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Abstract 

We propose a spatial autoregressive stochastic frontier model, which allows for the endogeneity in 

both the frontier and environmental variables (i.e., endogeneity due to correlation of inefficiency term 

and the two-sided error term). The model parameters are estimated using a single-stage control 

function approach. Monte Carlo simulations show that our proposed model and approach perform well 

in finite samples. We employed our methodology to the Chinese chemicals firm data and found 

evidence for both spatial effects and endogeneity. 
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1.  Introduction 

 

One of the widely examined issues in the operational research (O.R.) is firm efficiency. In 

this literature, the data envelopment analysis (DEA) and stochastic frontier analysis (SFA) are two 

popular choices for estimating efficiency. Zhou et al. (2008) present a survey that covers around 

100 O.R. studies for energy and environmental modeling; and Fethi and Pasiouras (2010) present 

a review of around 200 O.R. studies that use techniques that aim to assess bank performance. 

Hence, only for banking, energy, and environmental modeling, there are hundreds of performance 

measurement studies. 

The productivity spillover effects at firm-level are well-documented in the literature (e.g., 

Hu, Jefferson, and Jinchang, 2005; Kuller, 2004; Keller and Yeaple, 2009). If the sources of 

spillover mechanism are informal conversations, innovative activities, and local competitive 

pressure, then the firms that are located in closer proximity to each other can experience greater 

spillover effects. Although efficiency spillovers may be important factors in productivity 

spillovers, the traditional stochastic frontier models do not consider such spillovers.  

One of the contributions of our study is proposing a stochastic frontier model where 

efficiency and productivity spillovers are present. In particular, we address a variety of endogeneity 

problems, for the first time, for spatial stochastic frontier models. As stated earlier, traditional 

stochastic frontier models do not control for spatial lag of the dependent variable, which captures 

so called spatial autoregressive (SAR) dependence (see Cliff and Ord, 1973, 1981). If such a 

dependence is present, omitting the SAR term would lead to inconsistent parameter and efficiency 

estimates. On the other hand, if the SAR term is included, this term would be correlated with the 

two-sided error term, which means that this term is endogenous. Druska and Horrace (2004), Glass 

et al. (2013) (GKP), Glass et al. (2014) (GKS), and Kutlu and Nair-Reichert (2019) address this 
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problem via distribution-free approaches.4 An important advantage of these distribution-free 

approaches is that we do not assume a specific distribution to the inefficiency term. However, 

outliers may have serious implications for the magnitudes of the efficiency estimates.5 Hence, 

alternatively, in the conventional SFA, it is common to represent inefficiency via a one-sided error 

term.6 In the spatial spillover context, Glass et al. (2016) followed this approach and introduced 

the SAR variable while also making distributional assumptions (i.e., half normal distribution) on 

the inefficiency component of the error structure.7 Moreover, Glass and Kenjegalieva (2019) 

propose a spatial decomposition of total factor productivity growth.  

While these stochastic frontier approaches address the endogeneity problem due to the 

SAR variable being endogenous, they don’t address the endogeneity problems resulting from the 

endogeneity of frontier variables (other than SAR term) and environmental variables (i.e., 

variables that affect inefficiency), which would lead to inconsistent parameter and efficiency 

estimates. For example, Mutter et al. (2013) argue that if the quality is a part of the production 

process where it is cost enhancing and quantity and quality decisions are made simultaneously, 

then the quality variable (which is a frontier variable) would be endogenous, i.e., correlated with 

the two-sided error term.8 Another example for endogeneity is that a determinant of inefficiency 

(i.e., an environmental variable) and two-sided error term can be correlated. Karakaplan and Kutlu 

(2019) give such an example from education markets. They assume that cost efficiencies of 

education districts depend on education market concentration, which is measured by Herfindahl-

Hirschman Index (HHI). They argue that if the government simultaneously decides whether to 

 
4 See Schmidt and Sickles (1984) and Cornwell et al. (1990) for non-spatial distribution-free stochastic frontier models 

and Duygun et al. (2016) for their Kalman filter counterparts.  
5 See Kutlu (2012, 2017) for a more details about this issue and some potential solutions.  
6 Among others, see, for example, Mester (1997), Bos et al. (2009), Brissimis et al. (2010), Tecles and Tabak (2010, 

and Galán et al. (2015). 
7 See Han et al. (2016) for an extension of Glass et al. (2014) where the spatial weighting matrix is time-varying.  
8 Note that dropping the quality variable does not address the problem as this would bias efficiency estimates. 
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consolidate districts (which changes education market concentration) and district expenditure 

structures, this would result in endogeneity of education market concentration. Karakaplan and 

Kutlu (2017b) give another example of endogeneity of HHI as an environmental variable from 

production function of Japanese cotton spinning industry. Both studies find that HHI is 

endogenous. 

In the stochastic frontier context, there is a recent yet growing interest for solutions to these 

types of endogeneity problems. Guan et al. (2009), Kutlu (2010), Tran and Tsionas (2013, 2015), 

Amsler et al. (2016, 2017), Griffiths and Hajargasht (2016), Karakaplan and Kutlu (2017a,b) 9, 

Kutlu (2018a), and Kutlu et al. (2019) exemplify such studies.10 11 However, none of studies 

consider spatial spillovers.  

In this paper, we consider a SAR stochastic frontier model where endogeneity of both 

frontier and environmental variables are allowed. Hence, we address three different endogeneity 

problems (endogeneity of SAR term, frontier variables, and environmental variables) at the same 

time. We achieve this by employing a single-stage control function approach, which was first 

introduced by Kutlu (2010) to the stochastic frontier literature. Our general estimation strategy can 

easily be modified and applied in both cross-sectional SAR stochastic frontier context as well as 

conventional SAR models without inefficiency, i.e., full efficiency. Moreover, besides cost and 

production function estimation, our model can be applied in the industrial organization setting 

where the one-sided error term captures the market power. For example, Orea and Steinbucks 

(2018), Karakaplan and Kutlu (2019a), and Kutlu and Wang (2018) propose conduct parameter 

 
9 See Kutlu and Nair-Reichert (2018) and Karakaplan and Kutlu (2019b) for applications of Karakaplan and Kutlu 

(2017a, b).  
10 See Kutlu and Tran (2019) for a literature review on endogeneity and heterogeneity in stochastic frontier models. 
11 Kutlu and Sickles (2012) use similar approaches to address endogeneity issues in the Kalman filter estimation 

context. 
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models that use stochastic frontier models.12 Since the conduct parameter models involve 

estimation of demand and supply equations, they would suffer from endogeneity issues; and thus, 

these studies utilize techniques that address endogeneity issues. Therefore, the scope of our 

contribution is beyond the efficiency measurement context. 

Our Monte Carlo simulations show that our estimator performs well and ignoring 

endogeneity or spatial dependence leads to biased parameter and efficiency estimates. Using our 

estimator, we estimate the efficiencies of Chinese chemicals firms. We find evidence against Hick’s 

(1935) quiet life hypothesis, which argues that efficiency and market power are inversely related. 

When we allow spatial spillovers, a decrease in market concentration may have a least two effects. 

First, the managers would perform in a more competitive environment, which would lead to a 

pressure to work harder to reach more efficient production outcomes (QLH effect). Second, the 

efficiency spillovers would come from firms that are less concentrated. If being in a proximity of 

larger firms would help improving inefficiency, then lower concentration may have a negative 

effect on efficiency. In our case, it seems that the latter effect dominates QLH effect.  

The remainder of the paper is organized as follows. Section 2 presents the model and 

discusses the estimation of efficiency and test for endogeneity. Finite sample behavior of the 

proposed approach is given in Section 3 using Monte Carlo simulations. Section 4 presents an 

empirical application to illustrate the usefulness of the proposed model and approach. Section 5 

concludes the paper. 

2.  The Model and Estimation of Efficiency 

2.1.  The Model  

 
12 See Bresnahan (1989) and Perloff et al. (2007) for details about conduct parameter approach. 
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For the sake of fixing the ideas, we present a production function. The same equations can 

be used for the cost function estimation with minor modifications. We call a variable endogenous 

if it is correlated with the two-sided error term. A conventional stochastic frontier model is given 

by: 

               

it it it it

it it it

it it u

y x u v

u h u

h f x

1

2
( ) 0,

b

j

¢

*

¢

= - +

=

= >

                                          (1) 

where 
it

y  is the logarithm of the output for productive unit 1,2, ...,i N=  at time 1,2, ...,t T= ; 

1it
x  is a 

1
1k ´  vector of exogenous variables; 0

it
u ³  is a one-sided term that is capturing the 

inefficiency; 2( )
it u

u N m s* + ,: ; 
2it

x  is a 
2

1k ´  vector of exogenous variables, which does not 

contain the constant; 
it

v  is the usual two-sided error term for the production function; and b  (

) and 
u

j  (
2

1k ´ ) are parameters. This model does not incorporate spatial spillovers and/or 

endogeneity.  

Now, we present our stochastic frontier model that incorporates spatial spillovers and 

endogeneity. Consider the following stochastic frontier model:  

 

it ij jt it it itj

it it it

it it it

it it u

y w y x u v

x z

u h u

h f x

1

'

2
( ) 0,

r b

d e

j

¢

*

¢

= + - +

= +

=

= >

å

                                   (2) 

       

where 
it

y  is the logarithm of the output for productive unit 1,2, ...,i N=  at time 1,2, ...,t T= ; 

0
ij

w ³  is the (spatial) weight for the effect of thj productive unit’s output on the output thi  

productive unit; 
1it

x  is  a 
1

1k ´  vector of variables that may include endogenous variables; 

1
1k ´
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0
it

u ³  is a one-sided term that is capturing the inefficiency; 2( )
it u

u N m s* + ,: ;13 
2it

x  is a 
2

1k ´  

vector of variables that may include endogenous variables, which does not contain the constant; 

it
v  is the usual two-sided error term for the production function; 

it
x  is a 1p ´  vector of 

endogenous variables from 
1it

x  and/or 
2it

x , i.e.,  
it it it

x x x
1 2

( )Í È ; 
it

z  is an 1l ´  vector of 

instrumental variables; 
it

e  is a 1p ´  vector of usual error terms; and b , d , and 
u

j are  ( ), 

(l p´ ), and  (
2

1k ´ ) parameters, respectively.  

The main differences between our model and the conventional stochastic frontier model is 

the 
ij jtj

w yå  (SAR) term and endogeneity of frontier and environmental variables. This term 

captures the total spatial spillovers on the output of thi  productive unit from other productive units. 

The weights, 0
ij

w ³ , capture the relative spillover effect of thj  productive unit on the thi  

productive unit. Glass et al. (2016) incorporate spatial spillovers similarly by including the SAR 

term in their model but they still assume that all variables are exogenous (except the SAR term). 

The key difference of our model from Glass et al. (2016) is that we model the stochastic frontier 

production function simultaneously with the prediction equation for endogenous variables, i.e., 

it it it
x z'd e= + . As we will describe later in this section, this is the key point for addressing the 

endogeneity issues.  

In our benchmark scenario, we assume that the weighting matrix is row-normalized so that 

sum of each row equals 1, i.e., 1
ijj

w =å . Later, we will also consider weighting matrices with 

scalar normalizations, i.e., 
ij

cw  for some constant 0c > . We assume that 
it

u *  is independent of 

 
13 Our method can easily be applied to other conventional distributions for the inefficiency term such as gamma, 

exponential, and doubly truncated normal distributions.  

1
1k ´
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1it
x , 

2it
x , and 

it
v . Let 

e
W  be the variance-covariance matrix of 

it
e , and 

it it it it it
v v* *' ' ' 1/ 2 '( , ) ( , )

e
z e e -= = W . Also, assume that: 

 

N N
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where N (., .)  denotes the multivariate normal; 
2

v
s  is the variance of 

it
v ; and t  is the vector 

representing the correlation between 
*

it
e  and 

it
v . 

A Cholesky decomposition of the variance-covariance matrix of 
it it

v* ' '( , )e  gives:14  

 

q itit

it itv v

I

v r

**

*

0

1

ee

s t s t t¢ ¢

é ùé ùé ù
ê úê úê ú= ê úê úê ú
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,                             (3) 

 

where 
it

r N 0 1
æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

* ,: , 
it

r *
, and 

it

*e  are independent. Therefore, we have:  

 

it it v r it

it it

v r

r

'

' ,

e s t s

e h

* *= +

= +
                                     (4) 

  

where 1
r v

s s t t¢= - , 1/ 2 1
r e

h s t t t- ¢= W / - , and 
it r it

r rs *= . Then, the frontier equation can 

be written as follows:  

 

it ij jt it it it itj
y w y x x z e' '

1
( )r b d h¢= + + - +å ,                      (5) 

 

where 
it it it

e r u= -  and 
it it it

x z' ' '( )e h d h= -  is a bias correction term. Here, the Cholesky 

 
14 This is a standard variance-covariance decomposition. In Equation 3, the variance of left-hand-side and right-hand-

side are the same.  
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decomposition enables us to decompose 
it

v  into two components: one that is correlated with the 

regressors and one that is not correlated with the regressors. Hence, by including the correlated 

component (i.e., 
it

e ) as a regressor in the frontier equation, we can use the existing formulas for 

spatial stochastic frontier models. However, we do not observe 
it it it

x z'e d= - , which means that 

we need to estimate this term (by estimating d ) simultaneously along with other parameters. 

Therefore, the log-likelihood function would have an additional term that controls for the 

randomness of 
it

e . Below we outline how the log-likelihood would be calculated. 

The density function of 
it

r  is given by:  

( )
it

it

r it r

r

r
f r

2
1/ 2

2

2
( ) 2 exp .

2
ps

s

- æ ö
÷ç ÷ç= - ÷ç ÷ç ÷è ø

                                (6) 

 

Moreover, the density function of 
it

e  is given by: 

 

it
it it it

f tr
1/ 2

1 '1
( ) 2 exp ( ) .

2e e e
e p e e

-
-

æ ö
÷ç ÷= W - Wç ÷ç ÷çè ø

        (7) 

  

  

Then, as 
it

e  and 
it

e  are independent, the log-likelihood function is given by:  

 

    ( )0 1 2,
ln ln ln ln

it iti t
L T L L L= + +å ,                             (8) 

 



9 

 

where  is the scaled logged determinant of the Jacobian of the 

transformation from e  to y ; W  is the N N´  row-normalized matrix for weights with zero 

diagonals15 16 

 

( )( )

it

i

u

it
it it

it r

itr u u

it it it

e
L

L tr

22 2
2

1 2 2 2

1 '

2

( )1 1 1
ln ln(2 ) ln ;

2 2 2 ( )

1
ln ln 2 ( ) ;

2

m

s

m

s

e e

sm m
ps

s s ss

p e e

*

*
*

*

*

-

æ öæ ö F ÷ç÷ç ÷ç÷ç ÷= - - + - +÷ çç ÷÷ ç ÷ç ÷ Fç÷ç ÷÷çè ø è ø

= - W + W

 

 

where 
u it it r

it

u it r

e h

h

2 2

*

2 2 2

s ms
m

s s

- +
=

+
; 

r u

it

u it r
h

2 2

2

* 2 2 2

s s
s

s s
=

+
; 

it it ij jt it itj
e y w y x ' '

1
r b e h= - - -å ; and 

it it it
x z'e d= - . By maximizing the total log-likelihood ln L , we obtain the estimates for the 

model’s parameters. Under standard conditions of maximum likelihood theory, our estimator is 

consistent as NT ® ¥ .  

Unlike the standard stochastic frontier models with endogeneity, equation (8) contains an 

additional term T L
0

ln , and one of the outstanding difficulties we face is that in a large sample, 

N
I Wr-  term is the determinant of a large matrix, which needs to be re-calculated at each 

iteration of the optimization procedure. This can be computationally expensive and time 

consuming. To reduce the computational time, one potential solution, suggested by Pace an Perry 

(1997), is evaluating 
N

I Wr-  term using a vector of values for r  in the interval 
min max

[ , ]r r . 

These values need to be calculated before optimization and thus would only require calculation of 

 
15 It is standard to assume in the literature that diagonal elements of W are zero. This rules out self-influence 

possibility. 
16 For unbalanced panel data the weighting matrix W would be time-varying.  

( )N
T L T I W

0
ln ln r= -
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the corresponding vector of determinants once. If we have a sufficiently fine grid of r  values, we 

can use interpolated values of 
N

I Wr-  to obtain intervening points.17 In what follows, we 

assume that [0,1)r Î , the elements of W  are non-negative, and all the diagonal elements of W  

are zero (so as to avoid self-influence). An implication of this this assumption is that 

N
I W 0r- ¹  and thus 

N
I Wr-  is non-singular. As mentioned by LeSage and Pace (1999), 

[0,1)r Î  assumption is widely employed in the literature.18 Moreover, as described by Kutlu 

(2018b), we will argue later in the paper that this assumption is useful when interpreting the 

efficiency estimates. Following Glass et al. (2014), we also assume that the rows and columns of 

W  and 
N

I W 1( )r --  are uniformly bounded in absolute value before row-normalizing W . This 

assumption implies that the spatial process for the dependent variable has a fading memory 

(Kelejian and Pruchas, 1998, 1999). The computational burden can be reduced further by applying 

variations of concentrated log-likelihood approaches in the literature (e.g., Elhorst, 2009; Glass et 

al., 2014). Finally, note that when we have cross-sectional data, we can simply assume that T 1,=  

and the rest of the analysis remains the same. 

Once we obtain the parameter estimates, the inefficiency term 
it

u  can be predicted via: 

 

                          

it

it

it

it

it

it it it it it
u E u e h

( )
ˆ

( )

m

s

m

s

fs
m

*

*

*

*

*

*

é ù
ê úé ù= | = +ê úê úë û ê úFê úë û

%                (9) 

 

In practice, this equation is evaluated at 
it it ij jt itj

e y w y x '

1
ˆˆ r̂ b= - -å .  

 

 
17 There are several approaches to obtain this determinant (computationally) efficiently. See LeSage and Pace (1999) 

for details of these approaches as well as numerical approaches used in the maximum likelihood estimation.  

18 Glass et al. (2014) assume that 
min

(1 / ,1)r lÎ  where 
min

l  is the smallest real characteristic root of W . 
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2.2.  Direct, Indirect, and Total Efficiency Estimates 

 

As argued by LeSage (2009), the marginal effect of explanatory variables would be a 

function of the SAR term; and therefore the b  parameter estimates cannot be interpreted as 

marginal effects. To obtain the interpretable form of the marginal effects, we represent the frontier 

equation in (2) in matrix form, which is given by:  

  

   
t t t t t

y Wy X u v
. . 1. . .

r b= + - + ,          (10) 

 

or equivalently:  

 

t N t N t N t
y I W X I W u I W v1 1 1

. 1. . .
( ) ( ) ( ) ,r b r r- - -= - - - + -     (11) 

 

where ( )t t t Nt
y y y y

'

. 1 2
, , ...,= , ( )t t t Nt

u u u u
'

. 1 2
, , ...,= , ( )t t t Nt

v v v v
'

. 1 2
, , ...,= , 

( )t t t Nt
X x x x

'

1. 1 2
, , ...,= , and t T1,2, ...,= . In what follows, other vectors and matrices are defined 

similarly.   

After renaming the variables, we have:  

 

        (12) 

 

where 
t N t

X I W X1

1. 1.
( )r -= -% , 

t N t
u I W u1

. .
( )r -= -% , and 

t N t
v I W v1

. .
( )r -= -% . Therefore, the 

marginal effects are given by: 

 

it

k N ij

kjt

y
I W

x

1

1

[( ) ]b r -
¶

= -
¶

,        (13) 

 

where 
kjt

x
1

 is the thk  frontier variable for productive unit j  at time t ; 
k

b  is the thk  component of 

t t t t
y X u v ,

. 1. . .
b= - +% %%
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b ;  and 
N ij

I W 1[( ) ]r --  is the thij  element of 
N

I W 1( )r -- .  The total marginal effect of thk  

frontier variable at time t  is defined as the marginal change in 
it

y  as a response to changes in 1kjtx  

for all j :  

 

it

k N ijj j

kjt

y
I W

x

1

1

[( ) ]b r -
¶

= -
¶

å å .      (14) 

 

 

As pointed out by Kutlu (2018b), the total inefficiency is captured by the 
it

u%  term, not by 
it

u . 

Kutlu (2018b) shows that when W  is a row-normalized weighting matrix with diagonal elements 

being zero and [0,1)r Î , we have 
N

I W 1( ) 0r -- ³ , i.e., all elements are non-negative. 

Therefore, 
it

u 0³% , 
it

u%  is a non-decreasing function of components of 
t

u
.

, and if 
t

u
.

0= , then 

it
u 0=% . These imply that we can use 

it
u 0=%  to represent the full efficiency benchmark. Note 

that not all weighting matrices satisfy 
N

I W 1( ) 0r -- ³ . For example, a scalar-normalized 

weighting matrix may or may not satisfy this property. The following proposition shows that this 

property is satisfied for a certain family of scalar-normalizations.  

Proposition: Let W  be a scalar-normalized weighting matrix, i.e., W cW= %, where W% is the 

weighting matrix (with non-negative elements) before normalization with diagonal elements being 

equal to zero and c  is the normalization constant. Assume that [0,1)r Î  and 
{ }i i

c
1

0 ,
max l

< £
%

  

where 
N1 2

{ , ,..., }l l l% % %  are the eigenvalues of W%. Then, all elements of 
N

I W 1( )r --  are non-zero, 

i.e., 
N

I W 1( ) 0r -- ³ . 
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Proof: Note that inverse of an M-matrix has non-negative elements where an M-matrix is defined 

as a matrix with non-positive off-diagonal elements with eigenvalues whose real parts are positive. 

Trivially, all off-diagonal elements of 
N

I Wr-  are non-positive. Moreover, the eigenvalues of 

N
I Wr-  are 

N1 2
{1 ,1 ,...,1 }rl r l r l- - -  where 

i
l ’s are the eigenvalues of W . If 

i
0l £ , 

then we have 
i

1 0r l- > . If 
i

0l > , then 
{ } i i i

i i

c
1

1
max

l l l
l

³ ³ =% %
%

, which implies that 

i
1 0.r l- >  Hence, we conclude that 

N
I W 1( ) 0r -- ³ .   

In our spatial model, the usual formula for calculating (total) efficiency is not valid as it 

ignores the spatial spillovers. The corrected efficiency can be calculated by: 

it it
E = uexp( ).- %         (15) 

This is a generalization of the usual formula as when 0r = , we have 
it it

u u=% .  

We define direct inefficiency of thi  productive unit as the part of the inefficiency that is 

resulting from reasons other than spillovers; and indirect inefficiency as the part of inefficiency 

that is resulting purely from spillovers of other productive units. The shares of direct and indirect 

inefficiencies (see Kutlu, 2018b) are given by:  

 

dir N ii it

it

it

N ij jti jind

it

it

I W u
SIE =

u

I W u
SIE =

u

1

1

[( ) ]

[( ) ]
.

r

r

-

-

¹

-

-å
%

%

      (16) 

 

These shares can be used to decompose inefficiency into direct and indirect efficiency components.  

 

 

2.3.  Testing Endogeneity 
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Amsler et al. (2016) and Karakaplan and Kutlu (2017a,b) describe a simple test, using 

similar ideas with the Durbin-Wu-Hausman test, for endogeneity for the non-spatial stochastic 

frontier models. These tests are applicable in our setting as well. We can test the endogeneity using 

the F-test for h = 0 . If all components of h  are jointly significant, we conclude that the bias 

correction term is needed and thus we have endogeneity. We can also test the endogeneity of 

individual variables by testing the significance of the corresponding component of h . 

 

3.  Monte Carlo Simulations 

 

To evaluate the performance of our proposed estimator in finite samples, we conduct a 

Monte Carlo experiment. For simplicity, we consider the cross-sectional setting, i.e., T 1= . We 

consider the following data generating process (DGP): 

 

i ij j i fi i ij

i i i

i i ui

i u

y w y z q v u

u h u

h z q

u N c

1 1 2

*

1/ 2

2 1 2

*

[exp( )]

(0, exp( )),

r b b

j j
+

= + + + -

=

= +

å

:

 

 

where 
1i

z  and 
2i

z  are exogenous variables; and 
i

v  and *

i
u  are independent random variables. As 

it stands, it is not easy to generate 
i

y  variable directly from these equations. Hence, after generating 

W  and 
1i

z , 
2i

z , 
fi

q , 
ui

q , 
i

v , and 
i

u  for 1,2, ...,i N= , we calculate 
i

y  from the following equality: 

( )N f
y I W z q v u

1

1 1 2
( )r b b

-

= - + + - , 

where 
1

z , 
f

q , v , and u  are represented in the matrix notation. Below, we explain how each of 

the other variables are generated.  
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In our primary scenario, the spatial weights 
ij

w  are generated using row-normalized 

exponential distances as follows: 

 

   
exp( ) / exp( ),

0 , ,

ij ij
i j

ij

d d i j
w

i j
¹

ìï - - ¹ïï= í
ï =ïïî

å
  

 

 

where 
ij

d  are the centroid distances between each pair of spatial units i  and j . We also consider 

the scenario where the weighting matrix is a scalar-normalized matrix. Let W% be the weighting 

matrix before scalar-normalization:   

exp( ),

0 , ,

ij

ij

d i j
w

i j

ìï - ¹ï= í
ï =ïî

%  

where 
ij

d  are the centroid distances between each pair of spatial units i  and j . The scalar 

normalized weighting matrix is given by: 

max

,

0, ,

ij

ij

w
i j

w

i j

l

ìïïï ¹ï= í
ïï =ïïî

%

%  

where 
max

0l >%  is the largest eigenvalue of W%. Finally, we consider the scenario where spatial 

weights 
ij

w  are generated using row-normalized double-power distance weights as follows: 

 

   
( ) ( )

2 2
2 2

max max
1 / / 1 / ,

0 , ,

ij ij
i jij

d d d d i j
w

i j
¹

ìï æ ö æ öï ÷ ÷ç ç- - ¹ï ÷ ÷ç çï ÷ ÷ç çè ø è ø= í
ïï =ïïî

å
  

 

 

where 
ij

d  are the centroid distances between each pair of spatial units i  and j  and 
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max ,
max { }

i j ij
d d= .  

For each simulation run, we generated the distance between productive unit i  and j  as 

follows: 
ij i j

d d d= -  where 
i

d  and 
j

d  are drawn independently from a uniform distribution.  

The endogenous variables 
fi

q  and 
ui

q  are generated as follows:  

 

3 1 1

4 2 2
,

fi i i

ui i i

q z

q z

d e

d e

= +

= +
       

 

where '

1 2 3 4
( , , , ) (0, )

i i i i i
z z z z z N= S: ; and the correlation among 

fi
q , 

ui
q , and 

i
v  are generated 

via:  
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where 
'

1 2
( , )

i i i
e e e= .  Note that when 

1
0t = , 

fi
q  becomes exogenous and likewise, when 2

0,t =

ui
q  becomes exogenous. Finally, when 1 2

0t t= =
, all variables are exogenous, and we call this 

“exogenous model.” When 1
0t ¹

 and 
2

0t ¹ , 
fi

q  and 
ui

q  become endogenous and we call this 

“endogenous model.” We consider the following values for 

1 2
( , ) {(0, 0),(0.7, 0.7),(0.9, 0),(0, 0.9)}t t = , and we fixed the values of 0.5r = , 

1 2
0.5b b= =

, 
1 2

1d d= = , 3
u

c = - , 0.2
v

s = , 
1 2

0.3
e e

s s= = , 
1 2

1j j= = , and  
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In our setting, 
1 2

( , ) (0.7, 0.7)t t =  represent the scenario where we have a somewhat high 

correlation between endogenous variables and two-sided error term; and 
1 2

( , ) (0.9, 0)t t =  and 

(0, 0.9)  represent the scenarios where this correlation is extreme but only one endogenous variable 

is present. The variance-covariance matrix S  that we choose indicates that the exogenous 

variables have some correlation. Note that our model allows such correlations. We did not impose 

high correlations for the exogenous variables to see the effects of endogeneity clearly by avoiding 

multicollinearity related issues.  

We consider the following sample sizes: {100,150,200, 400}n = , and the Monte Carlo 

simulations are conducted with 1000 replications. In some cases, in order to save space, we only 

announce a subset of results. We examine four different estimators: 1) SSFE: Spatial stochastic 

frontier model with endogenous regressors; 2) SSF: Spatial stochastic frontier model with 

exogenous regressors; 3) SFE: Non-spatial stochastic frontier model with endogenous regressors; 

and 4) SF: Non-spatial stochastic frontier model with exogenous regressors.  

The simulation results are given in Tables 1-6. We report the biases and mean squared 

errors for the parameter estimates, bias for efficiency estimates as well as Pearson and Spearman 

correlations of true and estimated efficiencies. We see that the parameter estimates are biased when 

we ignore the spatial component, SAR, or endogeneity in the estimations. Moreover, in terms of 

bias and correlations, efficiency estimates perform best when the SAR term is included and 

endogeneity is controlled. 
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Tables 1-6 are about here 

 

4.  Empirical Example 

  

In this section, we estimate the technical efficiencies of the Chinese firms in the chemical 

industry in 2006. First, we briefly describe our data, and then present our results.  

 

4.1.  Data 

 

Our firm-level dataset is based on the dataset of Baltagi et al. (2016).19 The dataset contains 

12,552 Chinese firms in the chemical industry for 2006, which is compiled by the National Bureau 

of Statistics of China. The output variable is the sales (Y) for firms; and the input variables are 

employment (L), capital (K) used in production; and material inputs (M). As control variables we 

also include the share of high-skilled labor (H), which is defined as the fraction of workers with 

university (or equivalent) education level. In addition to these variables, in the frontier we include 

the following variables, constructed by Baltagi et al. (2016): dummy for being a state-owned firm 

(SOWND), dummy for being exporter (EXPD), dummy for using intangible asset intensely 

(IASSETD), and a variable measuring the fraction of foreign-owned to total capital ratio 

(FOWNR). 

The firm-level dataset has information about the postcodes of firms, which enables us to 

identify geographic location of firms in terms of latitude and longitude. Based on these, the great 

circle distances between all firms are calculated using haversine formula. This enabled us to obtain 

the weighting matrices for each of our specifications. 

 
19 The dataset of Baltagi et al. (2016) is hosted by the Journal of Applied Econometrics archive. For further details 

about the dataset see Baltagi et al. (2016). 
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In line with Hick’s (1935) quiet life hypothesis20, we assume that the technical efficiencies 

depend on market power, which is proxied by Herfindahl-Hirschman Index (HHI). When 

calculating the HHI, rather than using political boundaries defined by province borders, we assume 

that the markets for a firm is defined as the area within 400 km radius.21 We also assume that 

spillover effects are effective within this region. Hence, our definition of HHI would be in line 

with the definition of spillovers, i.e., their range is the same. We assume that the HHI is 

endogenous. We use 1-year lagged HHI as an instrumental variable. The descriptive statistics of 

variables are given in Table 7.  

 

Table 7 is about here 

 

4.2.  Empirical Model and Estimation Results 

 

We estimate a spatial stochastic frontier function where HHI is allowed to be an 

endogenous variable. As in the Monte Carlo simulations section, for a given weighting matrix, we 

estimate four different models: 1) SSFE: Spatial stochastic frontier model with endogenous 

regressors; 2) SSF: Spatial stochastic frontier model with exogenous regressors; 3) SFE: Non-

spatial stochastic frontier model with endogenous regressors; and 4) SF: Non-spatial stochastic 

frontier model with exogenous regressors. Our benchmark setting assumes that the weighting 

matrix is row-normalized with exponential distances.  

Our estimation results are presented in Table 8 and Figure 1. Based on our endogeneity 

test, we find evidence for endogeneity of HHI as η is statistically significant at any conventional 

 
20 See also Jayaratne and Strahan (1996), Berger and Hannan (1998), Kroszner and Strahan (1999), Koetter et al. 

(2012), and Kutlu et al. (2019). 
21 For the school district markets, Karakaplan and Kutlu (2019b) calculate HHI using a similar approach.  
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significance level. Similarly, we find evidence for spatial interaction between firms (i.e., spatial 

spillovers) based on the significance of SAR term parameter.  

In what follows, the results that we state are for the SSFE model, which we select based on 

statistical tests (i.e., endogeneity and spillover tests) that we mentioned. Estimated median of 

efficiency is 89.62%, which is a reasonable number. From Figure 1, we can see that compared to 

spatial models, the non-spatial models predicted many more firms with efficiency greater than 

90%. Hence, the distributions of efficiencies are distorted if spatial effects are not considered. 

Indeed, our Kolmogorov-Smirnov test rejected pairwise equality of distribution for efficiency 

estimates obtained from SSFE and other models at any conventional significance level. Unlike our 

simulations, the pairwise Spearman correlations of efficiencies were still high (more than 0.98). 

So, in our empirical example, while the magnitudes of efficiencies are distorted, the rankings are 

not distorted much. 

Table 8 is about here 

 

Figure 1. Histogram for Efficiency Estimates 
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5.  Concluding Remarks 

 

The conventional stochastic frontier models neither allow spatial spillovers nor 

endogeneity. If any of the frontier or environmental variables are correlated with the two-sided 

error term; or the SAR component is omitted while being a relevant term, then parameter and 

efficiency estimates would be inconsistent. We presented the first model that can address both 

issues simultaneously by employing a control function approach. Our Monte Carlo simulations 

show that ignoring either of endogeneity or spatial dependence may have serious negative 

implications on the parameter and efficiency estimates. In particular, we would have biased 

parameter and efficiency estimates, which distorts efficiency rankings.  

Given that chemicals industry affects many other industries and well-being of this industry 

may have substantial direct or indirect effect on overall economy, understanding the factors that 

affect efficiency is essential for both policymakers and relevant firms themselves. This objective, 

however, requires using proper econometric methods that are robust to potential econometric 

issues. We employed our estimation method to the Chinese firms in the chemicals industry. It turns 

out that, spillover effects are statistically significant and have economic impact on the sales of 

these firms. We also found evidence for endogeneity of HHI. Hence, as illustrated in the 

simulations and in our empirical example, ignoring efficiency or spatial effects may have negative 

implications, e.g., the distribution of inefficiency estimates may differ depending on whether we 

have a SAR term or not. Therefore, using conventional stochastic frontier estimation results risk 

being irrelevant if either a necessary SAR term or endogeneity is ignored.   
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