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Unknown Latent Structure and Inefficiency in Panel Stochastic Frontier 

Models 

 

Levent Kutlu*, Kien C. Tran† and Mike G. Tsionas‡ 

 

 

Abstract 

 

This paper extends the fixed effect panel stochastic frontier models to allow group heterogeneity 

in the slope coefficients. We propose the first-difference penalized maximum likelihood (FDPML) 

and control function penalized maximum likelihood (CFPML) methods for classification and es-

timation of latent group structures in the frontier as well as inefficiency. Monte Carlo simulations 

show that the proposed approach performs well in finite samples. An empirical application is pre-

sented to show the advantages of data-determined identification of the heterogeneous group struc-

tures in practice.  

 

 

 

Keywords: Classification; Fixed effect; Group heterogeneity; Panel stochastic frontier; Penalized 

control function maximum likelihood; Penalized first-difference maximum likelihood. 

 

JEL classification: C13, C23, C36. 

 

 

Revised: May 25, 2020. 

 

 

 

____________ 
* Department of Economics, University of Texas Rio Grande Valley, Edinburg, TX, USA.  

E-mail: levent.kutlu@utrgv.edu. 

† Corresponding author. Department of Economics, University of Lethbridge, 4401 University Drive W., Lethbridge, 

AB, Canada. E-mail: kien.tran@uleth.ca. 

‡ Lancaster University Management School, Lancaster, UK. E-mail: m.tsionas@lancaster.ac.uk. 

  

mailto:levent.kutlu@utrgv.edu
mailto:kien.tran@uleth.ca
mailto:m.tsionas@lancaster.ac.uk


1.   Introduction 

Unobserved heterogeneity plays an important role in the estimation of panel stochastic 

frontier models, and since heterogeneity is a latent feature of the data, its extent is unknown a priori 

in empirical practices. Therefore, neglecting unobserved heterogeneity in the data can lead to in-

consistent estimation of frontier parameters, and misleading inferences and predictions of the in-

efficiency indices. Greene (2005a,b) pointed out that if individual-specific heterogeneity is not 

adequately controlled for, the predicted inefficiency may be picking up some, if not all, of the 

individual-specific heterogeneity. Thus, recent work on panel stochastic frontier models have fo-

cused on how to control for unobserved heterogeneity (see, for example, Guan et al. (2009), Wang 

and Ho (2010), Colombi et al. (2010), Chen et al. (2014), Kumbhakar et al. (2014), Tsionas and 

Kumbhakar (2014), Kutlu et al. (2019), and Kutlu and Tran (2019) for reference therein).  

However, all the papers mentioned above, except Kutlu et al. (2019), typically assumed 

complete slope homogeneity (i.e., the frontier parameters are the same across individuals), and 

unobserved heterogeneity is modeled through individual-specific effects. Kutlu et al. (2019) allow 

only a subset of variables to have different slopes for individuals. Tsionas (2002) considered a 

pooled panel stochastic frontier model that allowed for slope heterogeneity where the frontier pa-

rameters are random so that they are completely different for different individuals; however, he 

assumed that the intercept term is common for all individuals over time, and hence he did not 

control for individual-specific effects. Whilst allowing for cross-section slope heterogeneity may 

help to improve on the specification bias of the frontier, its main disadvantage is the loss of power 

due to cross-section averaging in the estimation of the response patterns that may be common 

across individuals (i.e., certain groups of individuals in the panel). Moreover, since the parameters 

are random, this model is subject to standard problems of random effects models, e.g., inconsistent 

parameter estimates when the slopes are correlated with the error term. Thus, for the panel sto-

chastic frontier model, it is essential to control for unobserved heterogeneity in the data as well as 

for the potential heterogeneity in the response mechanisms that characterizes within the model. 

In this paper, we extend previous work on panel stochastic frontier models, and specifically 

the Wang and Ho (2010) model, to allow for both unobserved heterogeneity via individual-specific 

effects and for group heterogeneity in the slope parameters. In the standard panel regression mod-

els with individual-specific effects, Su et al. (2016) develop a new estimation and inference pro-

cedure when the regression parameters are heterogeneous across groups. They treat individual 



group membership as unknown and the group classification is determined empirically. We follow 

their lead in this paper and extend their approach to panel stochastic frontier models. Specifically, 

we use first-differencing transformation to remove the fixed effect, and then propose a penalized 

maximum likelihood estimation procedure to consistently estimate the frontier parameters, classi-

fication of groups and their memberships as well as technical inefficiency scores. Moreover, we 

also extend the model to allow for some or all regressors to be endogenous and propose a different 

estimation approach for which we term as penalized control function maximum likelihood. 

Our proposed model is related to the class of the metafrontier model developed by Battese 

et al. (2004) and among others, in the sense that both models consider the group-wise heterogeneity 

in response coefficients. However, our proposed model differs from the metafrontier literature in 

the following ways. First, the number of groups is specified a priori in the metafrontier model 

whilst they are determined endogenously based on the data in our model. Second, unobserved 

individual-specific effects can be different even among the firms within each group, but the meta-

frontier model does not allow for such effects and our model certainly allows for it. Finally, the 

metafrontier model assumes there exists a deterministic frontier which envelopes the groups’ fron-

tiers. However, we do not make such an assumption in our model due to the presence of the general 

(unobserved) individual-specific effects. Nevertheless, we believe that it can be readily extended 

to allow for a such deterministic frontier. Thus, our proposed model is more general and flexible. 

The remainder of the paper is organized as follows. Section 2 outlines the model and esti-

mation procedure. Specifically, we consider first-differencing transformations in the estimation 

procedures to remove the individual-specific effects and show how to determine the number of 

groups, classification of group membership, and prediction of technical inefficiency scores. Sec-

tion 3 extends the model to accommodate for endogenous regressors. A detailed computational 

algorithm of the proposed approach is given in Section 4. Section 5 provides some Monte Carlo 

simulations to examine the finite sample performance of the proposed estimators. An empirical 

application is presented in Section 6, and finally, Section 7 concludes the paper. 

 

2. The Model with Exogenous Regressors 

 

In order to fix the ideas, we will describe the estimation of a production function. However, 

with standard minor modifications in the model, a cost function can be estimated as well. Suppose 

we observed a panel data  where  is a scalar representing (log) 



output of firm  at time  and  is  vector of (log) inputs of firm i   at time . The fixed 

effects stochastic frontier model with group-specific pattern heterogeneity can be written as: 

,       (1a)  

,       (1b) 

,          (1c) 

,         (1d) 

,                      (1e) 

where  are scalar individual effects,  is a  vector of parameters of interest,  is a 

random symmetric error term representing factors that are beyond the firm’s control,  is a 

one-sided stochastic variable representing a technical inefficiency component,  is a positive 

function of a  vector of non-stochastic inefficiency determinants ( ), and  is a   

vector of unknown parameters. We assume that the random variable  is independent of all  

observations on , and both  and  are independent of all  observations on . For 

identification purposes, we further assume that neither  nor  contains a constant term, and at 

least one variable in  is not time-invariant.  Following Su, Shi, and Phillips (2016) (hereafter 

SSP), we allow for  to follow a group-specific pattern of the general form: 

 ,      (2) 

where in (2), for any , , , and . Let , 

, denote the cardinality of the set . To simplify the discussion, for now we assume 

that the number of groups,  is known and fixed but each individual’s group membership is un-

known. In addition, we implicitly assume that individual group membership does not vary over 

time. The above model can be thought of as an extension of the models of Wang and Ho (2010) 



and Chen et al. (2014), which allows for the slopes to vary according to a specific group. Note that 

in (1d) we assume that  is the same for all .  Allowing for  to vary with  would complicate 

the analysis further since the group classification is now needed to be done simultaneously. It is 

beyond the scope of this paper and we will leave it for future research. 

 

2.1. First-Difference Penalized Likelihood (FDPL) Estimation: 

Following Wang and Ho (2010), we first introduce the following notations. For any random 

variable , let , and  
'
 for . In general, with a 

slight abuse of notation,  represents a matrix with relevant columns obtained from each varia-

ble. For example, 
i
x  is a ( 1)

x
T k  matrix. Then, taking the first difference of (1a) – (1c), the 

model becomes: 

,       (3a)  

,       (3b) 

,         (3c) 

,                 (3d) 

where in (3b), the first-difference of  introduces correlations of  within the  panel and 

the  matrix  is given by: 

       (4) 

Note that, after the transformation, (3d) is the same as (1e) implying that the half-normality of 
*

i
u  

is unaffected by the transformation, and this is the key aspect of the model that leads to a tractable 

derivation of the likelihood function. Under the above assumptions, the marginal log-likelihood 

function of panel i  in the model is given by: 



    (5) 

where , , , and 

 is the standard normal CDF. Let , , and . We 

estimate , , and  by maximizing the following FDPL criterion: 

 = ,     (6) 

where  is a tuning parameter,  denotes the Frobenius norm, and the second term on 

the right-hand side of (6) represents a penalty term. As in SSP, the penalty term takes a mixed 

additive-multiplicative form, which is different from the traditional penalized estimation (where 

the additive penalty term is normally used). The additive component is needed for the identification 

of  and  jointly; and the main reason for the inclusion of the multiplicative term is that, 

for each ,  can take any one of the  unknown values, , and it is not known a priori 

to which point  should shrink. Maximizing (6) produces FDPL or Classifier-Lasso (C-Lasso) 

estimates , , and  of , 

, and , respectively1. 

 

2.2. Determination of the Number of Groups 

 

The discussion in the previous sub-section assumes that the number of groups 
0
J  is known 

a priori. However, in practice, the exact number of groups is rarely known and must be estimated. 

C-Lasso is termed by SSP. 



In this sub-section, we show how to determine the number of groups using an information criterion 

(IC) procedure. Our approach follows along the argument given in SSP. First, we assume that 
0
J  

is bounded from above by a finite integer 
max
J . For a given 

max
{1,..., }J J , let 

1 1
ˆ ˆ{ ( , ), ( , )}
i j
J J  and ˆ  denote the FDPL (or C-Lasso) estimators of { , }i j  and  discussed 

above; and individual i  is classified into group 
1

ˆ ( , )
j
G J  according to 

1 1 1
ˆ ˆ ˆ( , ) { {1,2,..., } : ( , ) ( , )}
j i j
G J i N J J  for 1,...,j J . Finally, let  

1 1 1 1
ˆ ˆ ˆ( , ) { ( , ),..., ( , )}

J
G J G J G J  and 

1
ˆ ( , )

ˆ
jG J

 denote the post-FDPL (or post-Lasso) estimator. 

Then, we select J  so that it minimizes the following IC: 

 

   (7) 

 

where 1,NT  is a tuning parameter, and 1
2

x q
K k k . That is, the number of groups, J  is 

chosen such that . 

 

Remark 1: As noted by SSP, the choice of the tuning parameter 
NT1,

 and 
1,NT

 respectively, can 

play an important role in determining the correct number of groups and post-FDPL estimates in 

practice. Following SSP, we impose the following conditions on the tuning parameters 
NT1,

 and 

1,NT
. 

A.1: As ( , )N T , 
1,

0
NT

 and 
1,NT
NT . 

A.2: As ( , )N T , (i) 
2 6 2

1
/ (ln )T T  and 

1
(ln ) 0T  for some 0 ; (ii) 

1/2 1 9(ln ) 0N T T  and 
2 1 /2 [0, )qN T c  for some 6q . 

The condition A.1 reflects the conditions for consistency of model selection, i.e., 
1,NT

 cannot 

shrink to zero too quickly or too slowly. Condition A.2  holds if 
1,

a

NT
T  for any (0,1 / 2)a

. 



In practice, under A.1, we can fine-tune 
1,NT

 over a finite set 1/2

1 1
{ ( ) , 1,..., }

l
NT l L  

for some 0
l

. Similarly, under A.2, we also suggest to fine-tune 
1,NT

 over a finite set 

1/3

1 1 0
{ , , 1,..., }l

l l
cT c c l L  for some 

0
0c  and 1 . In essence, these tuning 

parameters are analogous to the bandwidth selections in the kernel smoothing. 

 

Remark 2: Under certain regularity conditions, SSP derive the asymptotic properties of the post-

Lasso estimators including the oracle property for the non-stochastic frontier models. It can be 

shown that our proposed estimator satisfies the regularity conditions set out in SSP, and hence it is 

consistent, asymptotically normal, and achieves the oracle property as well3. For inference pur-

poses, it is important to recognize that our post-FDPL estimator belongs to the class of M-estima-

tors, and hence the asymptotic variance has the form: 1 1

0 0 0
ˆvar( )
j j j j

a A B A  where 

, 0

1

( )

0 , 0
[ log ( )]

j j

J

j NT j
A E L  and 0 0

1 1

( ) ( ) '

0 , 0 , 0
[ log ( ) log ( ) ]

j j

J J

j NT j NT j
B E L L , 

with 
j
 and 

j j
 denoting the vector of first and second derivatives of the log-likelihood func-

tion, respectively, 
0 j

 is the true parameter vector and 
0

1,...,j J . The estimated asymptotic 

variance can be obtained by replacing the true parameters with their estimates discussed above, 

and the expectation is replaced by the sample average over NT  observations. 

 

2.3. Prediction of the Inefficiency Index 

 

The primary interest in estimating model (1) is to obtain the prediction for technical inef-

ficiency, 
it
u . The conditional expectation estimator ( | )

it it
E u e  proposed by Jondrow et al. (1982) 

is often used for this purpose. For our proposed model, a similar conditional expectation estimator 

can also be used but with one simple modification. As Wang and Ho (2010) pointed out, instead 

of conditioning on the level of 
it
e , it is more convenient to compute the expectation of 

it
u  condi-

tion on 
i
e  since 

i i i i
e y x  does not depend on the estimates of individual-specific 

Even if we do not formally establish the asymptotic properties of the FDPL estimator, it is worth pointing out that 

the results of our Monte Carlo simulations are consistent with the belief that these asymptotic properties hold. See 

Section 5 for more details. 



effect, ˆ
i
. In addition, the vector 

i
e  contains all the information of individuals i  within each 

group in the sample. Thus, given the estimates of ˆi  and ˆ  discussed previously, the conditional 

expectation estimator ( | )
it i

E u e  and efficiency estimate 
it

Eff can be written as: 

 

* * *

*

* *

/
ˆ ( | )

/

ˆexp( ),

i i i

it it i it i

i i

it it

u E u e h

Eff u

      (8) 

 

where 
*
 and 

*
 are defined previously, and the expression in (6) is evaluated at ˆ

i i
e e , 

' ˆ( )
it it
h h q , 

* *
ˆ

i i
, and 

* *
ˆ

i i
. The group-wise efficiency prediction can be computed as 

ˆ ˆ( ) ( )ˆexp( )J J

it it
Eff u  where 

ˆ ˆ ˆ( ) ( ) ( )ˆ ( | )J J J

it it i
u E u e . 

 

3. Model with Endogenous Regressors 

 

3.1. Control Function Penalized Likelihood (CFPL) Estimation 

 

In this section, we relax the independence assumption between { , }
it it
x q  and 

it
v  (See for 

example, Kutlu, 2010; Tran and Tsionas, 2013; Amsler et al., 2016, 2017; Karakaplan and Kutlu, 

2017; Kutlu et al., 2019). In particular, we assume that a 1
p
k  sub-vector, 

it
p  of { , }

it it
x q  is 

correlated with 
it
v . However, we assume that { , }

it it
x q  and 

*

i
u  are independent. In addition, we 

assume that there is a 1
z
k  vector of (strictly) exogenous instruments 

it
z , where z p

k k  in the 

sense that ( | ) 0
it is

E v z  for all t  and s . Under these assumptions, we use a single-stage control 

function approach to deal with the endogeneity issue. That is, we use the following system of 

equations for the stochastic frontier model: 

  
'

it i it i it it
y x v u ,       (9a)  

it it it
p z ,       (9b) 

*

it it i
u h u ,          (9c) 



'( )
it it
h h q ,         (9d) 

* 2(0, )
i u
u N ,        (9e) 

where  is a p z
k k  matrix of unknown coefficients, 

it
 is a 1

p
k  vector of reduced form errors, 

and 
i
 follows a group-specific pattern as in (2).  

Under the specification of the above model, the endogeneity problem is introduced by al-

lowing the reduced form error term 
it

 to be correlated with 
it
v . More explicitly, we assume that 

conditional on 
it
z , 

* 1/2

' 2

0
, ,
0

pk vit it

it it v v

I
MN

v v
      (10) 

where  is a p p
k k  variance-covariance matrix of 

it
, and  is a 1

p
k  vector representing the 

correlation between 
*

it  and 
it
v . To simplify the discussion, we assume for now that the number of 

groups, 
0
J  is known and fixed but each individual’s group membership is unknown. Taking the 

first difference of (9) to eliminate the fixed effects and stacking all 1T  observations, we have:  

 

i i i i i
y x v u ,       (11a)  

i i i
p z ,       (11b) 

*

i i i
u h u ,         (11c) 

* 2(0, )
i u
u N .               (11d)  

                              

Recall that 
i
x  and 

i
 are ( 1)

p
T k  matrices and 

i
z  is a ( 1)

z
T k  matrix. By a Chole-

sky decomposition of the variance-covariance matrix of  
* ' '( , )
it i
v , we obtain: 

                      

**

*' '

0
,

1
pk itit

it itv v

I

v w
     (12)          

where 
*

it  and 
* (0,1)
it
w N  are independent. Therefore, we have: 



' * ' *

'

1

,
it v it v it

it it

v w

w
      (13)                                                    

where 

1/2

'1

w , 
'1

w v
, and 

*

it w it
w w . After first differencing, we get: 

i i i
v w . Then, the frontier equation (11a) can be written as: 

' '( ) ,
i i i i i i
y x x z      (14) 

where 
i i i

w u  and 
i

 is the endogeneity bias correction term. The density function 

of 
i
w  is given by2: 

  .   (15) 

Similarly, the joint density function of 
i
 is given by:  

   

 (16) 

Since 
i
 and 

i
 are independent, after tedious but straightforward derivation, the marginal 

log-likelihood function of the panel i  is given by: 

(1) (2)

2 , 2 , 2 ,
log log log

i NT i NT i NT
L L L       (17) 

where  

Note that T = .



 

and 

  

where  

, , , 

and . 

As before, let , 
'

1
( ,..., )

J , and 
* ' ' ' 2 2 '( ( ), , , , )

v u
vec , then we propose 

to estimate , , and 
*
 by maximizing the following CFPL criterion: 

 

   = ,  

 (18) 

 

where  is a tuning parameter. Maximizing (18) produces the CFPL estimates 

'

1
( ,..., )

N , 
'

1
( ,..., )

J ,  and 
* ' ' ' 2 2 '( ( ), , , , )

v u
vec . 

 

3.2. Determination of the Number of Groups 

Similar to the case of exogenous regressors, when the number of groups J  is unknown, 

we replace 
0
J  by 

max
(1,..., )J J  to obtain the CFPL (or C-Lasso) estimates 2 2

{ ( , ), ( , )}
i j
J J   



and 
*

  of { , }i j  and 
*
 discussed above. We then classify individual i  into group 2

( , )
j
G J  

according to 2 2 2
( , ) { {1,2,..., } : ( , ) ( , )}
j i j
G J i N J J . Let 

2
( , )G J

1 2 2
{ ( , ),..., ( , )}

J
G J G J  and 

2( , )jG J  denote the post-CFPL (or post-Lasso) estimator. Then, we 

suggest selecting J  that minimizes the following IC: 

 

   (19) 

 

where 2,NT  is a tuning parameter, and 2
2

x q z
K k k k . That is, the number of groups J  

is chosen such that . For the choice of the tuning parameters NT2,  and 

NT2,   in practice as well as discussion on the asymptotic properties of the proposed estimator, 

see Remark 1 and Remark 2 above. 

 

3.3. Prediction of Inefficiency Score 

 

As earlier, given the CFPL estimates of 
i
 and 

*
, the conditional expectation estimator 

( | )
it i

E u  can be written as: 

,      (20) 

where 
**i

 and 
**i

 are defined previously, and the expression in (20) is evaluated at i i  

where i i i i i
y x , and 

i i i
x z ; 

'( )
it it
h h q , 

** **i i
; and 

** **i i
. As in the exogenous regressors case, the group-wise efficiency prediction can be com-

puted as 
( ) ( )ˆexp( )J J

it it
Eff u  where 

( ) ( ) ( )ˆ ( | )J J J

it it i
u E u . 

 

4. Computational Algorithm 



In this section, we briefly outline an iterative numerical algorithm to obtain the FDPL es-

timates ˆ , ˆ , and ˆ  discussed in Section 2.1. For the CFPL estimation, a similar algorithm can 

be applied. Let s  be the iteration index. 

Step 1: Set 1s  and start with the initial value 
(0) (0) (0)

1
ˆ ˆ ˆ( ,..., )

J , 
(0) (0) (0)

1
ˆ ˆ ˆ( ,..., )

N , and 

 such that 
(0) (0)

1

ˆ ˆ 0
N

i j
i

 for 2,...,j J . 

Step 2: Given ( 1)ˆ r , ( 1)ˆ r , and , choose 
1
( , , )  to maximize: 

 = ( , ) , 

and obtain the updated ( )ˆ( ,r
( ) ( )

1
ˆ ˆ, )r r

. Repeat this procedure until we obtain the updated of 

( )ˆ( ,r
( ) ( )ˆ ˆ, )r r

J . 

Step 3: Update s  to 1s  and repeat Step 2 until convergence. 

 

Define the final estimate of  as ˆ  
( ) ( )

1̂
ˆ( ,..., )S S

J  where S  denotes the final iteration such that 

the convergence is achieved. Then, individual i  is classified as a member of group ˆ
j
G  if 

( , )ˆ ˆS j

i j ; otherwise, ˆ
i  is allocated to the 

( )S

j  that is nearest to some 
( , )ˆ S k
i , for 1,...,k J . 

The initial value in Step 1 is chosen based on random initial conditions to find the best starting 

value (10,000 searches). If a failure occurs, a new random search is used. We use this choice of 

initial value throughout our simulations as well as the empirical application below. 

 

5. Monte Carlo Simulations 

5.1. Data Generating Process (DGP) 

To examine the finite sample performance of the estimation and classification procedure, 

we consider two DGP that cover both exogenous and endogenous regressors. We consider sample 



sizes {250,500}N  and time periods {10,20,40}T . For each sample, the observations in each 

DGP are drawn from three groups with the proportion
1 2 3

{ : : } {0.4 : 0.4 : 0.3}N N N . 

Throughout the experiments, the fixed effect 
i
 is standard normal, independent across i . The one-

sided error 
*

i
u  is generated as . . .i i d  from a half-normal with {1,2}

u
, and 

*

i
u  is independent of 

i
 and all regressors. 

DGP 1 (Exogenous Regressors): The observations ( , , )
it it it
y x q  are generated from the model (1a) 

– (1e). The exogenous regressors 
' '

1 2 1 2
( , ) (0.5 ,0.5 )

it it it i it i it
x x x  where 

1 2
, . . . (0,1)
it it

i i d N  are mutually independent, and independent of 
i
. The two-sided error 

it
v  is standard normal, independent across i  and t , and independent of 

*,
i i
u  and all the regressors. 

The environmental variable 
it
q  is generated as i.i.d. from a Uniform distribution on [ 1,1]   and 

exp(0.2 )
it it
h q . Finally, the true coefficients for the three groups 

11 12 21 22
( , ),( , ) , and 

31 32
( , )  are (0.5,1.5),(1,1) , and (1.5, 0.5) , respectively. FDPL will be used for this DGP. 

DGP 2 (Endogenous Regressors): For this DGP, the observations are generated from the model 

(9a) – (9e). We assume that 
2it
x  is exogenous and is generated as in DGP 1, whilst 

1it
x  is endoge-

nous and is generated as 
1

0.4 0.8
it i it it
x z  where . . . (0,1)

it
z i i d N   and  

0 1
, .
0 1

it

it

N
v

  

In each experiment, we set {0.2,0.4,0.8}   which corresponds to a weak, moderate and strong 

correlation between 
it
v  and 

it
, respectively. The environmental variable 

it
q  and the true coeffi-

cients for the three groups are the same as in DGP 1. Finally, the Monte Carlo replications for each 

DGP is 500.  

Our first simulation exercise is to assess how well the proposed IC selects the number of groups 

for each DGP.  As discussed earlier, the choice of the fine-tune parameters jNT   and jNT   for 



1,2j   can be important in selecting the correct number of groups. For the tuning parameter jNT

, we choose 
2 1/3

j j y
c s T  for 1,2j , where 

2

y
s  is the sample variance of 

it
y  and 

{0.125,0.25,0.5,1,2}
j
c . As for the tuning parameter jNT  we use the following 

1/2( )
j

NT  

for 1,2j , where 
1 1 1 2 3
, , , ,
4 3 2 3 4

. We experimented with many alternatives, and found that 

0.25
j
c  and 2 / 3

j  for 1,2j , work fairly well and they are used throughout the simula-

tions and the empirical application. For DGP 1, we pick up from the set candidate values of 
1
 that 

maximizes 1 1 1
ˆ( ( ), )IC J  , and similarly for GDP 2,  we pick up from the set candidate values of 

2
 that maximizes 

2 2 2
( ( ), )IC J . In all experiments, we use the initial starting value described 

in Section 4 and the BFGS numerical algorithm procedure from NETLIB in Fortran77, GNU com-

piler to maximize the log-likelihood function with the convergence criterion is set at 
510 . In al-

most all cases the convergence was quick and stable.  

 

5.2. Results 

 

Tables 1 and 2 report the empirical probability that a particular group size from 1 to 5 is 

selected according to the proposed IC when the true number of groups is 3. In particular, Table 1 

shows the results for DGP 1 (exogenous case), whilst Tables 2A – 2C display the results for DGP 

2 (endogenous case). In line with our prior expectation, the correct classification percentage ap-

proaches 100%  as T  increases for both DGPs. 

 

[Table 1 here] 

[Table 2 here] 

 

Next, we focus our attention on the classification of individual units and the point estima-

tion of post-Lasso, given the true number of groups 
0
( 3)J . Due to the space limitation, all tab-

ulated results are produced using 0.25, 1,2
j
c j , albeit the outcomes are found to be robust 



over the specified range of constants. For comparison purposes, we also include the oracle esti-

mator ˆ
jG
 or 

jG
 which defines as the infeasible estimator that utilizes the true group identity .jG

For conservation of space, we only report the results for the first coefficient
0

'

1 11 1
( ,..., )

J , 

and since 
1
 is a  

0
1J  vector, we use the average statistics over their weight /

j
N N , 

0
1,..., .j J  The results are depicted in Tables 3 and 4. We report the bias, root-mean-squared 

errors (RMSE), and the percentage of correct classification of the N  units, computed as 

31
ˆ1
1{ }
j

i kj i G
N  averaged over 500 replications. The results indicate that the esti-

mated bias and RMSE of the oracle and post-Lasso estimators are decreasing as either N  or T  

decreases. Moreover, the bias and RMSE of the oracle’s estimator are slightly smaller than those 

of post-Lasso. The main reason for these (mild) discrepancies of the RMSE is that the estimated 

bias and standard deviation of the post-Lasso estimator are inflated by some misclassification 

units, which mask as outliners against most of the group members. Nevertheless, our results seem 

to confirm the oracle properties of the proposed estimators. 

 

[Insert Table 3 here] 

[Insert Table 4 here] 

 

6. An Empirical Application 

 

 In this section we present an empirical application of US banks to illustrate the usefulness 

of our proposed models and estimation methods discussed earlier. 

 

6.1. The Data 

 

The data we use in this paper is the annual year-end bank-level which include all FDIC-

insured commercial banks from 1976 – 2007. The data was taken from Kotter et al. (2012) and the 

detailed description of the data is given in their paper. 

For the input prices, we truncated these variables at the 1st and 99th percentiles of their 

respective empirical distributions to mitigate the influence of outliers. In addition, we use the 2005 

Consumer Price Index for all urban consumption (published by the U.S. Bureau of Labor Statistics) 

to deflate all nominal quantities. Since our proposed approach requires large N  and T , we use an 



unbalanced panel data and first include all banks with time dimension 10
i
T . There are 

14,168N  banks included in our data set for the analysis. The average length of time periods  

for all banks is about 1

1
21.9

N

ii
N T . Figure 1 plots the frequency distribution of 

i
T . 

 

[Insert Figure 1 Here] 

 

Following Sealey and Lindley (1997), the bank’s production technology is modeled using 

the “intermediation approach.” Labour, physical capital as well as liabilities are used as inputs to 

the bank’s production process, whilst assets (other than physical) are considered as outputs. The 

following variables are used as outputs (y )  and inputs (x ) in the production technology: Secu-

rities 
1
( )y  and loans 

2
( )y ; fixed assets 

1
( )x , labor 

2
( )x , borrowed funds 

3
( )x  as well as equity 

capital 
4
( )x . The inclusion of equity capital as an additional input can be argued that banks may 

use it to guard against losses, and hence it can be considered as a source of loanable funds. 

In order to contextualize the economic environment in which banks operate, we include 

the following variables, both internally and externally, to capture bank’s characteristics in our in-

strumental variables (
it
z ) and environmental variables (

it
q ). The instrumental variables 

it
z  include: 

(1) the bank’s total assets as a proxy for its size and scale of operation; (2) the bank’s asset market 

share in a given state to capture its dominance in the market (see, for example, Stiroh and Strahan, 

2003; Boyd and DeNicolo, 2005); (3) the bank’s ratio of equity to total assets; (4) the bank’s ratio 

of securities to total assets; (5) the share of non-interest income (Koetter et al., 2012); (6) the share 

of loan-loss provisions and loan-loss reserves in the bank’s total loans to proxy for credit risk; and 

(7) macroeconomic variables such as the disposable personal income and the state’s unemploy-

ment rate. The environmental variables (
it
q ) include: (1) the number of bank mergers in the state 

in a given year; (2) the bank’s z-score to proxy for the overall risk of bank failure (see Laeven and 

Levine, 2009); (3) the Hirschman-Herfindahl index across the banks’ different types of loans; (4) 

an indicator for the top-hundred banks in a given year; and (5) three indicators to capture the in-

stitutional changes in states that correspond to deregulation in the intrastate branching, the inter-

state expansion and the post-IBBEA interstate banking.  



The above chosen variables have important implications for bank efficiency and market 

power since they are more than likely to influence bank’s business strategies in their quest to max-

imize its franchise value (Demsetz and Strahan, 1997; DeYoung and Rice, 2004). For more details 

on the construction and rationale behind these variables, see Koetter et al. (2012). 

Production technology is described by an output distance function (ODF). Suppose the 

inputs are 
1
,...,

K
X X , and the outputs are 

1
,...,

M
Y Y . Define ln , 1,...,

k k
x X k K , 

1 1
lny Y  

and 1
ln / , 2,...,

m m
y Y Y m M . This transformation is used to ensure that the IDF is homo-

geneous of degree one in outputs. Then, the output distance function (ODF) takes the following 

form: 

 1, 1, , 2, ,
( ,..., , ,..., ) , 1,..., ; 1,..., .

it it K it it M it i it it i
y f x x y y v u i n t T    

Let 
'

2, ,
( ,..., )

it it M it
y y y and 

'

1, ,
( ,..., )

it it K it
x x x . If we adopt a translog specification, we have: 

 
1 1

1, 2 2
,

it i xi it it xi it yi it it yi it it xyi it it it
y x x B x y y B y x B y v u    

where
ix
B

yi
B and xyi

B   are parameter matrices, 
xi

 and yi  are parameter vectors. We can 

write the ODF as follows: 

    1, *,
,

it i it i it i
y x v u    

where 
' ' ' ' '

*,
[1, , ( ) , , ( ) ]

it it it it it it it
x x vech x x y vech y y . We treat both log inputs and log output 

ratios as endogenous. Under certain economic assumptions, log output ratios can be treated as 

predetermined. However, econometrically, there is no compelling reason to adopt this as conclu-

sive evidence that they can be treated as exogenous. In fact, profit maximization would imply that 

both inputs and outputs are economically (and, in all likelihood, econometrically, as well) endog-

enous. In addition to the instruments listed above, we also include interactions among the variables 

in 
it
z ,  interactions of time dummies with all other time-invariant variables in 

it
z  as well as the 

lagged values of time-varying instruments along with their interactions with all other variables as 

additional instruments. 

 



6.2. Results 

We first determine the appropriate number of groups using (7) and (19) for the case of 

exogenous and endogenous regressors, respectively, and the results are depicted in Figure 1. For 

the exogenous regressor case, the optimal number of groups is seven, whilst for the endogenous 

regressors’ case, the optimal group is four implying that endogeneity may be an issue for our 

model. To check for the endogeneity problem, we plot the density of the ratio of the root mean 

squares forecast errors (RMSFE) and our results show that the regressors are indeed endogenous 

(see Figure 2). As a further evidence for the endogeneity of these variables, we conduct a simple 

test for 0    in (14) using F-statistics (see, for example, Amsler et al. (2016) and Karakaplan 

and Kutlu (2017)). The value of the F-statistics is 64.78 with a p-value of 0.000 indicating that the 

null hypothesis of  0  is rejected at a one percent significant level. Thus, in what follows we 

only report the results for the endogenous case. For comparison purposes, we also estimate the 

homogenous coefficient stochastic model with endogenous regressors using the approach devel-

oped in Kutlu et al. (2019). 

For the sake of convenience and simplicity, Table 5 and Figure 3 report only the summary 

of estimated groups’ productivity measures, which include returns to scale (RTS), efficiency 

change, technical change, and productivity growth4. For comparison purposes, the estimated 

productivity measures for the homogenous-coefficients model are given in the second row of Table 

5 and figures 2a-2b, respectively. Our results indicate that RTS for the homogenous-coefficient 

model is close to one (i.e., constant RTS) and statistically significant at the 1% level, whilst other 

measures such as efficiency change (EC), technical change (TC), and productivity growth are not 

statistically significant. In contrast, the results based on our proposed approach, the CFPL classifies 

the banks into four groups based on the variables that are related to the banks’ size and scale oper-

ation,  market shares, as well as the ratio of equity and securities to total assets. The results in Table 

5 and Figure 3 show that (RTS) vary over the four groups, and they average 0.627, 0.888, 0.835, 

and 0.656 indicating that different groups have different properties in terms of RTS, albeit in all 

groups, we have decreasing returns to scale. Efficiency change is mostly positive for all groups. 

The densities of efficiency change exhibit bimodal for groups one and four with a dominant mode 

at near-zero value for group two, and a positive value of approximately 0.0065 for group four. The 

Detailed results for the estimated frontier parameters are available from the authors up request.



average efficiency scores for the four groups are 0.821, 0.924, 0.935, and 0.845, respectively. For 

the most part, technical change is positive and consequently, productivity growth is positive except 

for group 4, which has significantly less technical change and productivity growth compared to 

the other groups. As the groups are different in terms of RTS, technical change, efficiency change, 

and productivity growth, any policy measures will have heterogeneous effects on specific banks 

according to the group to which they belong. Consequently, ignoring the group-wise heterogeneity 

when it is present, can provide misleading estimates of productivity and efficiency measures which 

may have negative consequences on policy and banking supervisions.  

Finally, as a robustness check, we also consider the case where 9
i
T  and 8

i
T . In 

these cases, the number of banks (N ) increased to 14,974 and 15,729, respectively. Using our 

approach for both cases, the optimal number of groups obtained is still 4 and the productivity 

measures are similar to those in Table 5. For the conservation of space, we do not report these 

results here but available from the authors upon request. 

 

[Insert Table 5 here] 

[Insert Figure 1-3 here] 

 

7. Concluding Remarks 

 

This paper extends the fixed effects panel stochastic frontier model of Wang and Ho (2010) 

to allow group heterogeneity in the slope coefficients. We propose the first-difference penalized 

maximum likelihood (FDPML) and control function penalized maximum likelihood (CFPML) 

methods for classification and estimation of latent group structures in the frontier as well as inef-

ficiency. Monte Carlo simulations show that the proposed approach performs well in finite sam-

ples. An empirical application indicates the advantages of data-determined identification of the 

heterogeneous group structures in practice.  

The approach in this paper can also be adapted to the Chen et al. (2014) model where they 

leave the inefficiency term 
it
u  unspecified. In this case, the density of the transformation errors 

(using either first-difference or within transformation) can be obtained with a similar approach as 

in Chen et al. (2014) using the closed skew normal results. Also, it would be interesting to extend 

our approach to the four-component stochastic frontier models of Colombi et al. (2014),  



Kumbhakar et al. (2014), and Tsionas and Kumbhakar (2014). Finally, under the endogenous re-

gressors case, it is possible to extend the current method to allow for some or all inputs to be 

correlated with both 
it
u  and 

it
v . Using Amsler et al. (2017) approach, one can construct the joint 

density of all the errors in the model via copula function. Alternatively, the correlation between 

some or all inputs and inefficiency can be modeled using the correlated effects as it has been done 

in Griffiths and Hajargasht (2016). We will leave these topics for future research.  
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TABLE 1: Empirical Probability of Selecting 1,...,5J  when 
0
3J  - DGP1 

 J   

N   T   1 2 3 4 5 

250 10 0.000 0.158 0.842 0.000 0.000 

250 20 0.000 0.088 0.912 0.000 0.000 

250 40 0.000 0.063 0.937 0.000 0.000 

500 10 0.000 0.055 0.955 0.000 0.000 

500 20 0.000 0.023 0.977 0.000 0.000 

500 40 0.000 0.000 1.000 0.000 0.000 

 

 

 TABLE 2A: Empirical Probability of Selecting 1,...,5J  when 
0
3J  - DGP2 

( 0.2)   
 J   

N   T   1 2 3 4 5 

250 10 0.000 0.150 0.850 0.000 0.000 

250 20 0.000 0.078 0.922 0.000 0.000 

250 40 0.000 0.059 0.941 0.000 0.000 

500 10 0.000 0.028 0.972 0.000 0.000 

500 20 0.000 0.000 1.000 0.000 0.000 

500 40 0.000 0.000 1.000 0.000 0.000 

 

  



TABLE 2B: Empirical Probability of Selecting 1,...,5J  when 
0
3J  - DGP2 

( 0.4)   
 J   

N   T   1 2 3 4 5 

250 10 0.000 0.108 0.892 0.000 0.000 

250 20 0.000 0.056 0.944 0.000 0.000 

250 40 0.000 0.029 0.971 0.000 0.000 

500 10 0.000 0.011 0.989 0.000 0.000 

500 20 0.000 0.000 1.000 0.000 0.000 

500 40 0.000 0.000 1.000 0.000 0.000 

 

TABLE 2C: Empirical Probability of Selecting 1,...,5J  when 
0
3J  - DGP2 

( 0.8)   
 J   

N   T   1 2 3 4 5 

250 10 0.000 0.108 0.892 0.000 0.000 

250 20 0.000 0.019 0.981 0.000 0.000 

250 40 0.000 0.007 0.993 0.000 0.000 

500 10 0.000 0.000 1.000 0.000 0.000 

500 20 0.000 0.000 1.000 0.000 0.000 

500 40 0.000 0.000 1.000 0.000 0.000 

 

 

  



TABLE 3: Classification and Point Estimation of 
1
- DGP1 

   Oracle Post-FDPL 

N  T  % of Correct 

Classification 

Bias RMSE Bias RMSE 

250 10 0.815 0.0124 0.0232 0.0172 0.0303 

250 20 0.892 0.0071 0.0175 0.0092 0.0253 

250 40 0.920 0.0055 0.0126 0.0076 0.0211 

500 10 0.947 0.0032 0.0081 0.0055 0.0131 

500 20 0.969 0.0028 0.0065 0.0034 0.0077 

500 40 0.995 0.0011 0.0052 0.0013 0.0063 

 

TABLE 4A: Classification and Point Estimation of 
1
- DGP2 

( 0.2)   
   Oracle Post-CFPL 

N  T  % of Correct 

Classification 

Bias RMSE Bias RMSE 

250 10 0.813 0.0174 0.0254 0.0229 0.0442 

250 20 0.891 0.0085 0.0196 0.0099 0.0320 

250 40 0.925 0.0071 0.0177 0.0082 0.0291 

500 10 0.948 0.0063 0.0090 0.0077 0.0172 

500 20 0.968 0.0044 0.0072 0.0052 0.0091 

500 40 0.997 0.0020 0.0046 0.0026 0.0055 

 

  



 

TABLE 4B: Classification and Point Estimation of 
1
- DGP2 

( 0.4)   
   Oracle Post-CFPL 

N  T  % of Correct 

Classification 

Bias RMSE Bias RMSE 

250 10 0.820 0.017 0.0271 0.025 0.0440 

250 20 0.897 0.0082 0.0213 0.0098 0.0381 

250 40 0.928 0.0070 0.0195 0.0081 0.0272 

500 10 0.955 0.0045 0.0094 0.0053 0.0130 

500 20 0.973 0.0022 0.0075 0.0031 0.0092 

500 40 0.998 0.0008 0.0049 0.0013 0.0055 

 

TABLE 4C: Classification and Point Estimation of 
1
- DGP2 

( 0.8)   
   Oracle Post-CFPL 

N  T  % of Correct 

Classification 

Bias RMSE Bias RMSE 

250 10 0.898 0.010 0.0294 0.0194 0.0431 

250 20 0.916 0.0051 0.0236 0.0092 0.0343 

250 40 0.945 0.0032 0.0207 0.0049 0.0291 

500 10 0.981 0.0025 0.0097 0.0032 0.0131 

500 20 0.992 0.0019 0.0078 0.0027 0.0085 

500 40 0.999 0.0007 0.0051 0.0011 0.0060 

 

  



TABLE 5: RTS, Efficiency change, Technical Change and Productivity Growth Resultsa 

Group RTS Eff. Change Tech. Change Prod. Growth 

Homogenous 0.9694*** 

(0.0220) 

0.0029 

(0.0145) 

0.0007 

(0.0115) 

0.0036 

(0.0240) 

1 0.6257*** 

(0.0676) 

0.0091** 

(0.0045) 

0.0088 

(0.0071) 

0.0179*** 

(0.0068) 

2 0.8878*** 

(0.1390) 

0.0025 

(0.0018) 

0.0157* 

(0.0087) 

0.0182** 

(0.0088) 

3 0.8349*** 

(0.0622) 

0.0089*** 

(0.0016) 

0.0101** 

(0.0046) 

0.0189*** 

(0.0045) 

4 0.6558*** 

(0.0427) 

0.0044* 

(0.0023) 

0.0038* 

(0.0021) 

0.0082*** 

(0.0031) 
aNote: Standard errors are given the parentheses. *** 1% significant, ** 5% significant, * 10% significant. 
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Figure 1: Frequency Distribution of the Data



Figure 2A: Density Plot of Returns to Scale:  

Homogenous case 

 

 

Figure 2B: Density Plot of TC, EC and PG:  

Homogenous case 

 

 

 



Figure 3: Identification of Number of Groups 

 

Figure 4: Density Plot of the Ratio of RMSFE 

 

 

 

 

 

 

 

 

 



Figure 5: Density Plots of Productivity and Efficiency Change Measurements 
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