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Blockchain based End-to-end Tracking System for
Distributed IoT Intelligence Application Security

Enhancement
Lei Xu, Zhimin Gao, Xinxin Fan, Lin Chen, Hanyee Kim, Taeweon Suh, and Weidong Shi

Abstract—IoT devices provide a rich data source that is not
available in the past, which is valuable for a wide range of
intelligence applications, especially deep neural network (DNN)
applications that are data-thirsty. An established DNN model
in turn provides useful analysis results that can improve the
operation of IoT systems. The progress in distributed/federated
DNN training further unleashes the potential of integration
of IoT and intelligence applications. When a large number of
IoT devices deployed in different physical locations, distributed
training allows training modules to be deployed to multiple edge
data centers that are close to the IoT devices to reduce the latency
and movement of large amounts of data. In practice, these IoT
devices and edge data centers are usually owned and managed
by different parties, who do not fully trust each other or have
conflicting interests. It is hard to coordinate them to provide
an end-to-end integrity protection of the DNN construction
and application with classical security enhancement tools. For
example, one party may share an incomplete data set with others,
or contribute a modified sub DNN model to manipulate the
aggregated model and affect the decision-making process. To
mitigate this risk, we propose a novel blockchain based end-to-
end integrity protection scheme for DNN applications integrated
with an IoT system in the edge computing environment. The
protection system leverages a set of cryptography primitives to
build a blockchain adapted for edge computing that is scalable to
handle a large number of IoT devices. The customized blockchain
is integrated with a distributed/federated DNN to offer integrity
and authenticity protection services.

Index Terms—Blockchain, IoT, DNN, Security

I. INTRODUCTION

Internet of things (IoT) has become an essential part of a
variety of IT infrastructures such as smart city, smart factory,
and smart farming. One of the most important functions of
IoT devices is information collection, which provides a rich
data source that is not available in the past and valuable for
data-driven intelligence applications like deep neural networks
(DNNs). A trained DNN model in turn can be applied for
different purposes, such as security enhancement [1], [2],
predictive maintenance [3], [4], and healthcare applications [5],
[6]. While there are some efforts on finishing the machine
learning tasks on IoT devices themselves [7], it is more common
to shift these computation-intensive jobs to computers.

For many scenarios, IoT devices are deployed in multiple
physical locations.It is expensive to move all collected data
to the same place in a timely manner and process them
together to build a DNN model, especially for online learning
applications [8]. The fusion of edge computing [9] and
distributed/federated deep neural network (DNN) learning

technologies [10], [11] offers an adequate framework to handle
this situation. Specifically, IoT devices generated data are sent
to edge data centers that are physically close to the data source,
where data is consumed to produce intermediate results. The
intermediate results are then sent to the cloud, where they are
aggregated to obtain the final DNN model. The final model can
be pushed back to edge servers to facilitate the operation of
connected IoT devices, or repeat the above process by working
on the newly received model with new IoT data and sending
the updated model to the cloud again.

While distributed/federated DNN learning has many benefits,
it also faces new security challenges. A type of realistic
threats that has attracted attention is that an attacker can
manipulate its contribution to the learning process to affect the
aggregated model, such as model poisoning [12], [13] and data
poisoning [14], [15], [16]. These attacks may cause serious
consequences when the compromised model is used for critical
tasks.

To mitigate the risk of data poisoning, methods are developed
to detect malicious data by measuring its negative impacts on
generated models or using new loss functions [17], [18], [19]. A
similar idea is extended to detect model poisoning attacks, e.g.,
removing local models that have large negative impacts on the
error rate of the global model or using other outlier detection
mechanism to filter out certain local models [12], [20]. These
methods can only detect the attacks in a probability manner
and it is helpful to keep track of the whole training/application
process to offer the retrospect capability.

An IoT system integrated with a distributed/federated DNN
usually consists of multiple sub-systems that owned by different
parties. These parties may not trust each other and even have
conflict of interests. Therefore, it is not easy to use traditional
security tools to build the tracking system to offer the following
features: (i) Consistency of tracking history. While one party
can use tools like digital signature to authenticate the data and
intermediate results produced by IoT devices/computers man-
aged by him/her, it is possible that an attacker sends different
versions to other parties to cause confusions. (ii) Completeness
of tracking history. Besides tracking what information has been
contributed, it is better for the system to guarantee that the
recorded information is the only information that has been
produced and shared. (iii) Immutability of tracking history.
The system should make it hard for an attacker to manipulate
existing records that have been stored in the tracking system.

The blockchain technology sheds light on overcoming these



challenges. In a nutshell, a blockchain is a decentralized
ledger that is managed by multiple participants collaboratively
without relying on a centralized party. The concept was first
introduced to build cryptocurrency systems without a central
trusted party [21] and then finds a variety of other applications
in different areas including supply chain management [22]
and supporting of sharing economy [23]. This decentraliza-
tion feature matches with the feature of typical IoT based
distributed/federated DNN applications well. However, it is not
straightforward to implement a blockchain based protection
mechanism due to the characters of IoT devices and the
edge computing architecture, and the complexity of DNN
applications. The IoT devices usually have limited computation
and storage capacity and cannot afford expensive blockchain
operations. At the same time, the number of IoT devices
involved in a typical DNN application is large, and it is not easy
to handle them with a blockchain. Furthermore, most existing
blockchains do not consider the special network architecture
of edge computing to utilize the high speed connection within
an edge data center.

To fully utilize the desirable features of a blockchain to offer
an end-to-end tracking of an IoT based distributed/federated
DNN application that is based on IoT and take advantage of the
edge computing, we propose edge blockchain, a novel block-
chain architecture and corresponding key operations. The edge
blockchain consists of multiple sub-blockchains and a main-
blockchain. Each sub-blockchain runs in an edge computing
data center and serves a group of IoT devices to track collected
data and intermediate results. All computer nodes maintaining
the same sub-blockchain reside in the same edge data center
so messages can be exchanged efficiently and cheaply. The
main-blockchain runs in the cloud and is responsible for
connecting all sub-blockchains to prevent an attacker to focus
on a single sub-blockchain to compromise the subset of the
training tracking information. An accumulator based efficient
information exchange protocol is developed to support the
inter-locking of sub-blockchains and the main-blockchain, and
query of training tracking records. This protocol greatly reduces
the inter-chain communication cost (i.e., sub-blockchain to
sub-blockchain and sub-blockchain to main-blockchain). The
proposed edge blockchain architecture for training/application
process tracking achieves a good balance between scalability
and immutability, i.e., more sub-blockchains can be easily
added to the system to support more IoT devices and the inter-
locking of sub-blockchains/main-blockchain prevent an attacker
from modifying tracking information on a sub-blockchain
without compromising the whole system. Besides maintaining
an end-to-end tracking, the new blockchain architecture can
also be utilized to support other IoT intelligence applications
protection mechanisms that are based on blockchain technology.

In summary, our contributions in this paper include:
• We propose a novel blockchain architecture, edge block-

chain, that fits the edge computing environment and
is able to support end-to-end tracking of IoT based
distributed/federated DNN applications;

• We develop an efficient inter-blockchain locking and query

mechanisms to improve the security and performance of
the proposed blockchain system; and

• We implement a prototype of the proposed blockchain
and integrate it with a typical DNN training process to
evaluate its performance and demonstrate its practicality.

The rest of the paper is organized as follows: In Section II,
we briefly review related background. In Section III, we
describe the high level design of the two-layer edge blockchain
architecture and its application in the protection of IoT based
DNN applications. We present the detailed design and analysis
of the new blockchain architecture and the protection of DNN
in Section IV and Section V respectively. In Section VI, we
discuss the implementation of the design and evaluate its
performance. In Section VII, we review related prior works,
and we conclude the paper in Section VIII.

II. BACKGROUND

In this section, we briefly review the background of block-
chain and cryptography accumulator, which is used for the
construction of the new blockchain system.

A. Distributed/Federated DNN Construction

As the name suggested, a distributed/federated DNN con-
struction involves multiple parties who collaborate to train the
model with their own data sets. Instead of sharing data directly
with a centralized party, they build their own local models
and share the model with a centralized party to aggregate
them to form the final model [24], [25]. Distributed/federated
DNN construction has several benefits compared with cen-
tralized DNN model training: (i) Improving the performance.
Distributed/federated model training not only allows the work
to be done in parallel, but also reduces the communication
cost as collected data is consumed locally. (ii) Improving data
privacy. Participants of distributed/federated DNN learning do
not share data directly but only contribute local models trained
by the data. Therefore, it provides better data privacy in certain
cases.

The distribution feature also introduces a new security risk,
where a participant can either inject compromised data to the
local model construction process or poison the local model
directly.

B. Blockchain

There are generally two types of blockchain systems based
on the way of participant management. One type is public
blockchain, where there is no central identity/authorization
management system and anyone can join the system freely.
The other type is permissioned blockchain, where an entity
needs to be enrolled and authorized to operate in the blockchain.
Although the IoT devices of a system belong to different owners,
it is still a closed system, and it is a natural requirement for all
participants to know each other. Therefore, we only consider
permissioned blockchain in this work.

A common way to identify participants in a permissioned
blockchain system is to use a public key infrastructure (PKI).
Each participant peer is assigned a public/private key pair



(pk, sk) and the public key pk is then embedded into a certificate
issued by a CA of the PKI. The certificate serves as the identity
of the peer and the peer can authenticate him/herself to others
by generating digital signatures with corresponding private key.
Peers of a permissioned blockchain will only run a consensus
protocol on transactions that are correctly signed by a known
peer.

C. Cryptography Accumulator

Cryptography accumulator can be used for membership
verification and is an important building block for the proposed
design. Informally, a cryptography accumulator consists of four
algorithms:
• Setup. This algorithm takes as input the security param-

eter κ, and outputs a set of public parameters para.
• Update. This algorithm takes as input a new member

needs to be added to the current accumulator and para.
It outputs an updated accumulator.

• ProofGen. This algorithm takes as input the member in
question, the current accumulator, and para. It outputs a
proof if the member belongs to the current accumulator.

• ProofVerf. This algorithm takes as input the member
in question, the proof, the current accumulator, and para.
It outputs 1 if the member belongs to the accumulator,
and outputs 0 otherwise.

Because of the ever-growing feature of blockchain, we do
not consider the revoking operation of the cryptography
accumulator scheme. A concrete construction of cryptography
accumulator is provided in Section IV.

III. OVERVIEW OF THE IOT BASED
DISTRIBUTED/FEDERATED DNN CONSTRUCTION

TRACKING WITH EDGE BLOCKCHAIN

In this section, we provide an overview of the IoT based
distributed/federated DNN construction tracking mechanism
that utilizes the edge blockchain architecture.

The edge blockchain works in the edge computing envi-
ronment to serve a large number of IoT devices and the
DNN applications built on top of it. All entities of the system,
including IoT devices, servers supporting the application, and
peers maintaining the edge blockchain are authorized and obtain
their identities before they can join the system and communicate
with others. An identity is in the form of a public/private key
pair where the public key is certified by a PKI system.

Fig. 1 depicts the high-level architecture of edge block-
chain and the way it is integrated with an edge computing
infrastructure to support distributed/federated DNN construction
tracking. The edge blockchain system comprises a group of
sub-blockchains and a main-blockchain. A sub-blockchain is
maintained by a number of peers running in the same edge
data center to track data collected by the set of IoT devices
connected to the edge data center and local model. A main-
blockchain is set up in the cloud to connect all sub-blockchains,
and maintained by peers running in the cloud. The main-
blockchain does not connect to IoT devices directly, but works
as a bridge to enable communications between sub-blockchains,

Main 
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Blockchain

Training on Edge

Training in Cloud
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Edge 
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Fig. 1: Overview of the edge blockchain architecture. Each edge
data center maintains its own sub-blockchain, which serves
a set of IoT devices and connects to the main-blockchain
system resides in the cloud data center. Occasionally, a sub-
blockchain submits its status to the main-blockchain, and the
main-blockchain shares its status with all sub-blockchains.
Under the edge blockchain architecture, both IoT devices and
computers used for model training are end users of the system.

and is responsible for tracking collected local models and the
model aggregation process. To integrate information stored
in different components, each sub-blockchain occasionally
sends its current status to the main-blockchain and the main-
blokchain also broadcasts its status to all sub-blockchains. This
inter-locking mechanism guarantees that even if an attacker
takes over some of the sub/main-blockchains, the immutability
feature is still preserved.

To protect the distributed/federated DNN application built on
top of an IoT system, the edge blockchain is utilized to track
every step of the lifecycle of the application. As demonstrated
in Fig. 1, IoT devices generated data is collected and processed
by the corresponding edge data center. The sub-blockchain
running in the same edge data center keeps a record of the
collected data and generated local model in an immutability
manner. Similarly, the main-blockchain running in the cloud
also keeps a record of the intermediate models generated in
edge data centers, the model aggregation process, and the final
result model to prevent them from being compromised.

IV. DETAILED DESIGN OF THE EDGE BLOCKCHAIN

In this section, we discuss the key design of the edge
blockchain architecture. To simplify the description, we assume
each block only contains a single transaction. The system can be
easily extended to handle the case where multiple transactions
are packed into a single block.

A. Basic Inter-locking of Blockchains with RSA Accumulator

To inter-lock the sub-blockchains and the main-blockchain
in the edge blockchain system and enable efficient verification
of transaction validity, the RSA based accumulator is utilized,
which was used to support lightweight blockchain client [26].
There are three types of transactions in the edge blockchain
system and their relationship is summarized in Fig. 2.
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Fig. 2: Transaction processing in the edge blockchain archi-
tecture. Peers in an edge data center maintain a local sub-
blockchain, and submit Type-II transactions to peers in the
cloud. Cloud peers work together to build and maintain the
main-blockchain with received transactions, and the main-
blockchain sends Type-III transactions to all sub-blockchains
periodically.

• Type-I: ordinary transactions within a sub-blockchain or
the main-blockchain. This type of transactions keep the
tracking information, including data collected by IoT de-
vices and intermediate results of the distributed/federated
DNN construction. Type-I transactions are the origination
of other types of transactions.

• Type-II: transactions submitted to the main-blockchain by
sub-blockchains. The main-blockchain collects statuses of
sub-blockchains by asking each sub-blockchain to send
their current status periodically to the main-blockchain
peers running in the cloud. The status of the sub-
blockchain is determined by all its existing blocks.

• Type-III: transactions submitted to sub-blockchains by the
main-blockchain. The purpose of this type of transactions
is to disseminate the status of the main-blockchain
to sub-blockchains. The main-blockchain status is also
determined by all its blocks. Note that these blocks include
information of all connected sub-blockchains.

Type-I transactions are used to track local information, e.g.,
data collected by connected IoT devices and constructed local
model (for a sub-blockchain), and aggregated model (for the
main-blockchain). The goal of Type-II and Type-III transactions
is to inter-lock sub-blockchains and the main blockchain, so
even if an attacker takes over a sub-blockchain/the main-
blockchain, he/she cannot modify the recorded tracking in-
formation without being detected. These transactions also need
to allow a peer to verify whether a transaction is included in
another sub-blockchain/the main-blockchain that it does not
belong to in an efficient manner.

The key challenge here is how to build Type-II and Type-III
transactions. A naı̈ve approach is that for each time period,
the sub-blockchain shares all newly added blocks with the
main-blockchain, and the main-blockchain does the same to
share new blocks with all sub-blockchains. This approach is
equivalent to the case that each sub/main-blockchain keeps
tracks the whole system, which makes the system not scalable
and inefficient.

To overcome this challenge, an RSA accumulator [27] is
used to compress the shared status of a sub/main-blockchain
to reduce the cost. The scheme comprises four algorithms:
• Setup. This algorithm is executed when a sub-blockchain

or main-blockchain is initialized. The creator of the
blockchain selects two large prime numbers p and q, the
sizes of which are determined by the security parameter
κ. The creator then calculates N ← p · q and and selects
a random value g ← Z∗N . p, q are discarded and N, g are
public parameters of this blockchain.

• Update. This algorithm is used by a blockchain peer
to update the status when a new block is added. For the
genesis block, it calculates

v1 ← ghash(blk1||1) mod N,

where hash is a cryptographic hash function that is
collision resistant, and blk1 is the contents of the genesis
block. The number 1 contacted to blk1 is the sequence
number of the block. For the ith block where i > 1, the
algorithm calculates

vi ← v
hash(blki||i)
i−1 mod N.

• ProofGen. This algorithm is used by a proving peer
to generate a proof of a given block. In order to show
a block blk′ is the ith block of a blockchain with the
accumulator value v and n blocks in total, the algorithm
computes a proof (ρ1, ρ2) where ρ1 ← hash(blk′||i) and
ρ2 ← g

∏n
k=1 hash(blkk||k)/ρ1 mod N .

• ProofVerf. This algorithm is used by a verifier to
check the validity of a proof for block blk′i of blockchain
with accumulator value vn. Assume the proof is (ρ′1, ρ

′
2),

the algorithm checks ρ′1
?
= hash(bkl′i||i) and vn

?
= ρ′2

ρ′1

mod N . If both equations hold, the block in question is
valid. Otherwise, the transaction is not valid.

When a new block is added to a specific blockchain, an updated
accumulator is also attached to it as part of the new block. A
Type-II transaction sending from a sub-blockchain to the main-
blockchain is the most recent accumulator value of the sub-
blockchain, and a Type-III transaction is the latest accumulator
of the main-blockchain. Since the accumulator is calculated
using all existing blocks, it reflects the current status of the
blockchain.

B. Cross Blockchain Transaction Verification

When there is only one blockchain, it is straightforward to
utilize the cryptography accumulator for transaction verification,
i.e., a party with the latest accumulator value can interact with
a prover who has the complete blockchain to check whether a
transaction is included using ProofGen and ProofVerf.
The situation is more complex for the edge blockchain
architecture as all components are inter-locked. Without loss of
generality, we consider the scenario a transaction txQ initialized
in a sub-blockchain blkcB needs to be verified by a verifier
peer pvrfer in sub-blockchain blkcA. Protocol 1 summarizes the
transaction verification process of this case.



Protocol 1 The basic cross blockchain transaction verification
protocol.

Input: The transaction txQ, and sub-blockchain information
blkcA, blkcB .

Output: b← 1 if txQ is valid; b← 0 otherwise.
1: pvrfer obtains the latest accumulator accM of the main-

blockchain from the local copy of blkcA;
2: pvrfer interacts with main-blockchain to retrieve transaction

tx1, which represents the most recent accumulator of blkcB ,
and according proof pfM ;

3: pvrfer runs b1 ← Verification(tx1, accM , pfM );
4: if b1 = TRUE then
5: pvrfer extracts the accumulator of blkcA as accA ←
Extract(tx1);

6: pvrfer interacts with blkcA to obtain a proof pfA for
txQ;

7: pvrfer runs b2 ← Verification(txQ, accA, pfA);
8: if b2 = TRUE then
9: return b← 1;

10: else
11: return b← 0;
12: end if
13: else
14: return b← 0;
15: end if

C. Secure System Initialization

The original design of the RSA accumulator [27] requires a
secure setup, i.e., a trusted third party is needed to generate
the modular value N and destroys the two corresponding large
prime factors p, q. If the factorization is leaked to an attacker,
he/she can generate a proof for an arbitrary transaction that can
pass the verification. In the decentralized environment, there
is a lack of such a trusted third party. We utilize a distributed
RSA parameter generation scheme given in [28] to overcome
this limitation.

A set of k peers are selected to work together to generate
the modulus N as follows:
• One server proposes a large prime number P that is

larger than the target modulus value, and all peers reach
an agreement on P .

• For peer i = 1, . . . , k, it selects two numbers pi, qi, two
random polynomials fi, gi ∈ ZP [x] such that fi(0) =
pi, gi(0) = qi, and a third random polynomial hi ∈ ZP [x]
such that hi(0) = 0.

• For peer i = 1, . . . , k, it computes pi,j = fi(j), qi,j =
gi(j), hi,j = hi(j) for j = 1, 2, . . . , k. Peer i privately
sends (pi,j , qi,j , hi,j) to peer j that i 6= j.

• For peer i = 1, . . . , k, it computes

Ni = (

k∑
j=1

pj,i)(

k∑
j=1

qj,i) +

k∑
j=1

hj,i mod P,

and broadcasts Ni to other peers.

𝑡𝑡𝑥𝑥1 𝑡𝑡𝑥𝑥2 𝑡𝑡𝑥𝑥(0) 𝑡𝑡𝑥𝑥(1) 𝑡𝑡𝑥𝑥(𝑡𝑡) 𝑡𝑡𝑥𝑥𝑛𝑛−1 𝑡𝑡𝑥𝑥𝑛𝑛⋯ ⋯ ⋯𝑡𝑡𝑥𝑥(𝑡𝑡+1)

Transactions need proofs

All transactions of the blockchain

Fig. 3: Efficient batch proof generation. Transactions before
and after the target set of transactions only need to be processed
once to save computation cost.

• For peer j, it evaluates polynomial α(x) =
(
∑
j fj(x))(

∑
j gj(x)) +

∑
j hj(x) mod P at 0,

and we have α(0) = N .
• All peers run a distributed primality test to check whether
N is a product of two prime numbers. If N does not pass
the test, the process is repeated.

We refer the readers to [28] for more details on the algorithm
and its complexity. Note that for our scenario, we only need the
modulus value N but do not need to generate a public/private
key pair in a distributed manner. The generated value N can
be shared with all sub-blockchains and the main-blockchain,
so the generation process does not need to be repeated by each
blockchain. Furthermore, N only needs to be generated once
so the performance of this process is not critical for the system.
Each sub-blockchain and the main-blockchain can select its
own generator for the accumulator, which can be done by any
peer and does not affect the security.

D. Efficient Batch Proof Generation

The IoT based DNN application may generate a large
number of requests on information verification. Therefore,
it is helpful to generate multiple proofs together to reduce
the computation cost compared with generating these proofs
individually. For a specific sub/main-blockchain, we assume it
has totally n transactions, and needs to generate t < n proofs
for transactions tx(1), tx(2), . . . , tx(t), which have been ordered
by their appearance order in the blockchain. Fig. 3 demonstrates
the setting, and the batch proof generation process is given in
Protocol 2.

Protocol 2 Batch proof generation protocol.

Input: blkc, tx(1), . . . tx(t).
Output: Proofs g(1), g(2), . . . , g(t).

1: Obtain the accumulator g0 attached to tx(0);
2: for transactions tx(t+1) to txn do
3: g0 ← Update(g0, tx(j));
4: end for
5: for i = 1 to t do
6: Update g0 accordingly to obtain g(i);
7: end for
8: return g(1), g(2), . . . , g(t);



E. Efficient Batch Proof Verification

To verify a proof of a transaction, the verifier computes and
compares:

(gx1x2...xi−1xi+1...xn)xi1 mod N
?
= X1 ⇔

g
xi1
1 mod N

?
= X1

where gx1x2...xi−1xi+1...xn = g1, X1 is the accumulator value,
and x1, x2, . . . , xn are values derived from corresponding
blockchain transactions. When there are t instances need to be
verified, it is equivalent to the evaluation and comparison of
the following: 

g
xi1
1 mod N

?
= X1

g
xi2
2 mod N

?
= X2

· · ·
g
xit
t mod N

?
= Xt

Instead of evaluating these modular exponentiation one by one,
we propose a more efficient approach to evaluate them together
by computing

g
xi1
1 · gxi2

2 · . . . · gxit
t

?≡ X1 ·X2 · . . . ·Xt mod N (1)

We first describe the verification algorithm, and then analyze
its performance and demonstrate the security of the aggregated
proof verification.

Computation of batch proof verification. To simplify the
description, we assume the sizes of the processed transactions
(i.e., xi1 , xi2 , . . . , xit ) have the same size. In practice, this can
be done by adding leading 0s to those with less number of
bits, and initialize the value on the left side of Equation (1)
accordingly. The detailed batch proof verification process is
given in Protocol 3.

Protocol 3 Efficient batch proof verification.

Input: Proofs g1, g2, . . . , gt, transactions xi1 , xi2 , . . . , xit , ac-
cumulators X1, X2, . . . , Xt, and the public parameter N .

Output: b = 1 if all transactions are valid; b = 0 otherwise.
1: g ← g1 · g2 · . . . · gt mod N ;
2: for j ← |xi1 |b − 1, j ≥ 0 do
3: g ← g2 mod N ;
4: Read the jth bit of xi1 , . . . , xit to form a bit vector
vj ;

5: gvj ←
∏
vj [m]=1 xim mod N ;

6: g ← g · gvj mod N
7: j ← j − 1;
8: end for
9: X ← X1 ·X2 · . . . ·Xt mod N ;

10: if g = X then
11: return b← 1;
12: else
13: return b← 0;
14: end if

Performance analysis. The idea of the batch verification
method given in Protocol 3 is to aggregate the verification of
multiple exponent computations into a single one, and a key
step is the update operation given by Line 5 of Protocol 3.
Instead of doing the computation on the fly every time, we
do this by pre-computation. For t verifications, 2t values
are generated and stored to facilitate the verification, which
represents products of all different combinations of the proofs.
The pre-computation is not feasible for a large value of t, and
we compare the computation cost for t = 8 and |N |b = 2048.
• Independent verification. When a square-multiplication

algorithm is used to evaluate the modular exponentiation
for verification, one verification requires 2,048 multipli-
cations/squares. The overall computation cost is 16,384
multiplications/squares.

• Batch verification. The pre-computation requires 28 = 256
multiplications. The square-multiplication algorithm only
needs to be executed once to finish the verification, which
costs 2,048 multiplications/squares. The total computation
cost is 2,034 multiplications/squares.

In summary, under this configuration, the batch verification
computation cost is only about 12.4% of the independent
verification. In practice, the computation saving can be less as
the square operation is cheaper than general multiplication.

Security of batch proof verification. The accumulators are
periodically backed up to different blockchains and we assume
X1, X2, . . . , Xt are always correct. When the batch verification
method given in Protocol 3 is applied and the attacker wants to
cheat the verifier with a transaction that does not exist on the
blockchain, he/she needs to produce at least two transactions
with corresponding proofs. Without loss of generality, we
consider the case where the attacker targets at accumulators
X1 and X2. The attacker needs to find out g′1, g

′
2 and x′i1 , x

′
i2

such that

g′1
x′i1 · g′2

x′i2 = X1 ·X2 mod N,

where x′i1 6= xi1 and x′i2 6= xi2 . Note that the attacker also has
the freedom to choose the proofs g′1, g

′
2, and it is possible that

the attack manages to find out such two pairs. However, finding
x′i1 and x′i2 is not enough as the attacker’s goal is to convince
the verifier that a transaction(s) is included in a blockchain, and
a conversion algorithm is applied to the transaction to obtain
corresponding value used in the verification. If we assume the
hash function works as an oracle, even if the attacker can find
out the values used in the verification, he/she cannot generate
corresponding fake transactions.

V. INTEGRATION OF EDGE BLOCKCHAIN WITH
DISTRIBUTED/FEDERATED DNN APPLICATIONS

Although there are different types of DNNs that can be built
on an IoT system in the edge computing environment, most of
them can be roughly divided into three components: (i) Data
collection. IoT devices are connected to edge data centers that
are close to them and send/receive data to/from these edge
data centers. (ii) Model construction. Given a neural network



structure and a set of unknown parameters, the training process
uses collected data to determine the values of the parameters.
Since data are collected and consumed by different edge data
centers to reduce communication cost, the training is done
in a distributed manner, i.e., a local model is trained within
each edge data center using data collected by connected IoT
devices and the aggregated model is constructed using all local
models in the connected cloud. The aggregated model may
be sent back to all edge data centers to further improve the
local models. (iii) Model application. Applying a completed
model is straightforward, i.e., the model takes as input the
new data and outputs the result, which can be a prediction or
classification result depending on the nature of the model. The
model application can be done either on edge data centers or
cloud.

To integrate the edge blockchain with an IoT based DNN
application to offer an end-to-end tracking, the system should
satisfy three requirements:
• The data collection and training process are recorded as

blockchain transactions, which are distributed to peers in
the system.

• When the edge blockchain as a whole is secure, an ad-
versary cannot compromise the integrity of the processes,
e.g., the adversary cannot alter collected data, modify
parameters of a trained model, or cheat in the model
application.

• A third party can verify the integrity/authenticity of
the whole lifecycle of an IoT based DNN application
efficiently with information stored in the edge blockchain
system.

A. Tracking of Data Collection

When edge computing is utilized to facilitate an IoT based
DNN applications, IoT devices connect to different edge data
centers based on their physical locations and submit collected
data for local model construction, as depicted in Fig. 1.

For an IoT device dE connecting to a peer pE in the edge
data center E, it is served by the sub-blockchain blkcE , which
is maintained by peers running in E. When the device dE

collects new data d, it is processed as follows:
• Integrity/authenticity tag generation. Since we assume

each IoT device is equipped with a public/private key pair,
dE signs d with its private key and the digital signature
σ is used to protect the integrity and authenticity of
the data. Note that in case the IoT device has limited
computation power or energy supply, dE can delegate
signature generation to the connected peer pE .

• Transaction construction and storage. To reduce the storage
cost of the sub-blockchain, collected data d is saved to a
separate storage system in the edge data center. A Type-I
transaction is formed as (dE , σ, prt) where prt is a pointer
to d, which is saved to the sub-blockchain blkcE .

• Status dissemination. A set of transactions in the form
of (dE , σ, prt) is then converted to a Type-II transaction
(i.e., an updated accumulator), which is then submitted to
main-blockchain blkcM for storage.

Note that the originally collected data does not need to be
stored on the corresponding sub-blockchain to improve the
storage efficiency of the edge blockchain system.

A third party can connect with any peer of the edge
blockchain system and interact with it to check whether
a collected data d is tampered using the cross blockchain
transacting verification method given in Protocol 1.

B. Tracking of Model Training Process

Distributed/federated DNN training has received extensive
attention [29], [30], [31], which fits the edge computing
environment very well, i.e., IoT devices send data to connected
edge data centers to build local models and the local models
are merged in the cloud to obtain the final model.

Since the final model depends on multiple local models
trained in edge data centers, we first describe tracking of the
training of a local model with a sub-blockchain that resides on
the same edge data center. The idea is converting the model
training protection to data protection. A local model is trained
through multiple rounds, and parameters of the local model
are improved in an incremental way. For each round, the
training algorithm takes as input some of the IoT devices
collected data and the intermediate local model generated in
the previous round, and outputs a new intermediate local model.
More formally, let (d1, d2, . . .) denote the sequence of data
sets collected by local IoT devices for local model training,
Mi denote the current local model generated by the training
algorithm T , and MO denotes the aggregated model received
from the cloud, we have

Mi+1 ← T (Mi,MO, di+1), i = 1, 2, . . . , (2)

where M0 is the initial local model with pre-defined parame-
ters.

According to the calculation process given in Equation (2),
it is easy to see that the integrity of Mi+1 depends on the
integrity of Mi,MO, and di+1. Two functions are needed to
protect the model training process: (i) Storage of model training
process. This function utilizes the consensus and immutability
features of the blockchain to solidify the training process.
(ii) Verification of stored model training process. This function
allows a third party to verify the integrity of the training process
in an efficient manner.

Recording local model training process with the sub-
blokchain. The local model training process is stored with
the sub-blockchain by saving intermediate results, which are in
fact intermediate models when we consider DNN. The protocol
of storing a single intermediate modelMi+1 works as follows:
• Preparing and converting an intermediate training result

into a blockchain transaction:
– Before calculating a new intermediate result Mi+1

with algorithm T , one checks the integrity ofMO with
the main-chain through cross blockchain transaction
verification protocol. Mi and di+1 are local and their
integrity is easy to verify using information stored in
the sub-blockchain;



– A peer runs T (Mi,MO, di+1) to getMi+1. Note that
the inputs and outputs are stored locally in the edge
computing data center so it is easy for the peer to obtain
inputs and store outputs.

– A peer converts the intermediate training re-
sult into a transaction by computing txMi+1

←
hash(Mi+1||MO||di+1||i+ 1).

• Storing the transaction of an intermediate training result
of the local model to the corresponding sub-blockchain:
– A peer submits txMi+1

to the sub-blockchain in the
same edge computing data center;

– Each peer of the sub-blockchain verifies intermediate
result Mi+1 to determine whether to accept txMi+1

or
not;

– A consensus protocol is executed between the sub-
blockchain peers. Depending on the consensus protocol,
if a certain percentage/number of peers agree on the
result Mi+1, txMi+1

is accepted in the sub-blockchain.
The inter-locking mechanism described in Section IV is then
applied to disseminate information of the transaction to the
whole edge blockchain system. The final model training process
in the cloud is tracked in the same way.

Verification of the model training process. The purpose of
storing the model training process in the edge blockchain
system is to allow a third party to verify the integrity of
the training process without repeating the expensive training
process. Without loss of generality, we consider the verification
of a local model M. Note that M is generated in multiple
steps using a sequence of training data sets, and we assume
the number of intermediate models is `. The verifier repeats
following steps until satisfied:
• The verifier randomly selects a number i ∈ [1, `];
• The verifier requiresMi,Mi−1, di and the external model

information MO from the edge data center;
• The verifier checks the integrity of received data with the

cross blockchain transaction verification mechanism given
in Protocol 1. If the data is not consistent with information
stored in edge blockchain system, the verifier rejects M;

• The verifier re-compute M′i ← T (Mi,MO, di+1). If
M′i 6=Mi, the verifier rejects Mi.

VI. IMPLEMENTATION AND EXPERIMENTS

In this section, we discuss the implementation of the
proposed distributed/federated DNN application tracking mech-
anism and provide preliminary performance evaluation. We
utilize the endorse-ordering based consensus to build the edge
blockchain, where a transaction needs to be endorsed properly
first and then added to the blockchain by ordering service.

A. Performance in the Normal Situation

We first evaluate the performance of using the edge block-
chain to track the DNN construction in the normal situation
where there is no attack. Transactions are proved by the system
with a 2-of-any endorsement policy, and then forwarded to
ordering service to be added to the sub/main-blockchain. Each
transaction is used to track an intermediate training result or

DNN Training Peer 0

Blockchain 
Database

DNN Engine

DNN Training Peer 1

Blockchain 
Database

DNN Engine Orderer

Training 
Client 1

Training 
Client 2

Training 
Client 10…

transactionstransactions

Sub-Blockchain

Fig. 4: Overview of the sub-blockchain prototype. During
benchmarking, all transactions are driven by training clients,
which are implemented using Hyperledger Fabric gateway [32].
A training client collects data from IoT devices and submits
it to the training peers. Peers then train the local model with
the data, convert the result to a hash tag, and store it in the
blockchain. In this experiment, two training peers are involved
in a sub-blockchain. The main-blockchain architecture is similar
to the sub-blockchain.

a collected data set, and stored into the world state database.
Fig. 4 illustrates the overall design of the sub-blockchain
prototype.

Transaction creation. We conduct a simulation of 100
transactions for each of the 10 DNN training clients on a sub-
blockchain (total 1000 transactions). Latency and throughput
are investigated. The simulation is done with an AWS EC2
t2.2xlarge instance, which has 8 vCPUs, 32 GB memory and
30 GB SSD vDisk. TABLE I shows the evaluation results.

TABLE I: Performance evaluation for transaction creation.

TX size (bytes) Max Latency (s) Avg. Latency (s) Throughput

32 (SHA-256) 0.65 0.33 193.33
8K 0.70 0.41 173.04

16K 0.97 0.54 131.98
32K 2.35 1.09 65.69

We assume that the transaction size is close to the hash
size, which is generated from the intermediate training re-
sults/collected data. The latency consists of regular block
creation time and accumulator calculation time. Note that
the latency of proof generation is not included because it
is an off-chain operation. We observe that both latency and
throughput are affected significantly only when the size of a
transaction becomes greater than 8K. The possible reason is
that a larger transaction is more expensive for endorsement
operation. In all cases, the latency caused by accumulator
calculation is a constant number of 0.1 seconds approximately.
As a result, transaction size is the major factor that determines
the performance. However, it can be maintained in a small
number by utilizing an appropriate hash function or trunked
hash value.
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Fig. 5: Performance evaluation of edge blockchain-based DNN
tracking using an AND or OR policy. Here λ is the number of
trained results submitted to blockchain at a second, τ is the
latency of the trained results being stored by the blockchain,
and µ is the throughput of the trained results processing.

Transaction propagation. In the proposed system, Type-II
and Type-III transactions are inter-chain transactions. Each sub-
blockchain occasionally exchanges the current accumulators
with main-blockchain, and vice versa. The performance of
accumulator propagation is mainly affected by network delay.
Because the size of the accumulator value is small, it only has
a limited impact on the network delay.

B. Performance under Attack

A prototype edge blockchain using the endorsement-ordering
consensus relies on endorsers, orderers, and CAs to provide
secure tracking on the distributed platform. However, these
computing nodes can be compromised by malicious users, and
they may be utilized to attack the edge blockchain system.
Generally, there are two ways to improve the security of the
edge blockchain system: increasing the number of endorsers
and optimizing the endorsement policy [33]. We consider the
following basic endorsement strategies for the experiment:
(i) AND policy. Require all endorsers in the list sign on the
transaction. (ii) OR policy. Require at least one of endorsers in
the list sign on the transaction. (iii) nOFANY policy. Require
n of all the endorsers to endorse the transaction.

We conduct experiments and evaluate the performance under
different configurations of endorsers and endorsement policy.
To reduce the impact on running multiple endorsement peers in
a single machine, this experiment is conducted on an AWS EC2
r6g.4xlarge instance, which has 16 vCPUs, 128 GB memory
and 30 GB SSD vDisk.

From Fig. 5, we observe that when we have more endorsers
with AND or OR policies, the latency increases and the
throughput decreases. However, even with the results, we do
not observe any significant impact on the performance, e.g.
the latency can still maintain within 30 ms and the throughput
only drops less than 25 tps approximately.

When the policy nOFANY is adopted (as depicted in Fig. 6),
although the overall performance in terms of latency is not as
good as a AND or OR policies, the throughput remains constant.
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Fig. 6: Performance Evaluation of Blockchain-based DNN
under nOFANY policy.

In addition, it does not affect the performance significantly by
adding more endorsers.

In summary, we can tweak some parameters of blockchain
to balance the performance and the level of security offered
by the edge blockchain to maintain the tracking information.

VII. RELATED WORKS

In this section, we briefly review related works.
Leveraging blockchain to protect IoT systems and their

applications has received extensive attention. There are a
large number works that utilize blockchain as a black box
to protect IoT systems and applications built on top of
them [34], [35], [36]. Biswas et al. proposed a blockchain
scheme that is customized for IoT data protection [37], which
also adopted a two-layer structure to improve scalability to
handle a large number of IoT devices. Their approach simply
restricted the number of transactions that can be sent to the
global blockchain and did not provide an efficient mechanism
to allow the two layers to exchange information. A space-
structured blockchain structure and a collaborative proof-of-
work consensus protocol were developed to support an IoT
system in [38]. This work aims at improving the performance
of a single blockchain, which can be incorporated into the
proposed edge blockchain framework. Xu et al. proposed a
blockchain based IoT data protection mechanism which utilizes
a similar way to organize multiple blockchains to handle a
large number of IoT devices [39]. But they did not consider the
integration with distributed DDN applications of IoT to offer
protection, which can involve a large number of transaction
validity proof generation/verification.

VIII. CONCLUSION

Integration IoT and edge computing for distributed/federated
DNN has many promising applications. There are mainly
two types of attacks for such a system, data poisoning and
model poisoning, which may cause serious consequences.
Although there are existing works to detect and prevent such
attacks, most of them are probabilistic and only work on the
assumption that the input data does not change significantly.
To mitigate the limitations, we propose to use the edge



blockchain to offer an immutable and scalable tracking system
for distributed/federated DNN applications, which provides an
end-to-end integrity protection of the DNN application. The
tracking information can also be used to identify and patch
compromised components of the system. We also develop a
prototype and conduct preliminary experiments to demonstrate
the practicability of the proposed edge blockchain based
distributed/federated DNN tracking mechanism.
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