimens are created separately inside that cage. 

Lu et al. (2018) were able to significantly improve the flexibility of the bonded-ball flexible 

membrane, which confirmed the possibility of observing a typical bulging shape of the 

specimen during axisymmetric triaxial compression tests [43].  
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Because the bonded-ball method can assign properties to boundary particles, replicating 

clamped effects and allowing possible specimen bulging, we adopted this method to model a 

flexible membrane for our research. Specifics on modeling the bonded-ball flexible membrane 

follow. 

Geometrical arrangement: Single-layer hexagonal packing is used to obtain the closest 

packing to mimic the latex membrane which has a continuous surface. Saussus and Frost (2000) 

noted that membrane particles should be chosen carefully to minimize the effects of the sand-

membrane contact pattern [44]. Single-layer hexagonal packing reduces the bonded-ball gaps 

and makes the modeled membrane as smooth as possible. Hexagonal ball packing of the 

flexible membrane is shown in Fig. 1. 

Boundary condition: In a laboratory triaxial test, the two ends of the specimen are fixed inside 

a rubber vessel. When confining pressure is applied, movement of the soil particles at the two 

ends is restricted to the radial horizontal direction, causing clamped effects [34].  To replicate 

the clamped effects, the radial horizontal movement of the specimen particles at the top and 

bottom are restricted. For this study, the specimen material was first created within the rigid 

cylinder which eventually was replaced by the flexible bonded-ball membrane. The membrane 

is defined as the boundary of the DEM model where the confining pressure is applied. 

Selection of contact model: A latex membrane is “strain dominant” and cannot resist bending. 

Potyondy and Cundall (2004) described the bonded particle methodology, stating that a “linear 

contact bond” contact model can properly mimic the mechanism similar to that of the 

membrane [45]. In this study, the linear contact bond is used to model the flexible membrane. 

This linear contact bond consists of two components: the linear component and the dashpot 

component, and they act parallel to each other. The linear component provides linear elastic 

and frictional behavior but does not resist tension, while the dashpot component provides the 

viscous behavior that dampens force and  accounts for energy loss. Contact stiffness can be 

divided into two microparameters, normal stiffness (𝑘𝑛) and shear stiffness (𝑘𝑠) which act as 

linear springs for the linear component. For the dashpot component, the dashpot force is 

controlled by the normal (𝛽𝑛) and shear (𝛽𝑠) critical-damping ratios. Another micro parameter 

is the particle friction coefficient (𝜇) which is responsible for developing the force that resists 

slip between particles.  

The selection of  values for normal and shear stiffness for a flexible membrane has strong 

effects on the deformation of the membrane. Contact stiffness of membrane particles is 

determined based on the equivalence of strain energy and the elastic parameters of a physical 

Latex membrane, which was introduced by Griffiths and Mustoe (2001) [46]. Figure 2a 

provides a schematic diagram of the linear contact model microparameters. Because the rubber 

membrane must not tear apart during testing, large values of shear and tensile strength were 

used, which helped the membrane withstand all possible deformations. 
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(a)        (b)  

Figure 2. Micromechanical model and rheology of particle contact (a) Components of the 

linear contact bond and (b) volume associated with contact 

3. Methodology 

The 3D PFC, a DEM software, was utilized to study the effects of particle sizes on the soil 

strength and strain properties by modeling triaxial tests. Details of the approaches and 

methodology of the modeling follow. 

Contact stiffness of the specimen: In this study, the specimen particles are considered as made 

from a linear material, and the particles are in contact but unbonded at contact. The contact 

force is divided into linear and dashpot components. The linear component provides linear 

elastic (no-tension), frictional behavior. Linear force is produced by linear springs with 

constant normal stiffness (𝑘𝑛) and shear stiffness (𝑘𝑠). The linear springs cannot sustain 

tension, and slip is accommodated by using the friction coefficient (𝜇). A more detailed 

description of the contact models is available in Itasca’s (2014) online manual [47]. 

In the tested specimen, the normal stiffness 𝑘𝑛  and shear stiffness 𝑘𝑠 are set based on a 

specified contact deformability method. In other words, the 𝑘𝑛 and 𝑘𝑠 of a homogeneous, 

isotropic, and well-connected granular assembly experiencing small-strain deformation can be 

derived from the effective modulus (𝐸∗) and the normal-to-shear stiffness ratio (𝑘∗) at the 

contact [47], 

𝑘𝑛 =
𝐴𝐸∗

𝐿
;    𝑘𝑠 =

𝑘𝑛

𝑘∗        (1) 

𝐴 = 𝜋𝑟2  (in 3D)                                                                         (2) 

where r is the smaller value of  𝑅(1), and 𝑅(2) and L is the summation of  𝑅(1)and 𝑅(2) (Fig. 

2b). 

Contact stiffness of the flexible membrane: Micro-properties of the bonded-ball membrane 

are calibrated to get a stress-strain response similar to that of a smooth rubber membrane 

surface. One solution is to match the energy that dissipates from a unit cell of the bonded-ball 

membrane to the energy of the corresponding rubber membrane area [48]. The center particle 

of a unit cell is in contact with six neighboring unit cells (Fig. 1); thus, the total energy stored 

in a unit cell Ucell can be calculated as follows: 
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𝑈𝑐𝑒𝑙𝑙 = ∑ 𝑈𝑐6
𝑐 =

𝐿𝑐
2

4
∑ [𝐾𝑛𝜀𝑖𝑗

𝑐 𝑙2𝑗𝑙2𝑖𝜀𝑘𝑙
𝑐 𝑙2𝑘𝑙2𝑙 + 𝐾𝑠𝜀𝑖𝑗

𝑐 𝑙2𝑗(𝑙1𝑖 + 𝑙3𝑖)𝜀𝑘𝑙
𝑐 𝑙2𝑙(𝑙1𝑘 + 𝑙3𝑘)]6

𝑐             (3)                 

where, 𝐿𝑐, 𝜀𝑖𝑗
𝑐 , and 𝑈𝑐are the contact distance, equivalent strain, and equivalent strain energy 

for each contact 𝑐, respectively; and 𝑙𝑖𝑗 represents the cosine angle between the global and local 

coordinate axes. Strain energy density can be computed from the volume of the unit cell (𝑉𝑐𝑒𝑙𝑙).  

The surrounding area is represented as one-third of the equilateral triangle (Fig. 1) by joining 

two adjacent corners, and the area of each unit cell can be calculated as: 

 𝑣 = 2√3𝑟2      (4)                                                                                                                                        

where 𝑟 is the radius of bonded membrane particle. If the thickness of the membrane equals to 

𝑡, then the volume of the unit (𝑉𝑐𝑒𝑙𝑙) cell is: 

 𝑉𝑐𝑒𝑙𝑙 = 2√3𝑡𝑟2     (5)                                                                                                                                                                    

The distance between two particles equals two times the ball radius (𝐿𝑐 = 2𝑟), and the strain 

energy density is: 

 𝑢𝑐𝑒𝑙𝑙 =
𝑈𝑐𝑒𝑙𝑙

𝑉𝑐𝑒𝑙𝑙
=

√3

6𝑡
∑ [𝐾𝑛𝜀𝑖𝑗

𝑐 𝑙2𝑗𝑙2𝑖𝜀𝑘𝑙
𝑐 𝑙2𝑘𝑙2𝑙 + 𝐾𝑠𝜀𝑖𝑗

𝑐 𝑙2𝑗(𝑙1𝑖 + 𝑙3𝑖)𝜀𝑘𝑙
𝑐 𝑙2𝑙(𝑙1𝑘 + 𝑙3𝑘)]6

𝑐       (6)                         

It is assumed that the corresponding strain tensor in a unit cell stays uniform so that the local 

strain is equal to the overall strain in a unit cell (𝜀𝑖𝑗 = 𝜀𝑖𝑗
𝑐 ). The stress tensor of a combined 

discrete body can be formulated by differentiating the strain energy density for the 

corresponding strain tensor as follows: 

𝜎𝑖𝑗 =
𝜕𝑢𝑐𝑒𝑙𝑙

𝜕𝜀𝑖𝑗
=

1

𝑉

𝜕 ∑ 𝑈𝑐6
𝑐

𝜕𝜀𝑖𝑗
=

1

𝑉
∑

𝜕𝑈𝑐

𝜕𝜀𝑖𝑗

6
𝑐 =

1

𝑉
∑

𝜕𝑈𝑐

𝜕𝜀𝑖𝑗
𝑐

6
𝑐 =

√3

3𝑡
∑ [𝐾𝑛𝑙2𝑗𝑙2𝑖𝜀𝑘𝑙

𝑐 𝑙2𝑘𝑙2𝑙 + 𝐾𝑠𝑙2𝑗(𝑙1𝑖 +6
𝑐

                                                               𝑙3𝑖)𝜀𝑘𝑙
𝑐 𝑙2𝑙(𝑙1𝑘 + 𝑙3𝑘)]                                                        (7) 

Similarly, the elastic stiffness tensor at each contact point of bonded balls is calculated by 

differentiating the stress tensor for the strain tensor as follows: 

       𝐶𝑖𝑗𝑘𝑙 =
𝜕𝜎𝑖𝑗

𝜕𝜀𝑘𝑙
=

1

𝑉
∑

𝜕2𝑈𝑐

𝜕𝜀𝑖𝑗
𝑐 𝜕𝜀𝑘𝑙

𝑐
6
𝑐  =

√3

3𝑡
∑ [𝐾𝑛𝑙2𝑗𝑙2𝑖𝑙2𝑘𝑙2𝑙 + 𝐾𝑠𝑙2𝑗(𝑙1𝑖 + 𝑙3𝑖)𝑙2𝑙(𝑙1𝑘 + 𝑙3𝑘)]6

𝑐      (8)                                                                                  

As a result, the analytical solution for calculating the normal stiffness (𝐾𝑛) and shear stiffness 

(𝐾𝑠) of the membrane particles can be formulated as 

 𝐾𝑛 =
𝐸𝑡

√3(1−𝜐)
     (9)                                                                                                                              

 𝐾𝑠 =
𝐸𝑡(1−3𝜐)

√3(1−𝜐2)
  (10)

     

where 𝐸, 𝑡, and 𝜐 are the elastic membrane modulus, the thickness of the membrane, and 

Poisson ratio in the whole flexible membrane system, respectively [34]. 

Steps for modeling triaxial tests implementing bonded-ball flexible membrane: This 

algorithm was developed by incorporating the membrane forming technique described by Lu 

et al. (2018) and Qu et al. (2019) [43,34]. The steps are as follows. 

1. Specimen particles are generated in a rigid cylindrical wall.  

2. All the linear and rotational velocities of the specimen particles are set to zero; then, 

the original rigid cylindrical wall is deleted.  

3. A hexagonal bonded-ball membrane is installed, and the linear contact bond is activated 

between membrane particles.  
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4. The velocity of membrane particles is fixed (i.e., no movements). Start an “iteration” 

process allowing the specimen particles to move freely until a static equilibrium state 

is achieved.  

5. An equivalent static force is converted from the confining pressure and applied to the 

membrane particles to maintain the constant hydrostatic pressure in the specimen.  

6. Perform iterations until the whole system achieves a static equilibrium. 

7. The vertical loading is applied to the specimen using a servomechanism. The 

servomechanism is implemented by controlling the movement of the walls using a 

constant velocity. 

8. A rate displacement of 0.05 mm/s is applied to the top and bottom wall, which is slow 

enough to maintain a quasi-static condition. 

9. The triaxial loading process stops when the axial strain reaches the prescribed value of 

6%. 

 

Stress-strain calculations for the specimen with the flexible membrane: Stress is a 

continuum quantity and does not exist at any point in a discrete medium of particle assembly. 

Instead, contact forces and displacements are used to study the material behaviors on a 

microscale in the PFC model. The average stress in a certain region with volume 𝑉 in the static 

condition is: 

 𝜎 =  −
1

𝑉
∑ 𝐹(𝑐) × 𝐿(𝑐)

𝑁𝑐
    (11)                                                                                                                                                   

where 𝑁𝑐 is the total number of contacts within the volume, 𝐹(𝑐) is the contact force vector, 

and 𝐿(𝑐) is the branch vector joining the centroids of the two bodies in contact. The negative 

sign indicates the compressive stress to the system. 

A bonded-ball flexible membrane has an uneven surface, which makes it more difficult to 

calculate the volume of the deformed specimen compared to that of a rigid membrane. The 

logarithmic value of strain is useful to quantify the distortion due to loading in this case. The 

axial strain, 𝜀1can be calculated as: 

 𝜀1 = − ∫ 𝛿𝜀 = − ∫
𝛿𝐻

𝐻

𝐻

𝐻0
= −ln (

𝐻

𝐻0
) = ln (

𝐻0

𝐻
)    (12)                                                                                                     

and, the volumetric strain, 𝜀𝑉 can be calculated as: 

 𝜀𝑉 = − ∫ 𝛿𝜀𝑉 = − ∫
𝛿𝑉

𝑉

𝑉

𝑉0
= −ln (

𝑉

𝑉0
) = ln (

𝑉0

𝑉
)       (13)                                                                                                   

where 𝐻 and 𝑉 are the current height and volume of the specimen, and 𝐻0 and 𝑉0 are the 

original height and volume of the specimen before starting the test. Here, compression is 

positive.  

3.1 Model development criteria 

In a DEM triaxial test simulation, distinct differences exist between the membrane particles 

and the specimen particles, including size, stiffness, and geometric arrangement. To obtain 

more accurate results on the stress-strain responses of the specimens with a bonded-ball flexible 

membrane, the following criteria were maintained:   

Specimen particle size and membrane particle size: Qu et al. (2019) performed sets of 

uniaxial tension tests and compared them with the analytical solution to observe the modeling 

efficiency [34]. They concluded that the numerical model with a flexible bonded-ball 

membrane can have less than 5% error if the following empirical rule of radius ratio is used: 

35 ≤
𝑅

𝑟
≤ 100            (14) 
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where 𝑅 is the test cylinder radius and 𝑟 is the membrane ball radius. When the radius ratio is 

less than 35, larger gaps exist between membrane particles, and the results become 

unsatisfactory. On the other hand, when the radius ratio is more than 100, the number of 

elements is significantly large, which leads to exceptionally high computational costs.  

As in a typical laboratory triaxial test, the diameter of the specimen (or the inner diameter of 

test cylinder 𝐷) should be at least six times greater than the maximum particle sizes 𝑑𝑚𝑎𝑥. 

Membrane particles should be small enough to achieve the closest packing, which can be 

achieved by using smaller sized membrane particles, but the trade-off is the higher 

computational time. To get satisfactory results at a reasonable computation time, Bono et al. 

(2012) suggested that membrane particle size may be taken as one-third of the specimen 

particles [41]. This ratio is used in this study. 

Particle friction coefficient: The local friction coefficient of sand has a strong effect on the 

deformation of particles [7], and the contact stiffness and friction coefficient have strong effects 

on shear testing results [49,50]. For the calibration of sand microparameters using DEM 

simulations, to match the critical-state shear stress, Ahlinhan et al. (2018) used a particle 

friction coefficient value greater than 1.0 [51]. A high value on the particle friction coefficient 

can compensate for the low rotational and shearing resistance of spherical particles. The high 

value can also account for the irregularity effects on the particle shape—to possibly increase 

the overall shearing resistance between spherical particles. For this study, a lower friction 

coefficient of 0.3 was chosen as a starting point for the model calibration, and later, to increase 

the interlocking between spherical particles, a higher friction coefficient larger than 1.0 was 

used to study the stress-strain relationship.  

Application of confining pressure: As like a laboratory triaxial test, the hydrostatic confining 

pressure is applied to the membrane as isotropic stress in simulating of the test. For the bonded-

ball flexible membrane approach, the confining pressure needs to be converted to the 

equivalent static force that acts uniformly from all directions. Since the membrane is packed 

by hexagonal ball configuration, the whole system consists of a set of triangular bodies (Fig. 

1). Hence, the resultant force acting on each particle can be computed from six neighboring 

particle triangles:    

 𝐹∗ =
𝜎𝑠𝑡𝑎𝑡𝑖𝑐 

3
∑ 𝑛𝑖

6
𝑖 𝑆𝑖    (15) 

where  𝜎𝑠𝑡𝑎𝑡𝑖𝑐 is the confining stress; 𝑛𝑖 and 𝑆𝑖 are the normal direction and area of the 𝑖𝑡ℎ 

triangle, respectively [34]. 

4. Analyses, Results and Discussions 

For a DEM model, there exists micro-structural input parameters that cannot be measured 

directly in the laboratory; thus, a common approach is to calibrate or back-calculate these micro 

parameters by simulating laboratory tests and adjusting these parameters to match with the 

experimental data. Note that the stress-strain responses of the numerical experiment are 

sensitive to two or more micro parameters [52-54], and there is no unique solution since more 

than one combination of the parameters may result in a similar stress-strain response. Adjusting 

the micro parameters was necessary for model calibration and was achieved by matching the 

simulation results with the experimental data. Sensitivity analyses were carried out to identify 

the effects of the microparameters on the stress-strain responses of granular soils, and based on 

the results, micro-parameters were selected for use in the DEM model. The model was verified 

using experimental data, and the analysis were carried out for the stress-strain response of the 

simulated triaxial tests.  

4.1 Sensitivity analysis 
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Sensitivity analyses were performed to identify the effects of microparameters on the stress-

strain responses of granular soils. Two sets of numerical simulations were performed. Set 1 

includes cases [1.1] to [1.5] with varying particle stiffness. Set 2 includes cases [2.1] to [2.5] 

with varying particle friction coefficients. Inputs for the sensitivity analysis are presented in 

Table 1. The base values of the particle stiffness and friction coefficient were set to 106𝑁/𝑚 

and 0.3 respectively. Confining pressure, 𝜎3, was at 100 𝑘𝑃𝑎.  

For Set 1, an increase was observed in particle normal stiffness and shear stiffness resulting in 

an increase in the material elastic modulus, shown as the slopes of the stress-strain curve 

increases (Fig. 3a). However, changes in the normal and shear stiffness does not affect the peak 

strength of the curves, since there is no clear trend for the peak values in the different cases. 

For Set 2, it was observed that increasing the friction coefficient causes an increase in peak 

strength (Fig. 3b). However, the increasing friction coefficient does not affect the material 

elastic modulus, since the slope of the curves is the same. Furthermore, an increase in friction 

coefficient does not affect the residual stresses of the curves either. An application of this 

finding is that, for the model calibration, if the desired elastic modulus is reached, then the 

particle friction coefficient is adjusted to match the peak strength of the numerical results with 

the experimental result. 

Table 1. Inputs for sensitivity analysis 

Numerical Simulations 𝑘𝑛 (𝑁 𝑚)⁄  𝑘𝑠 (𝑁 𝑚⁄ ) 𝜇 (−) 

Base value 106 106 0.3 

Case [1.1] 𝑘𝑛1.1 = 0.1𝑘𝑛 𝑘𝑠1.1 = 0.1𝑘𝑠 𝜇1.1 = 𝜇 

Case [1.2] 𝑘𝑛1.2 = 0.25𝑘𝑛 𝑘𝑠1.2 = 0.25𝑘𝑠 𝜇1.2 = 𝜇 

Case [1.3] 𝑘𝑛1.3 = 0.5𝑘𝑛 𝑘𝑠1.3 = 0.5𝑘𝑠 𝜇1.3 = 𝜇 

Case [1.4] 𝑘𝑛1.4 = 0.75𝑘𝑛 𝑘𝑠1.4 = 0.75𝑘𝑠 𝜇1.4 = 𝜇 

Case [1.5] 𝑘𝑛1.5 = 𝑘𝑛 𝑘𝑠1.5 = 𝑘𝑠 𝜇1.5 = 𝜇 

Case [2.1] 𝑘𝑛2.1 = 𝑘𝑛 𝑘𝑠2.1 = 𝑘𝑠 𝜇2.1 = 𝜇 

Case [2.2] 𝑘𝑛2.2 = 𝑘𝑛 𝑘𝑠2.2 = 𝑘𝑠 𝜇2.2 = 1.33𝜇 

Case [2.3] 𝑘𝑛2.3 = 𝑘𝑛 𝑘𝑠2.3 = 𝑘𝑠 𝜇2.3 = 2.33𝜇 

Case [2.4] 𝑘𝑛2.4 = 𝑘𝑛 𝑘𝑠2.4 = 𝑘𝑠 𝜇2.4 = 3.33𝜇 

Case [2.5] 𝑘𝑛2.5 = 𝑘𝑛 𝑘𝑠2.5 = 𝑘𝑠 𝜇2.5 = 5𝜇 
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(a)  (b)  

Figure 3. Stress-strain curves from sensitivity analyses. (a) Stress-strain curves for Set 1 with 

different particle stiffnesses, showing that the elastic modulus increases with the increasing the 

particle stiffness and (b) stress-strain curves for Set 2 with different particle friction coefficients 

show how peak strength increases with increasing the particle friction coefficient. 

4.2 Calibrating and Validating the Model  

This study adopted experimental triaxial test data of steel balls performed by Lin et al. (2016) 

to calibrate and validate the 3D numerical model [55]. Numerical stiffness parameters such as 

normal stiffness 𝑘𝑛 and shear stiffness 𝑘𝑠 were determined to match the elasticity modulus 

(stress-strain curve for strain less than 1%) of the steel material. After achieving the target 

elasticity modulus, the particle-particle friction coefficient (𝜇) was varied to adjust the peak 

stress of the numerical results.  

For the model validation, three simulation tests were run at different confining pressures of 

100, 300, and 500 KPa. Inputs of microscopic parameters used in the model include normal 

stiffness of 7 × 105 N/m, shear stiffness of 3 × 105 N/m, and friction coefficient of 0.3. 

Obtained stress-strain curves of the three simulated tests are presented along with the 

experimental test data from Lin and Zhang (2016) [55] in Figure 4a.  The curves are almost 

identical showing the same behaviors of the simulated specimens as of the experimental 

specimens. Our model’s precision was tested by running three samples two time each. These 

tests showed the stress-strain curves of the repeated runs to be identical (Fig. 4b). This 

agreement verified the PFC DEM model for the analysis. The developed model can be used to 

predict the nonlinear stress-strain behavior of granular materials. 
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         (a)       (b)  

Fig. 4. Validation and precision of the DEM model. (a) Comparison of experimental and numerical data 

showing the model’s accuracy and (b) repeated runs with identical results showing the model’s 

precision. 

 

4.3 Effects of particles size on deviatoric stress, friction angle, and dilatancy angle 

Our model shows its potential to isolate individual factors that affect soil strength and strain 

properties. These factors may include particle size, shape, and surface smoothness. For this 

study, the effects of particle size on stress-strain behaviors, deviatoric stress, friction angle, and 

dilatancy angle were investigated. Four scenarios were considered covering soil with randomly 

created particle sizes, soil with uniform particle size, and two soils, each with two different  

particle sizes, as follows: 

• Case I: Soil with randomly created particle sizes. In this case, the minimum particle 

size was not changed while the maximum particle size was increased. In between are 

randomly created particle sizes. The focus here was a study on the effects of the 

presence of larger particle sizes and the mean particle size D50 on the three parameters 

of deviatoric stress, friction angle, and dilatancy. 

• Case II: Soil with uniform spherical particles. The particle size was increased from 

4 mm to 12 mm to study the effects of particle size on the three parameters. 

• Cases III and IV: The focus here was on soil consisting of only two particle sizes, the 

smaller diameter, DS , and larger diameter, DL.  Smaller particles with diameter DS make 

up 90% of the specimen volume. Larger particles with diameter DL make up 10% of 

the volume. Starting with uniform soil (DS = DL) the parameters for both cases follow: 

• for Case III: DS was kept unchanged, and the larger diameter DL was increased from 4 

mm to 12 mm 

• for Case IV: DL was kept unchanged, and smaller diameter DS was decreased from 12 

mm to 4 mm.  

Soil specimens were contained in cylinders made up of bonded balls to simulate flexible 

membranes. The cylinders were 140 mm high and 70 mm in diameter. Microscopic parameters 

used in the model are shown in Table 2. The axial strain rate was 0.05 mm/s, small enough to 

consider the soil specimen as being in a quasi-static condition. The load is quasi-static and is 

applied slowly to maintain a low strain rate, allowing the system to deform slowly so that the 

inertia force developed in the system is negligible. The benefit of maintaining a quasi-static 

condition is to keep the internal pressure developed from the external compression constant 

and uniform.   
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Table 2. Microscopic parameters  

Properties Test specimen Membrane 

Contact model Linear Linear contact bond 

Minimum ball radius (mm) 3.0 1.0 

Maximum ball radius (mm) 6.0 1.0 

Density (kg/m3) 2650 2000 

Friction coefficient 4.0 0 

Effective modulus (Pa) 3 × 107 1.25 × 106 

Poisson ratio - 0.2 

Normal bond strength (Pa) - 10100 

Shear bond strength (Pa) - 10100 

𝑘𝑛 𝑘𝑠⁄  1.0 𝑘𝑛 and 𝑘𝑠 were calculated based on the 

Poisson ratio, membrane thickness, 

and membrane modulus 

Analysis for Case I: Effects of larger particle size and 𝐷50 on deviatoric stress, friction angle, 

and dilatancy were studied by simulating triaxial tests for three soils with three specimens T1, 

T2, and T3. The minimum diameter was kept at 6 mm, and the maximum diameter was 

increased to 8 mm, 10 mm, and 12 mm (Table 3). Spherical particles with different diameters 

in between were randomly created to increase 𝐷50. All specimens have the same porosity. The 

number of randomly created particles in each sample ranges from 863 to 2559. The grain size 

distributions for the specimens are shown in Fig. 5. 

Table 3. Numerical specimen characteristics 

Specimen 

Code 

Minimum 

diameter, 

𝐷𝑚𝑖𝑛 (mm) 

Maximum 

diameter, 

𝐷𝑚𝑎𝑥 (mm) 

𝐷50 

(mm) 

T1 6 8 6.87 

T2 6 10 7.81 

T3 6 12 9.13 

 

Fig. 5. Grain size distribution curves for soil specimens. 

Figure 6a.i shows stress-strain responses of the three specimens at a low confining pressure of 

35 kPa. Specimen T1’s peak stress is the lowest at 130 kPa.  The highest peak stress value was 

at 142 kPa for Specimen T3 which has the largest maximum size and highest D50. An 



 
 

14 
 

approximately 8% increase in the peak deviatoric stress was observed by varying particle sizes, 

showing the dependency of the shear strength on the particle diameter.  

To obtain the soil strength parameter of the friction angle for the soils, additional tests with 

higher confining pressures of 70 kPa and 150 kPa were simulated. Similar responses were 

observed confirming that for this Case I, specimens with larger maximum size and D50  generate 

higher strengths (Fig. 6b.i and 6c.i). In the post-peak zone of the stress-strain curves, the 

specimens exhibited strain-softening behavior for all three confining pressures.  

  
(i) Stress-strain curves. (ii) Volumetric strain. 

(a) Confining pressure 𝜎3 = 35 𝑘𝑃𝑎. 

  
(i) Stress-strain curves. (ii) Volumetric strain. 

(b) Confining pressure 𝜎3 = 70 𝑘𝑃𝑎. 
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(i) Stress-strain curves. (ii) Volumetric strain. 

(c) Confining pressure 𝜎3 = 150 𝑘𝑃𝑎. 

Fig. 6. Case I: stress-strain relation and volume change. 

Figure 7 presents Mohr’s-circles and failure envelopes for the three soil specimens. The angle 

of internal friction (𝜑) determined from the envelopes is 38.1° for T1 and increases to 42.3° 

for specimen T3 (Table 4). For these soils with the same minimum particle size, the larger the 

maximum particle size is, the higher the internal friction angle is. This is consistent with the 

research results reported by Dai et al. (2016) and Harehdasht et al. (2017) [56,57]. The finding 

that shear strength increases with the increase of coarse content in the specimen is in consistent 

with finding from Xiaofeng et al. (2013), and Kim and Ha (2014) [27,28].  

Note that each envelope is tangent with the three circles, meaning that, as in theory for 

cohesionless soil only one test is needed to determine the soil’s failure envelope and friction 

angle instead of requiring several tests for a soil as in the laboratory. For the rest of the analysis, 

only one test at one confining pressure is analyzed to obtain the friction angle for a soil 

specimen.  

 

Fig. 7. Mohr’s Circles generated for T1, T2, and T3 with the Mohr-Coulomb 

failure envelopes to obtain the friction angles. 

 

Table 4. Angle of internal friction and dilatancy angle. 

Specimen 

Code 

Normal Stress and Shear Stress (kPa) 
𝜑 (°) Ψ (°) 

𝜎3 = 150 𝜎3 = 70 𝜎3 = 35 

T1 𝜎1 = 636 𝜎1 = 272 𝜎1 = 135 38.1 9.7 

T2 𝜎1 = 711 𝜎1 = 331 𝜎1 = 163 40.6 12.9 

T3 𝜎1 = 767 𝜎1 = 356 𝜎1 = 178 42.3 15.1 

 

Volume change was observed for all specimens (Fig. 6). At the initial stage of triaxial shearing, 

all the tests share the same rate of volume contraction. This trend is due to the elastic 

deformation which dominates initial shearing. However, in the post-peak zone, a noticeable 

difference in dilation occurs. The changes in dilatancy angles for the three specimens were 
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determined from 9.7° to 15.1° (Table 4). Dilatancy angles are increased by 35% when particle 

sizes are increased in these randomly created specimens, showing the presence of larger 

particle sizes has strong impacts on the dilatancy of granular soil. Additional observation is the 

effects of confining pressures, higher confining pressure results in higher deviatoric stress, and 

failure occurs at larger axial strains. Also, higher confining pressure causes dilation to occur at 

a larger axial strain. Expansion/dilation starts to occur at around 0.6% axial strain when 

confining pressure is at 35 KPa, and may reach up to 4% with the confining pressure of 150 

KPa. 

The observation that those specimens, with the same minimum particle size and same porosity 

but have the presence of larger particles, being capable of producing a higher resistance to shear 

can be qualitatively explained. During shear testing, the external load is transferred in a 

granular specimen by forming local contact forces at contact points. Particles in the granular 

specimen gradually move to a new arrangement during shearing. The relative movement of 

larger particles is less than that of the smaller particles since the smaller particles have the 

tendency to fill in the voids. The movements lead to continuous breaks and a reconstruction of 

contacts. Since the load is strain-controlled, and the larger particles move less, the stress 

concentrates more and more on the larger particles’ contacts, resulting in more load is carried 

by the larger particles. For this Case I soil with gradation, the deviatoric stress, friction angle 

and dilatancy angle all increased as the mean particle size 𝐷50 increased.  

Analysis for Cases II, III and IV:  Soil for Case II has uniform spherical particles. Soil for 

Cases III and IV has two particle sizes, smaller particles with diameter Ds, which makes up 

90% of the specimen volume, and larger particles with diameter DL, which makes up the other 

10% of the specimen volume. Starting with Ds being equal to DL, for Case III, Ds was kept at 

4 mm and DL was increased from 4 mm to 12 mm. For Case IV, DL was kept at 12 mm, and Ds 

was reduced from 12 mm to 4 mm (Table 5). All soil specimens have the same porosity of 

0.38, under a confining pressure of 150 kPa. The number of randomly created particles in each 

sample ranges from 408 to 10,443. 

For Case II:  Studies considered five soils made up of uniform spherical particles. When 

increasing the size of the particles from 4 mm to 12 mm, the peak deviatoric stress, internal 

friction angles, and dilatancy angles—all decreased. The deviatoric stress reduced by almost 

37%, and the friction angle decreased from 36.3° to 28.5°. The dilatancy angle decreased from 

5.1° to 0° as shown in Fig. 8a and 9a. Thus, for Case II, the three parameters decrease with an 

increasing D50. Conversely, in the previous analysis of Case I for soil with gradation, the 

specimen’s peak deviatoric stress, internal friction angle, and dilatancy angle increased with 

an increasing D50. The finding from this study that the angle of internal friction decreases with 

the increase of uniform particle size disagrees with a conclusion from Islam et al. (2011), which 

was based on a series of direct shear tests. They stated that with an increase in particle size, the 

friction angle increases for uniform sands and graded sands [32]. However, our finding is in 

agreement with two older studies by Kirpatric (1965) and Marschi et al. (1972) [25,26].. Our 

stance on this issue can be explained by noting the reduction in deviatoric stress and friction 

angle with the increasing particle sizes. This observation is based on uniform soil with spherical 

particles, wherein the increasing particle size reduces the number of contact points in the 

specimens, thereby causing a reduction in the soil’s strength.  

The fittings of the peak deviatoric stress, internal friction angles, and dilatancy angles as 

functions of particle size are presented in Figure 9a.  The relationships between the three 

parameters and particle size are inversely linear. These relationships can help predict the 

changes in the parameters with particle size.  
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For Case III: The smaller diameter DS was kept unchanged at 4 mm, and the larger diameter 

DL is increased, peak deviatoric stress, internal friction angle, and dilatancy angle all increased. 

When DL increased from 4 to 12 mm. The deviatoric stress increased 47%, and the friction 

angle increased from 36.3° to 43.0°. The dilatancy angle increased significantly from 5.1° to 

16.0°. This means that for Case III, the three parameters increased with the increasing D50. 

Direct relationships can be clearly seen between the larger particle size DL with the deviatoric 

stress, friction angle, and dilation angle. This is due to the presence of larger particles in the 

specimen with effects that are as similar to those described in Case I. The fitting obtained in 

Fig. 9b shows the three relationships to be almost linear.  

For Case IV: When the larger diameter DL was kept unchanged, and the smaller diameter DS 

was decreased, the deviatoric stresses, friction angle, and dilatancy angle of the soil increased. 

When Ds decreased from 12 to 4 mm, the deviatoric stress increased  by more than 120%, the 

friction angle increased  significantly from 28.5° to 43.0°, and the dilatancy angle increased 

from 0° to 16.0°. Here, the three parameters decreased with the increasing D50. This is the 

reverse relationship similar to Case I. Again, linear relationships were observed between DS 

the particles in the 90% volume and the three parameters, which are shown in Fig. 9c.    
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Table 5. Deviatoric stress, internal friction angle, and dilatancy angle 
 Diameter ∆𝜎 (𝑘𝑃𝑎) 𝜑 (°) at peak Ψ (°) 
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4 mm 435 36.3 5.1 

6 mm 372 33.6 4.2 

8 mm 338 32.0 2.3 

10 mm 317 30.8 0.9 

12 mm 274 28.5 0 
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4 mm 435 36.3 5.1 

6 mm 481 38.0 9.6 

8 mm 514 39.2 11.1 

10 mm 613 42.2 15.0 

12 mm 640 43.0 16.0 
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4 mm 640 43.0 16.0 

6 mm 540 40.0 12.1 

8 mm 473 37.7 9.2 

10 mm 362 33.1 3.6 

12 mm 274 28.5 0 

 

 



 
 

19 
 

  

(i) Stress-strain curves. (ii) Volumetric strain. 

(a) Case II: Uniform particle size. 

  

(i) Stress-strain curves.  (ii) Volumetric strain. 

(b) Case III: 90% volume with 4 mm particle base. 

  

(i) Stress-strain curves.  (ii) Volumetric strain. 

(c) Case IV: 10% volume with 12 mm particle base. 

Fig. 8. Stress-strain relation and volume change. 
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(i) Deviatoric stress and friction angle as a funtion 

of partical size. 
(ii) Dilatancy angle as a funtion of partical 

size. 

(a) Case II: Uniform particle size. 

  

(i) Deviatoric stress and friction angle as a funtion 

of larger particle size portion. 
(ii) Dilatancy angle as a funtion of larger 

particle size portion.  

(b) Case III: 90% of 4 mm-particle base mixed with the remaining  
10% volume consisting of different size particles.  
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(i) Deviatoric stress and friction angle as a funtion 
of smaller particle size portion. 

(ii) Dilatancy angle as a funtion of smaller 
particle size portion.  

(c) Case IV: 10% of 12-mm particles base mixed with 90% of different size particles. 

Fig. 9. Relationship between deviatoric stress, angle of 
internal friction, and dilatancy angle with particle size.  

Among the four cases with different soil gradations, two cases revealed an increase in 

deviatoric stress, friction angle, and dilatancy angle with a decreasing D50.  This is because of 

the increase in the number of particles and particle contacts within Case II specimen’s  uniform 

soil as well as a better particle size distribution when increasing the range of the particle sizes 

with the presence of larger-diameter particles for Case IV. These conditions make soil stronger 

and more resilient to shear. Conversely, for the other two cases, where the three parameters 

increase with an increasing D50, these cases involve a smaller range of particle sizes with a 

poorer grain size distribution, which makes the soil weaker. The finding of linear relationship 

in the deviatoric stresses, friction angle, and dilatancy angle based on particle size is significant 

since it can help predict soil strength and strain properties when the particle size changes. 

4.4 Observations on shear bands 

In a laboratory triaxial test, it is difficult to observe the weakest plane in a specimen during 

shear failure or “shear band.” The developed DEM model for the triaxial test with a flexible 

membrane is able to track the shear band during failure. As the granular specimen transmits 

external forces, internal force chains continuously break and reform (Wilson and Sáez, 2017); 

thus, the weakest internal forces during shear failure can be traced. A shear band can be tracked 

by either tracing particle movements or tracing the internal forces in the discrete granular 

medium. Shear band is more visible and more band-like for the higher confining stress 𝜎3 of 

150 KPa than for the lower 𝜎3.  

To observe and compare the development of the shear bands for different particle sizes and 

confining pressures, triaxial tests on two specimens with a uniform particle size of 4 mm and 

8 mm were simulated at three confining pressures. Both specimens generated almost slant 

band-like shear zones. Figure 10 shows the specimen with 4-mm particles possessing a 

comparatively thinner shear band area, and the specimen with 8-mm particles possessing a 

thicker shear band area. The thicker shear band for larger particles may come from the 

interaction of larger particles when the specimen has a larger area of the specimen involved in 

the shear band. The movement of the particles on the shear surface also seems larger for large 

particles as shown by the differences between Fig, 10c and 10f. 



 
 

22 
 

  
(a) Specimen with 4 mm particles, 𝜎3=35 kPa  (d) Specimen with 8 mm particles, 𝜎3=35 kPa 

  
(b) Specimen with 4 mm particles, 𝜎3=70 kPa (e) Specimen with 8 mm particles, 𝜎3=70 kPa 

  
(c) Specimen with 4 mm particles, 𝜎3=150 kPa (f) Specimen with 8 mm particles, 𝜎3=150 kPa 

Figure 10. Shear bands during failure. 

The 3D DEM model enables predictions of behavioral characteristics in granular soil. For 

future study, Geosynthetics will be added to the specimen to study the stress-strain behaviors 

of reinforced soil in a mechanically stabilized earth (MSE) retaining wall or a geosynthetic 

reinforced soil (GRS) mass, which will have important applications that can improve the design 

of these structures. 
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5. Conclusions 

A 3D DEM model was developed using PFC, utilizing a bonded-ball flexible membrane 

approach to study the strength and strain properties of cohesionless soils as a discontinuous 

discrete material. Sensitivity analyses were carried out for the microparameters as inputs for 

the 3D model, which led to the finding that an increase in particle normal stiffness and shear 

stiffness increases the material elastic modulus. The change of normal and shear stiffness, 

however, does not affect the peak strength of the soils. Besides, increasing friction coefficient 

causes an increase in peak strength, but does not affect either the material elastic modulus or 

the residual stresses of the stress-strain curves. A series of triaxial tests with flexible 

membranes were simulated to obtain the stress-strain behaviors of granular soil specimens.  

Four different cases were studied to investigate the effects of particle size and gradation on soil 

strength and strain properties. Increasing the maximum particle size for soil with gradation 

gives rise to the strength, the internal friction angle, and the angle of dilatancy, meaning these 

three parameters increase when increasing the mean particle size D50.  However, these three 

factors do not always increase when the mean particle size D50 increases but depend instead on 

the gradations. The relationships between particle size and deviatoric stress, internal friction 

angle, and dilatancy angle were found to be linear. These linear relationships can provide 

predictions on soil strength and strain properties when particle sizes change. The developed 

model with a bonded-ball flexible membrane that allows the study of soil as a discrete material 

also allows the observance of shear band formation during shear testing.  

The developed model and the findings from this research create the foundation for the future 

research on DEM modeling of reinforced soil in MSE wall and GRS mass. The effects of 

particle size distribution on the behaviors of a GRS composite with varied spacing and type of 

reinforcement are to be investigated to provide optimum designs for GRS walls and bridge 

abutments.  
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