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Abstract

Motivation: Protein phosphorylation is a ubiquitous mechanism of
post-translational modification that plays a central role in cellular signal-
ing. Phosphorylation is particularly important in the context of cancer,
as down-regulation of tumor suppressors and up-regulation of oncogenes
by the dysregulation of associated kinase and phosphatase networks are
shown to have key roles in tumor growth and progression. Despite recent
advances that enable large-scale monitoring of protein phosphorylation,
these data are not fully incorporated into such computational tasks as
phenotyping and subtyping of cancers.
Results: We develop a network-based algorithm, CoPPNet, to enable
unsupervised subtyping of cancers using phosphorylation data. For this
purpose, we integrate prior knowledge on evolutionary, structural, and
functional association of phosphosites, kinase-substrate associations, and
protein-protein interactions with the correlation of phosphorylation of
phosphosites across different tumor samples (a.k.a co-phosphorylation)
to construct a context-specific weighted network of phosphosites. We
then mine these networks to identify subnetworks with correlated phos-
phorylation patterns. We apply the proposed framework to two mass-
spectrometry based phosphorylation datasets for breast cancer, and ob-
serve that (i) the phosphorylation pattern of the identified subnetworks
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are highly correlated with clinically identified subtypes, and (ii) the iden-
tified subnetworks are highly reproducible across datasets that are derived
from different studies. Our results show that integration of quantitative
phosphorylation data with network frameworks can provide mechanistic
insights into the differences between the signaling mechanisms that drive
breast cancer subtypes. Furthermore, the reproducibility of the identified
subnetworks suggests that phosphorylation can provide robust classifica-
tion of disease response and markers.
Availability and implementation: CoPPNet is available at http://compbio.case.edu/coppnet/

1 Introduction

Protein phosphorylation is a ubiquitous mechanism of post-translational modifi-
cation observed across cell types and species, and plays a central role in cellular
signaling. Phosphorylation is regulated by networks composed of kinases, phos-
phatases, and their substrates. Phosphorylation is particularly important in the
context of cancer, as down-regulation of tumor suppressors and up-regulation
of oncogenes (often kinases themselves) by dys-regulation of the associated ki-
nase and phosphatase networks are shown to have key roles in tumor growth
and progression [1, 2]. To this end, characterization of signaling networks en-
ables exploration of the interconnected targets leading to the development of
kinase inhibitors to treat a variety of cancers [3, 4]. In response to the growing
need for large-scale monitoring of phosphorylation, advanced mass spectrom-
etry (MS)-based phospho-proteomics technologies have exploded. These tech-
nologies enable simultaneous identification and quantification of thousands of
phosphopeptides and phosphosites from a given sample [5].

MS-based phospho-proteomics screens create a great opportunity to discover
biology that may not be observed in transcriptomic and proteomic data [6].
Indeed, recent research shows that, as compared to gene expression, data on
post-transcriptional modifications can be more useful in subtyping cancers. As
a striking example, monitoring of the specific phosphorylation pathways reveals
a novel breast cancer subtype that is unique to the phospho-proteomics and can-
not be captured based on DNA mutations, mRNA-level expression, or protein
expression [7].

Although phospho-proteomics provides a critical data source to model sig-
naling pathways, systematic methods for network analysis of phospho-proteins
and phosphosites are relatively scarce. Since most of the methods designed
for genomics and general proteomics are not designed to handle the complex-
ity of phospho-proteomics, phospho-proteomic analyses are often centralized at
the protein level. However, due to the many-to-one mapping from phospho-
sites to proteins (i.e. each protein may have multiple phosphorylation sites),
and also multi-layer annotations (e.g. regulatory function of phosphosites and
kinase-phosphosite associations), novel approaches are needed to fully lever-
age the richness of the data. To enable analysis of phospho-proteomic data
at the level of phosphorylation sites and the relationships between these sites,
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we propose CoPPNet, a network-based algorithm for the analysis of phospho-
proteomic data, which offers the following innovations: (i) Construction of a
PhosphoSite Functional Association (PSFA) network that represents the func-
tional relationship among individual phosphosites. In order to create PSFA
network, we incorporate known structural, evolutionary, and functional associ-
ations between phosphosites, protein-protein interactions, and kinase-substrate
associations. (ii) Utilization of the PFSA network in the identification of phos-
phorylation modules in breast cancer, through filtering of phosphosite pairs
that are potentially functionally associated. CoPPNet accomplishes this by
assigning co-phosphorylation (Co-P) based weights to the edges in PFSA net-
work, where Co-P quantifies the similarity of the phosphorylation patterns of
phosphosites across different breast cancer samples. We have recently intro-
duced the notion of co-phosphorylation and used it in the context of predicting
kinase-substrate associations, showing that it significantly enhances the cover-
age and accuracy of prediction methods over those that utilize static data such
as sequences, structures, and generic networks [8]. Conceptually, Co-P is similar
to gene co-expression, which has been shown to be effective in many biomedical
applications [9, 10]. (iii) Development of a scoring scheme accompanied by an
algorithm to identify co-phosphorylated signaling modules from this weighted
PSFA network.

We test the proposed framework in the context of unsupervised identification
of subtype-specific signaling modules in breast cancer. For this purpose, we
apply CoPPNet on two independent public phospho-proteomics datasets for
breast cancer (BC). Breast cancer is categorized into 4 molecular subtypes:
Luminal A, Luminal B, HER2-enriched and triple-negative (Basal-like). Among
the subtypes, Luminal A has the greatest survival, and Basal has the poorest
survival [11]. While constructing the weighted PSFA network and identifying
co-phosphorylation modules on this network, we do not use any information on
the samples’ clinically determined subtypes.

Our results show that the statistically significant modules identified by CoPP-
Net are reproducible between the two independent datasets and can capture
the differential phosphorylation between breast cancer subtypes. The identified
subtype-specific signaling modules have the potential to provide significant in-
sights into the disruption of signaling processes in different cancer subtypes, and
can be employed in developing subtype specific therapeutic targeting strategies
for breast cancer.

2 MATERIALS AND METHODS

The workflow of the proposed framework for unsupervised identification of co-
phosphorylation (Co-P) modules is shown in Figure 1. As seen in the figure, we
first construct a network to model the functional relationship between phos-
phorylation sites. For this purpose, we incorporate available knowledge on
functional associations between phosphosites, kinase-substrate associations and
protein-protein interactions, and integrate these knowledge into a PhosphoSite
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Figure 1: Workflow of CoPPNet. We first construct a PSFA network to
represents the functional relationship among phosphosites, by utilizing generic
kinase-substrate association, phosphosites associations and protein-protein in-
teraction data. The nodes of the PSFA network represent phosphosites and the
edges represent (1) kinase-substrate association, 2) phosphosites targeted by a
common kinase, (3) functional associations between phosphosites, (4) physical
interaction between proteins harboring the sites. For a given phosphorylation
dataset collected from multiple cancer samples, we weigh the edges of the PSFA
network based on the co-phosphorylation (Co-P) of pairs of sites across these
samples. Then, we identify Co-P modules as sub-networks composed of heavy
edges in this weighted network. Finally, we comprehensively assess the signifi-
cance, reproducibility, subtype-specificity, and biological relevance of the Co-P
modules.

Functional Association (PSFA) network. Subsequently, we utilize a module
identification algorithm to identify sub-networks of the PSFA network that are
composed of highly co-phosphorylated phosphosites (called Co-P modules). The
premise of this approach is that, pairs of phosphosites whose phosphorylation
is related to a specific cancer subtype will exhibit co-variation across different
samples. For this reason, we expect that Co-P can highlight subtype-specific
signaling modules even if subtype information is not available for the samples
that are used to compute Co-P.

To assess the biological significance of the identified significant modules,
we comprehensively evaluate their statistical significance and investigate the
reproducibility of significant modules by utilizing a dataset that comes from a
different patient cohort. Subsequently, we assess the differential phosphorylation
of the sites in the signaling modules between different subtypes and perform
pathway enrichment analysis and kinase enrichment analysis on these modules
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to annotate the modules.
PhosphoSite Functional Association (PSFA) Network. We define

a PhosphoSite Functional Association (PSFA) network as a network that rep-
resents potential functional relationships between pairs of phosphosites. This
network serves the purpose of filtering out the search space for pairs of phos-
phosites whose co-phosphorylation may reveal their functional relationship in
the context of a specific process (e.g., dysregulation of a signaling pathway in
the progression of a certain cancer subtype). In PSFA network G(V,E), V de-
notes the set of nodes in the network, each of which represents a phosphosite;
thus a protein is represented by multiple nodes in the PSFA network. The edge
set E denotes the set of pairwise functional relationships between phosphosites,
where an edge sisj ∈ E between phosphosites si, sj ∈ V may represent one of
the following relationships:

� Functional, Evolutionary, and Structural Association between
Phosphosites (FES). PTMCode is a database of known and predicted
functional associations between phosphorylation and other post-translational
modification sites [12]. The associations included in PTMCode are curated
from the literature, inferred from residue co-evolution, or are based on the
structural distances between phosphosites. We utilize PTMcode as a di-
rect source of functional, evolutionary, and structural associations between
phosphorylation sites.

� Kinase-Substrate Association (KSA). If phosphosite si is a target
of kinase pk and sj is a phosphosite on kinase pk, then there is an edge
between si and sj in the PFSA network. We call these edges KSA edges.
This relationship indicates potential functional association between si and
sj since the regulation of kinase pk through phosphorylation of sj may
influence pk’s action on si. In our experiments, we use PhosphositePLUS
as the main source of information for kinase-substrate association [13].

� Phosphosites Targeted by Common Kinase (TCK). If phosphosites
si and sj (which may be on the same protein or on different proteins) are
targeted by kinase pk, then we call them a shared-kinase pair and include
an edge between si and sj in the PSFA network. We call these edges TCK
edges. We include TCK edges in the PSFA network since the activity of
pk in a specific process may influence the phosphorylation of both si and
sj , which may be captured by their co-phosphorylation. Indeed, studies
have shown that the substrates of a protein kinase can have significant
similarity in terms of their biological functions [14].

� Protein-Protein Interaction (PPI). If two proteins p` and pr physi-
cally interact, for any site si is on p`, and site sj is on protein pr, then there
is an edge between si and sj in the PSFA network. We call these edges PPI
edges. We include PPI edges in the PSFA network, since these edges may
capture functional relationships and post-transcriptional modifications be-
yond phosphorylation, and may remedy the sparse and incomplete nature
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of existing kinase-substrate annotations. In our experiments, we use the
PPIs that are annotated as ”physical” in the BIOGRID PPI database [15]
to infer the PPI edges in the PFSA network.

The PSFA network is a generic network of potential functional associations
between pairs of phosphosites. In the next section, we discuss how to assign
weights to the edges of the PSFA network to represent the co-phosphorylation
of pairs of phosphosites in a specific context.

Assessment of Co-Phosphorylation . As with gene co-expression, cor-
related phosphorylation of phosphosites on proteins may be indicative of their
functional relationship in a specific biological context [8]. Based on this premise,
we use context-specific phosphorylation data, obtained from mass spectrome-
try based phospho-proteomics assays, to assess the co-phosphorylation (Co-P)
of all pairs of phosphosites that are connected in the PSFA network. In gene
co-expression analysis, Pearson’s correlation and mutual information are com-
monly used to assess linear and non-linear relations between the expression
profiles of genes [16, 17]. Recognizing the benefits and shortcomings of each
method, Song et al. [18] developed bi-weight mid-correlation as an alterna-
tive, and showed that it outperforms mutual information in terms of capturing
biologically relevant relationships between genes. while being more robust to
outliers than Pearson’s correlation. Motivated by these results, we use bi-weight
mid-correlation to assess the Co-P of pairs of phosphosites.

Identification of Co-Phosphorylation Modules. Given a weighted
PSFA network G(V,E,w) associated with a specific phosho-proteomic dataset,
our objective is to identify sub-networks of the PSFA network that are en-
riched in highly co-phosphorylated (positively or negatively) pairs of phospho-
sites. This problem is similar to the well-studied problem of identifying altered
sub-networks, in which the nodes are scored based on their dysregulation (e.g.,
z-score indicating differential gene expression) in a given condition [19] or as-
sociation with a disease (e.g., − log of the p-value of association) [20]. In this
network, one or more connected sub-networks composed of high-scoring nodes
are sought. In contrast, in our problem, scores are associated with edges, thus
the problem is also similar to the infamous community detection problem in
network analysis.

As with the altered sub-network identification problem, the key component
of a solution to the problem is the definition of an objective function for scor-
ing a given sub-network. Inspired by Newman’s definition of network modu-
larity [21] and our adaptation of this measure to the identification of disease-
associated modules [20], we here propose a modularity-based approach to scor-
ing co-phosphorylation modules. In this approach, subnetworks are scored based
on the difference between their total edge weight and their expected total edge
weight under a reference model that takes into account the degree distribution of
the network (in our case, the distribution of Co-P across the network). Namely,
for a given set of phosphosites Q ⊆ V , we define the Co-P score of Q according
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to M as
σ(Q) =

∑
si,sj∈Q

w(si, sj)− w̄ (1)

where w̄ is the mean of the absolute values of Co-P across all pairs of phospho-
sites, and w(si, sj) is Co-P of si and sj if there is an edge between them and 0
otherwise. Thus, it penalizes the non-existent edges.

Having defined the Co-P score of a subnetwork as in Equation 1, given
weighted PSFA network G(V,E,w), we search for subnetworks of G that maxi-
mize σ(Q). Since the maximum-weight induced subgraph problem is NP-hard [22],
we use a greedy algorithm for this purpose. Namely, we search the network by
starting from the phosphosite with the largest fold change, repeatedly exam-
ining the phosphosites in the neighborhood of the phosphosites so far in the
subnetwork, and adding to the subnetwork the phosphosites that provide the
best improvement of the subnetwork score. Once we identify a subnetwork with
locally maximal Co-P score, we remove this subnetwork from G and use the
greedy algorithm again to identify the next subnetwork with locally maximal
Co-P score. We repeat this procedure until the entire network is exhausted, and
sort all of the identified subnetworks (called Co-P modules) in decreasing order
of their Co-P score. The pseudocode of the algorithm is provided in Supplemen-
tary material. We also compare the performance of this algorithm against two
other state-of-the-art module identification algorithms: Girvan and Newman’s
algorithm for the identification of communities [23] and the WGCNA algorithm
for clustering gene co-expression networks [24, 25]. We observe that the sub-
networks identified by other algorithms are less parsimonious and tend to be
composed of sites that are on the same protein. CoPPNet identifies more par-
simonious and statistically significant subnetworks by including a penalty term
for non-extant edges in its objective function. Since the PFSA network does
not include edges between sites on the same protein unless they are functionally
associated, CoPPNet is able to identify signaling modules that span across
multiple proteins. We report these results in detail in supplementary material.

Assessment of Statistical Significance To assess the statistical signifi-
cance of all identified Co-P modules, we use two types of permutation tests. For
this purpose, we use two null models: (i) randomize the weights of the edges
of the PSFA network while preserving the topology of the network (thereby
preserving the degree distribution of the phosphosites) to generate N permuted
networks, and (ii) we permute the interactions while preserving the degree of
phosphosites (we use N = 100 in the experimental results reported in the next
section). On each of the permuted networks, we identify and rank Co-P modules
using the algorithm described in the previous section. We then assess the statis-
tical significance of each module identified on the original network by comparing
its score against the scores of the subnetworks that are ranked at least as high
as itself on the permuted networks. We also visualize the scores of the identified
modules in the context of these cumulative empirical distributions. We pick
the modules that are statisitically significant in terms of both null models for
further analysis.
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Assessment of Subtype Specificity. Although the weights of edges in the
PSFA network are computed using co-phosphorylation (Co-P), which is agnostic
to the subtypes of the samples, Co-P captures the co-variation of phosphory-
lation levels of phosphosites across different samples. Therefore, the identified
modules have the potential to be associated with subtype-relevant mechanisms.
Motivated by this insight, we investigate if the identified Co-P modules are com-
posed of phosphosites that exhibit differential phosphorylation between cancer
subtypes. For this purpose, we assess the differential phosphorylation of each
phosphosite in a module between different subtypes. We use standard t-tests to
compare the distribution of relative phosphorylation level (with respect to the
common reference) in different subtypes.

Assessment of Predictive Ability. To assess the utility of identified
modules in predicting subtypes, we train a support vector machine (SVM) based
classifier on one dataset using the sites in the significant modules as features
and assess the performance of this classifier in predicting subtypes on the other
dataset. We compare the performance of these module-based features against a
full model (incorporating all sites) and a model that incorporates all sites that
are significantly deferentially phosphorylated (p¡0.05) between subtypes on the
training dataset.

Assessment of Reproducibility. We assess the reproducibility of iden-
tified Co-P modules by investigating the overlap between significant modules
identified on independent datasets. To assess the overlap between two Co-P
modules that are identified in two independent datasets, we use standard hyper-
geometric test. We assess the reproducibility of subtype specificity by computing
the correlation between the fold changes of sites in the modules with respect to
subtypes across the two datasets. We assess the significance of this correlation
empirically using a permutation test.

Kinase Substrate Enrichment Analysis. Kinase Substrate Enrichment
Analysis (KSEA) seeks to identify kinases whose targets exhibit significantly
altered phosphorylation levels in a given condition. KSEA scores each kinase
based on the relative phosphorylation and dephosphorylation of its substrates
(i.e fold change). In order to assess the value added by Co-P modules, we
perform kinase enrichment analysis by restricting KSEA to the substrates that
are in the significant modules as opposed to all phosphosites that are identified
in the study. To infer the differential activity of kinases between subtypes, we
compare the score of kinases which are computed using the fold change of target
phosphosites across samples in different subtypes. We identify the kinases that
are predicted to have different activity by KSEA using all sites vs. module-
restricted sites and investigate the association of these kinases with survival
using integrated gene expression data and survival information of 1809 patients
from the Gene Expression Omnibus (GEO) [26].

Protein Expression Analysis. We also investigate if protein phospho-
rylation data provide information on cancer substypes beyond what can be
captured by protein expression. For this purpose, we utilize mass-spectrometry
based protein expression data that is obtained from the samples that are used
to obtain the phospho-proteomic data used in our computational experiments.
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We utilize protein expression data in the following way: Using the phospho-
proteomic data, we identify phosphosites in Co-P modules that are significantly
differentially expressed (p < 0.05) between different subtypes. Subsequently,
using proteomic data, we assess the differential expression of the proteins that
harbor these significant phosphosites between different subtypes. If the protein
that harbor the site is not identified in the protein expression data, we exclude
them from the analysis.The result of this analysis is presented in Supplementary
material.

3 Results and Discussion

Datasets

Phosphoproteomics Data. We use two independent public quantitative mass
spectrometry (MS) based phospho-proteomics datasets obtained from breast
cancer (BC) Patient-Derived Xenografts (PDX).

� Huang et al. data: Huang et al. [27] used isobaric tags for relative
and absolute quantification (iTRAQ) to identify 56874 phosphosites in 24
breast cancer PDX models. The clinically determined subtypes for the
samples in this dataset are Basal for 10 samples, Luminal for 9 samples
and HER2-enriched for 5 samples. We remove phosphosites with missing
intensity values in any sample. This results in intensity data for 15780
phosphosites from 4539 proteins, where 13840 serines, 2280 threonines
and 67 tyrosines are phosphorylated. Protein expression data for all of
these samples is also available.

� Mertin et al. data: The NCI Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC) conducted an extensive MS based phospho-proteomics
of TCGA breast cancer samples [7]. After selecting the subset of samples
that have the highest coverage and filtering the phosphosites with missing
intensity values in those tumors, the remaining data contained intensity
values for 11018 phosphosites mapping to 8304 phosphoproteins in 20 tu-
mors. This dataset contains 4 Basal, 9 Luminal and 7 HER2-enriched
samples.

Functional, Evolutionary, and Structural Association between Phosphosites
(FES). We use PTMcode, a database for functional associations of post-translational
modifications within and between proteins [12]. The functional association be-
tween PTM sites have been reported based on the literature survey, co-evolution
of sites, structural proximity and if PTMs at the same residue and location are
within PTM highly enriched protein regions. For our analysis, we just focus on
the functional associations between phosphorylation sites of different proteins.

Kinase-Substrate Associations (KSAs). We use PhosphoSitePLUS as a refer-
ence dataset for kinase-substrate associations [13]. PhosphoSitePLUS reported
9699 kinase-substrate association over 347 kinases.
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Protein-Protein Interaction (PPI) Data. We use a generic human PPI net-
work downloaded from BioGRID database at https://thebiogrid.org [15]. This
network contains 194639 interactions among 18719 proteins.

The number of sites and edges in the final PSFA network and their types
are shown in Table 1. This result suggests that all different types of edges con-
tribute to the functional relevance of the phosphosites in the modules. Although
there are more PPI edges in the PSFA network, TCK edges play an important
role in the identification of signaling modules, since these edges induce cliques
in the PFSA network. In this respect, CoPPNet implicitly identifies kinases
whose targets exhibit enriched differential phosphorylation in specific subtypes.
We elaborate on this feature of CoPPNet in the context of kinase enrichment
analysis later in this section. The overlap between different types of edges is
presented in Table S1.

Table 1: Number of phosphosites and edges in PSFA network and statistically
significant modules

Type of Edges
# sites/ # edges

PSFA Network
9652/173772

Module 1
91/4095

Module 2
68/2026

FES 7999 1 6
KSA 3024 93 306
TCK 34857 4095 1714
PPI 133536 46 17

CoPPNet identifies co-phosphorylation (Co-P) modules that are sta-
tistically significant and reproducible.

We identify co-phosphorylated sub-networks on each of the two datasets using
CoPPNet. We investigate the statistical significance of these subnetworks and
visualize the results of this analysis in Figure 2(a). As seen in the figure, the
two top-scoring subnetworks identified on both datasets have scores at least two
standard deviation above the mean of the top subnetworks identified on 100
randomized networks. At a q-value threshold of 0.01, two of these subnetworks
are detected to be statistically significant for each dataset. Note that since
module identification is exhaustive, we don’t expect all the identified modules
to be significant. In contrast, we observe that, with the exception of the highest-
scoring two modules, the scores of all other modules fall within one standard
deviation of the average score of modules identified on permuted datasets. This
confirms that our null models are realistic.
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Figure 2: CoPPNet identifies highly significant and reproducible co-
phosphorylation (Co-P) modules. (a) Statistical significance of identified sub-networks
in two breast cancer datasets. For each dataset, the blue curve shows Co-P scores (y-axis)
of the highest scoring 10 sub-networks in decreasing order (rank shown on x-axis). For each
rank i on the x-axis, the red (green) curve and error bar show the distribution of the scores of
i highest scoring sub-networks in 100 randomized networks obtained by permuting the edge
weights (edges). (b) Reproducibility of significant Co-P modules between two independent
dataset Huang et al. and Mertin et al.. The size of the circles indicates the number of phos-
phosites in each Co-P module, the number in the circle shows its rank among all identified
sub-networks. The thickness of the edges represents the significance of the overlap between
the two Co-P modules based on hypergeometric test.

We also investigate the reproducibility of the significant modules identified
on Huang et al. and Mertin et al. datasets. In Figure 2(b), the green circles
represent the Co-P modules identified on Huang et al. dataset and the pink
circles represent the Co-P modules identified on Mertin et al. dataset. As
seen in the figure, there is considerable overlap between the top Co-P modules
identified on each dataset; 26 out of the 91 sites in the top Huang et al. mod-
ule and 65 sites in the top Mertin et al. module are identical. This overlap
is highly statistically significant according to hypergeometric test and is partic-
ularly impressive considering that some phosphosites may not be present in a
dataset because of the limited coverage of mass spectrometry based phospho-
proteomics. Indeed, only 41 of 91 sites in the top Huang et al. module are
identified in the Mertin et al. study, and only 54 of the 65 sites in the top
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Mertin et al. module are identified in the Huang et al. study. Many of these
phospho-proteins such as THRAP3 [28], NBN [29], RAD18 [30] and CDK7 [31]
are playing important role in different cancers.

The second top-scoring Co-P modules identified in the two datasets, which
are both highly significant (q < 0.01), also exhibit significant overlap. Namely,
18 out of the 68 sites in the Huang et al. module (of which 33 are present in the
Mertin et al. dataset) and 68 sites in the Mertin et al. module (of which 49
are present in the Huang et al. dataset) are identical. Note also that two of the
sites in the top Huang et al. module are in the second Mertin et al. module,
and one of the sites in the top Mertin et al. module is in the second-ranked
Huang et al. module. The significant overlap and concordance between the
top identified modules across two datasets show that the identified modules are
highly reproducible and thus likely to be highly relevant to the dysregulation of
signaling processes in breast cancer. We also compare the significant modules
with the modules extracted from gene co-expression data published in [32]. The
paper reported 11 modules. One of the co-expression modules they reported has
18 genes common with top two significant modules identified by our algorithm.

Co-P modules identified via unsupervised analysis are associated with
breast cancer subtypes.

Since the subtype information is not used in the construction of the PSFA
network and the assessment of co-phosphorylation, the identification of the Co-
P modules is agnostic to the clinically determined subtypes of the samples; i.e.
CoPPNet is an unsupervised method for the identification of breast-cancer
associated signaling modules. However, since the Co-P modules capture co-
variation across different samples and this variation can be associated with
subtypes, these modules can be informative on subtypes. Motivated by this
consideration, we investigate if the phosphorylation levels of phosphosites in
the identified modules can differentiate breast cancer subtypes. The results
of this analysis for the Huang et al. dataset are shown in Figure 3 and S1.
Subtype-specific differential phosphorylation of Co-P modules identified on the
Mertin et al. dataset are presented in Figure S2.

As seen in Figure 3, top significant Co-P module identified on the Huang
et al. dataset are highly enriched in phosphosites with significant differential
phosphorylation between Luminal and Basal subtypes. There are 14 phospho-
sites in the top Huang et al. module with significant differential phosphory-
lation between Luminal and Basal subtypes (p < 0.05). Eight ( DPF2-T176,
THRAP3-T874, TERF2-S365, EIF4A3-T163, SETDB1-S1066, TCOF1-S982,
PRPF31-S451, PML-S518 ) out of 14 of these sites are hyper-phosphorylated
in Basal samples and de-phosphorylated in Luminal samples. For some of the
proteins harboring these sites, the differentiation between breast cancer sub-
types also has been captured at the level of mRNA expression. For example,
PML (promyelocytic leukemia) and SETDB1 (SET Domain Bifurcated 1) are
significantly up-regulated in Basal cancers as compared to Luminal cancers, and
their expression is related to the survival rate of the patients [33, 34]. We have
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Figure 3: The phosphorylation sites in top Co-P modules identified in Huang et
al via unsupervised analysis are associated with breast cancer subtypes. The fold
change of the phosphosites in each module are sorted in increasing order of average relative
phosphorylation in Luminal samples (purple) with respect to the common reference. The
green bars represent the average fold change of phosphorylation in Basal samples.

also compared the relative phosphorylation levels of the sites in the identified
modules (Luminal vs. Basal) between the Huang et al. and Mertin et al.
datasets. For module 1, the Pearson, Spearman, and biweight mid- correlation
between the relative phosphorylation levels of the sites across the two datasets
are respectively 0.37 (p < 0.004), 0.37 (p < 0.003), and 0.39 (p < 0.005). For
module 2, the Pearson, Spearman, and biweight mid-correlation between the
relative phosphorylation levels of the sites across the two datasets are respec-
tively 0.03 (p < 0.41), 0.41 (p < 0.01), and 0.25(p < 0.01). The result of this
analysis is presented in Figure S3.

Using Co-Phosphorylation Modules for Subtype Prediction

To investigate how the modules can distinguish the subtypes, we use the Co-P
modules identified by CoPPNet as features for predicting subtypes on a different
dataset. In this analysis, we train a support vector machine (SVM) based
classifier for predicting subtypes using the Huang et al. dataset as training
data. We then test the performance of this classifier on the Mertin et al.
dataset. For this analysis, for all models that were considered, we restricted the
analysis to the sites that were identified in both datasets.
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Table 2: Performance of models for subtype prediction using all phosphosites,
significant phosphosites(p-value ¡ 0.05), and phosphosites in significant Co-P
modules.

All Sites (5476 sites)
Accuracy = 46%

All Significant Sites (621 sites)
Accuracy = 46%

Real\Predicted Basal Luminal Real\Predicted Basal Luminal
Basal 4 0 Basal 4 0

Luminal 7 2 Luminal 7 2

Significant Sites (74 sites)
Accuracy = 46%

Module 1 & 2 (74 sites)
Accuracy = 84%

Real\Predicted Basal Luminal Real\Predicted Basal Luminal
Basal 4 0 Basal 4 0

Luminal 7 2 Luminal 2 7

Using this setting, we compared the performance of a model which uses
the sites in the significant modules (identified on training data) as features
against models that use (i) all the sites that are identified in both datasets (full
model), (ii) sites with significant differential phosphorylation levels (p ¡0.05) in
the Huang et al. dataset (feature selection using significance of individual sites),
and (iii) the top 74 sites according to their differential expression on the Huang
et al. dataset (number of features identical to the number of features used by the
module-based classifier). The results of this analysis are shown in Table 2. As
seen on the table, models that use Co-P modules outperform individual sites and
significant sites. While the limited number of samples that are available pose
limitations on the generalizability of these results, the improvement provided by
Co-P modules demonstrates the promise of Co-P based analysis in differentiating
between subtypes.

Co-P modules provide a focal point for kinase activity inference.

To further understand the contribution of PSFA network and co-phosphorylation
analysis, we assess the value added by the Co-P modules to the inference of the
differential activity of kinases between Basal and Luminal subtypes. For this
purpose, we use the Kinase-Substrate Enrichment Analysis (KSEA) tool, which
infers the differential activity of a kinase based on the differential phospho-
rylation of its substrates [35]. In the kinase enrichment results shown in the
Figure 4(a), the analysis is restricted to the target sites of kinases that are in
the significant Co-P modules (Basalm and Luminalm) as opposed to all known
target sites of the kinase that are identified in the study (BasalA and LuminalA).
This analysis infers several kinases with significantly altered activity between
the two subtypes. Some of these kinases show different pattern of activity when
we limit the KSEA to the phosphosites in the significant modules. To assess the
relevance of these kinases, we used the microarray data of breast cancer [26], and
ran Kaplan-Meier survival analysis to investigate whether the expression of these
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kinases is correlated with survival rate. It is well-established that Basal subtype
is associated with lower survival rate as compared to Luminal subtype [11]. We
observed that, for AURKA, PRKCI, higher expression is associated with lower
survival rate (Figure 4(b)). KSEA analysis that is restricted to Co-P modules
also suggested that these kinases are hyper-active in the Basal samples, how-
ever, KSEA on all the phosphosites was not able to capture the association of
these kinases with the subtypes. For MAPK9 and CDK2, lower expression is
associated with lower survival rate, which is consistent with the kinase activ-
ity inferred by restricting to the Co-P modules. The result of this analysis for
Mertin et al. data is presented in Figure S5.

Figure 4: Kinase-substrate enrichment analysis (KSEA) on Co-P modules reveals
kinases that are potentially associated with breast cancer subtype and survival.
(a) The heatmap compares two different strategies for inferring kinase activity: On the left,
the phosphosites utilized to infer kinase activity are restricted to two significant modules
identified by CoPPNet( Luminalm and Basalm) on Huang et al. dataset. On the right, all
phosphosites are used to infer kinase activity (LuminalA and BasalA). The intensity of red
indicates the kinases with positive KSEA score (i.e. hyper-active in the respective subtype)
and blue indicates the kinases with negative score (i.e. hypo-active in the respective subtype).
Kinases that have different patterns of differential activity between subtypes in the modules
versus all phosphosites are marked by a star, and their survival analysis using gene expression
data is presented in (b).
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4 CONCLUSION

In this study, we present CoPPNet, a computational method that utilizes
large scale phospho-proteomic data for unsupervised identification of phenotype-
associated signaling modules in cancer. One important contribution of the
proposed method is the construction of the phosphosite functional associa-
tion (PSFA) network which is a site-centric network that comprehensively in-
corporates available functional information on phosphorylation sites to enable
network-based analysis of phosphorylation data. Our network model treats
different types of edges identically. While observation of an edge in different
databases would increase the confidence of functional association, we here use
the edges only to indicate potential functional association. In future work, it
can be useful to investigate the effect of assessing the value of different lines
of functional evidence. Our systematic results on two breast cancer datasets
show that CoPPNet identifies reproducible subtype-specific signaling modules
without requiring knowledge of the sample subtypes. However, this analysis
does not account for the tissue-specificity of the phosphorylation data. Overall,
this study represents one of the first attempts on utilizing phospho-proteomics
to generate reproducible functional readouts of cellular signaling that can be
used to characterize the dysregulation of cellular signaling in cancers and devel-
opment of future therapeutic strategies.
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