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Abstract
Iterative augmentation has recently emerged as an overarching method for solving Integer Programs
(IP) in variable dimension, in stark contrast with the volume and flatness techniques of IP in fixed
dimension. Here we consider 4-block n-fold integer programs, which are the most general class
considered so far. A 4-block n-fold IP has a constraint matrix which consists of n copies of small
matrices A, B, and D, and one copy of C, in a specific block structure. Iterative augmentation
methods rely on the so-called Graver basis of the constraint matrix, which constitutes a set of
fundamental augmenting steps. All existing algorithms rely on bounding the `1- or `∞-norm of
elements of the Graver basis. Hemmecke et al. [Math. Prog. 2014] showed that 4-block n-fold
IP has Graver elements of `∞-norm at most OFPT(n2sD ), leading to an algorithm with a similar
runtime; here, sD is the number of rows of matrix D and OFPT hides a multiplicative factor that is
only dependent on the small matrices A, B, C, D, However, it remained open whether their bounds
are tight, in particular, whether they could be improved to OFPT(1), perhaps at least in some
restricted cases.

We prove that the `∞-norm of the Graver elements of 4-block n-fold IP is upper bounded by
OFPT(nsD), improving significantly over the previous bound OFPT(n2sD ). We also provide a matching
lower bound of Ω(nsD) which even holds for arbitrary non-zero lattice elements, ruling out augmenting
algorithm relying on even more restricted notions of augmentation than the Graver basis. We then
consider a special case of 4-block n-fold in which C is a zero matrix, called 3-block n-fold IP. We
show that while the `∞-norm of its Graver elements is Ω(nsD), there exists a different decomposition
into lattice elements whose `∞-norm is bounded by OFPT(1), which allows us to provide improved
upper bounds on the `∞-norm of Graver elements for 3-block n-fold IP. The key difference between
the respective decompositions is that a Graver basis guarantees a sign-compatible decomposition;
this property is critical in applications because it guarantees each step of the decomposition to be
feasible. Consequently, our improved upper bounds let us establish faster algorithms for 3-block
n-fold IP and 4-block IP, and our lower bounds strongly hint at parameterized hardness of 4-block
and even 3-block n-fold IP. Furthermore, we show that 3-block n-fold IP is without loss of generality
in the sense that 4-block n-fold IP can be solved in FPT oracle time by taking an algorithm for
3-block n-fold IP as an oracle.
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1 Introduction

A powerful mathematical tool for modeling of various optimization problems is Integer
Programming:

min{w · x : Ax = b, l ≤ x ≤ u, x ∈ ZN}, (IP)

where w,b, l,u are integer vectors of the objective function, right hand side, and lower and
upper bounds, respectively, A is an integer constraint matrix, and x is a vector of variables. It
plays a key role in theory as a component in the design of approximation and parameterized
algorithms, as well as in practice, with current solvers being routinely utilized in industry
and capable of handling models with thousands of variables.

In general, Integer Programming is NP-hard, as was shown already by Karp [23],
which motivates the search for tractable special cases. Famous polynomially solvable cases
are IPs with few rows and small coefficients as shown by Papadimitriou in 1981 [30], and IPs
with few variables as shown by Lenstra in 1983. Arguably the most significant development
in the last 20 years has been the introduction of iterative augmentation methods which led
to the development of fast algorithms for wide classes of IPs whose constraint matrix has a
special block structure, and to subsequent breakthrough applications in parameterized and
approximation algorithms [5, 21, 27]. In fact, essentially all known tractable classes of IP in
variable dimension are of this kind, except total unimodular IPs from the ’60s.

An iterative augmentation algorithm starts with an initial feasible solution x and iterat-
ively finds augmenting steps g ∈ ZN , i.e., x + g is feasible and w(x + g) < wx. A major
question is where to obtain “good” augmenting steps. The Graver basis of A, G(A), has
emerged as an excellent choice, with good guarantees on convergence to optimal solutions
while still being algorithmically “tame”. Specifically, at the heart of iterative augmentation
techniques are bounds on the `1- and `∞-norm of elements of the Graver basis, which enable
dynamic programming to be used to find Graver elements.

We stress the role of bounds on the elements of G(A). Historically, all tractable classes
of IP were discovered by proving new norm bounds and subsequently designing a dynamic
program around them, with the former typically being much harder than the latter. Moreover,
recent runtime improvements have followed from improving existing bounds [8, 28], and the
most challenging questions in the field are tightly connected to norm bounds. Our focus here
is the currently least understood class of IPs, 4-block n-fold IP:

(IP)n,b,l,u,w : min{w · x : Hx = b, l ≤ x ≤ u, x ∈ ZtB+ntA}, (1)

where H (called a 4-block n-fold matrix) is build from smaller blocks A, B, C and D:

H =
(
C D

B A

)(n)

:=


C D D · · · D

B A 0 0
B 0 A 0
...

. . .
B 0 0 A

 .

https://arxiv.org/abs/1805.03741
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Here, A,B,C,D are si × ti matrices, i = A,B,C,D, respectively, and H consists of n copies
of A,B,D and one copy of C. Notice that by plugging A,B,C,D into the above block
structure we require that sC = sD, sA = sB, tB = tC and tA = tD. Let ∆ be the largest
absolute value among all the entries of A,B,C,D. Let H0 be a matrix obtained from H by
setting C = 0. We also study 3-block n-fold IP, obtained by replacing H with H0.

For ease of presentation, we introduce the submatrices E and F such that

E :=


D D · · · D

A 0 0
0 A 0
...

. . .
0 0 A

 F :=


B A 0 0
B 0 A 0
...

. . .
B 0 0 A

 , (2)

4-block n-fold IP remains the simplest case of block-structured IPs for which an algorithm
of runtime f(sA, tA, . . . , sD, tD,∆)nO(1) (i.e., an FPT algorithm; see below) remains unknown.
From another perspective, Koutecký et al. [28] has recently resolved the complexity of IP with
respect to the structural parameters primal and dual treedepth tdP and tdD, respectively, by
showing that IPs with small tdP and tdD are efficiently solvable. IPs with small incidence
treedepth tdI subsume both of the aforementioned classes as well as 4-block n-fold IP, and
4-block n-fold IP remains the simplest open case with respect to tdI .

Our Contribution. Because we are interested in efficient algorithms, we wish to confine the
exponential dependence on the input into the small numbers si, ti, i = A,B,C,D, and ∆.
Thus we take the perspective of parameterized complexity: for a problem instance I with
a parameter k, we call an algorithm with runtime f(k)|I|O(1) a fixed-parameter tractable
(FPT) algorithm, and an algorithm with runtime |I|f(k) an XP algorithm (for slice-wise
polynomial). If such algorithms exist, we say that the problem is FPT or XP parameterized
by k, respectively.

In this paper, we provide new and improved upper bounds and resulting algorithms
for 4-block and 3-block n-fold IP, as well as the very first lower bounds for these classes
which we believe to hint at the parameterized hardness of these problems. We denote by
kerZ(H) = {x ∈ ZtB+ntA | Hx = 0} the integer kernel of H, also called the lattice of H, and
by g∞(H) = maxg∈G(H) ‖g‖∞ the largest `∞-norm of an element of the Graver basis G(H)
(a precise definition is given below in Section 2); analogously for H0. First, we show an upper
bound on g∞(H).

I Theorem 1. For any 4-block n-fold matrix H, g∞(H) ≤ OFPT(nsD).

This improves on the previous bound of OFPT(n2sD ) [16]. We also establish the first
explicit lower bound matching our upper bound, making it tight up to an FPT factor.
Importantly, our lower bound even applies to the first tB coordinates (denoted x0 for a vector
x ∈ ZtB+ntA) which play a special role in algorithms for 4-block n-fold IP. What is more,
our lower bound even applies to any non-zero element of kerZ(H):

I Theorem 2. For arbitrary integer t ∈ N, there exists a 4-block n-fold matrix H such that
si, ti ∈ O(t) for i = A,B,C,D, and for any g ∈ kerZ(H) we have ‖g0‖∞ = Ω(nt).

Therefore, even augmenting via a different set of steps may have to deal with steps that
are unbounded by OFPT(1). Combining Theorem 1 with the original idea of Hemmecke et
al. [16] and a strongly polynomial framework of Koutecký et al. [28], we obtain the currently
fastest algorithm for 4-block n-fold IP:
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33:4 New Bounds on Augmenting Steps of Block-Structured IP

I Theorem 3. 4-block n-fold IP can be solved in time OFPT(nO(sDtB)).

Second, we restrict our attention to 3-block n-fold IP. The motivation is that 3-block
n-fold IP is essentially no less general than 4-block n-fold IP. Indeed, for any 4-block n-fold IP,
there exists an equivalent 3-block n-fold IP where the largest coefficient, number of rows and
columns of the submatrices only increase by O(1) times (see Theorem 19 and Definition 17
in Appendix 5 for a formal statement).

Interestingly, the lattice elements (i.e., augmenting step candidates) of 3-block n-fold IP
admit a decomposition with `∞-norm bounded by OFPT(1):

I Theorem 4. Any g ∈ kerZ(H0) decomposes to
∑N
i=1 ei for some N ∈ Z≥0 with ei ∈

kerZ(H0) and ‖ei‖∞ ≤ OFPT(1) for each i.

However, this decomposition is not “sign-compatible”, meaning possibly none of its
elements is a feasible step on its own, which makes its immediate algorithmic use complicated.
Nevertheless, we are able to use it to establish an upper bound of
min{OFPT(nsD ),OFPT(nt2A+1)} (below, and Theorem 1):

I Theorem 5. For any 3-block n-fold matrix H0, g∞(H0) ≤ OFPT(nt2A+1).

This upper bound of OFPT(nt2A+1), which is singly exponential in tA, is much more
involved compared with the upper bound of Theorem 1. This coincides with the existing
results for 4-block n-fold IP [16], where an upper bound depending on A,B (instead of
C,D) is much more complicated. Our proof relies on a completely new approach, which
first establishes the decomposition of Theorem 4 and then modifies it into a sign-compatible
decomposition through merging summands. This may be of separate interest for deriving
upper bounds on g∞(A) for other classes of matrices A, particularly for deriving an upper
bound on g∞(H) which has an explicit dependency on sA, sB , tA, tB in the exponent of
n. Moreover, we show that any 4-block n-fold IP can be embedded in a 3-block n-fold IP
(Theorem 19) in a particular way, which allows us to transfer the 4-block n-fold lower bound
(now restricted to feasible lattice elements):

I Theorem 6. For arbitrary integer t ∈ N, there exists a 3-block n-fold IP with a matrix H
such that si, ti ∈ O(t) for i = A,B,C,D, and for any feasible nonzero g ∈ kerZ(H0) we have
‖g0‖∞ = Ω(nt).

Finally, using our new upper bound of Theorem 5, we get that:

I Theorem 7. 3-block n-fold IP can be solved in time min{OFPT(nO(sDtB),OFPT(nO(t2AtB))}.

Related Work

4-block n-fold IP originated as a generalization of two previously studied classes of IP, the
n-fold and 2-stage stochastic IP, which are obtained by substituting the constraint matrix
H with E and F we defined before. We also call E the n-fold matrix and F the 2-stage
stochastic matrix, respectively. The origins of iterative augmentation methods for 2-stage
stochastic IP reach the work of Hemmecke and Schultz in 2001 [19]. De Loera et al. [7] first
studied n-fold IP in 2008. Later, Hemmecke et al. [17] showed an FPT algorithm for n-fold
IP based on dynamic programming, which led to a breakthrough in computational social
choice [26] and was also applied in the context of scheduling by Knop and Koutecký [25].
Later, this FPT algorithm inspired a better algorithm for a special case of combinatorial
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n-fold IP developed by Knop et al. [27], who also apply it to problems in stringology and
graph algorithms. Finally, this algorithm was lifted to the general n-fold IP by Koutecký et
al. [28] and Eisenbrand et al. [8].

An extension of n-fold IP to tree-structured matrices called tree-fold IP was developed by
Chen and Marx [5] and applied to scheduling problems. Jansen et al. [21] have used n-fold
IP to obtain efficient PTASes for scheduling problems. An extension of 2-stage stochastic IP
analogous to tree-folds is called multi-stage stochastic and was studied by Aschenbrenner
and Hemmecke [4]. Ganian and Ordyniak [12] studied the structural parameters primal
treedepth and treewidth, and later Ganian et al. [13] studied dual and incidence treedepth
and treewidth. Koutecký et al. [28] discovered that tree-fold and multi-stage stochastic
IPs are essentially equivalent to IPs with small dual and primal treedepth, settling the
parameterized complexity with respect to these parameters. The work of Koutecký et al. [28]
subsumes essentially all current knowledge about the solvability of IP in variable dimension
with the exception of totally unimodular constraint matrices and two related classes [2, 3],
with the main remaining open problem being the complexity of 4-block n-fold IP and, more
generally, IP with respect to incidence treedepth.

Bounds on g∞(A) and g1(A) = maxg∈G(A) ‖g‖1 play a central role in the recent devel-
opments. For example, Chen and Marx [5] showed that tree-fold IP is FPT, but a naïve
analysis yields a tower-of-exponentials dependence on the parameters. Eisenbrand et al. [8]
lower this to double-exponential by improving the bounds on g1(A), and, at least with the
current approach, the only way to obtain a single-exponential algorithm is by obtaining
single-exponential bounds on g1(A). It has been known for a long time that 2-stage stochastic
IP is FPT [19], however, there are no known bounds at all for this algorithm except for the
computability of the parameter dependence f due to no bounds being available for g∞(F ).
Very recently, Klein [24] is able to obtain such a bound for g∞(F ), which yields an FPT
algorithm with a concrete running time. Lower bounds on g∞(A) have been rare so far.
Finhold and Hemmecke [11] study them in the context of n-fold IP. Koutecký et al. [28] show
lower bounds (only using elementary techniques) for IPs in terms of their primal and dual
treewidth.

We use the Steinitz Lemma, which has recently gained renewed attention [10, 8, 22].

2 Preliminaries

Notations

We write vectors in boldface, e.g. x,y, and their entries in normal font, e.g. xi, yi. Any
(tB+ntA)-dimensional vector x can be divided into n+1 bricks, such that x = (x0,x1, · · · ,xn)
where x0 ∈ ZtB and each xi ∈ ZtA , 1 ≤ i ≤ n. We call xi the i-th brick for 0 ≤ i ≤ n. We
write 0s×t for an s× t matrix consisting of 0, and It for an t× t identity matrix. For a vector
or a matrix, we write ‖ · ‖∞ to denote the maximal absolute value of its elements. For two
vectors x,y of the same dimension, x · y denotes their inner product.

Throughout this paper, we write OFPT(1) to represent a parameter that is only dependent
on ∆, sA, sB , sC , sD, tA, tB , tC , tD where ∆ is the maximal absolute value among all the entries
of A,B,C,D, that is, OFPT(1) is only dependent on the small matrices A,B,C,D and is
independent of n. For any computable function f(x), we write OFPT(f) to represent a
computable function f ′(x) such that |f ′(x)| ≤ OFPT(1) · |f(x)|, and ΩFPT (f) to represent a
function f ′′ such that |f ′′(x)| ≥ Ω(1) · |f(x)|. If no FPT-term is hidden, we will use O in its
standard meaning (e.g., in Theorem 6).
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33:6 New Bounds on Augmenting Steps of Block-Structured IP

Two vectors x and y are called sign-compatible if xi · yi ≥ 0 holds for every pair
of coordinates (xi, yi). Furthermore, we call a summation

∑
i xi sign-compatible if the

summands are pair-wise sign-compatible.

Graver basis

Consider the general integer linear programming in the standard form (IP). Let v be the
conformal order in Rm defined such that x v y if x and y lie in the same orthant, i.e.,
xi · yi ≥ 0 for each i = 1, . . . ,m, and |xi| ≤ |yi| for each i = 1, . . . ,m. Given any subset
X ⊆ Rn, we say x is an v-minimal element of X if x ∈ X and there does not exist y ∈ X,
y 6= x such that y v x. It is known that every subset of Zm has finitely many v-minimal
elements. We study the Graver basis:

I Definition 8 (Graver basis [14]). The Graver basis of an integer matrix E is the finite set
G(E) ⊆ kerZ(E) of all v-minimal elements of kerZ(E) \ {0}.

For clarity, we sometimes emphasize that g comes from G(H) by writing it as g(H), and
similarly for other vectors. We use the fact that any x ∈ kerZ(H), x 6= 0 can be written as
x =

∑
i αigi(H), where αi ∈ Z+, gi(H) ∈ G(H) and gi(H) v x [29, Lemma 3.4].

The Graver basis G(H) is only dependent on H. Let ‖B‖∞ be the largest absolute value
over all entries. For any g ∈ G(A), we have the following rough estimation for some constant
c1, c2 [29]:

|G(H)| ≤ (c1‖H‖∞)mn and ‖g‖∞ ≤ (c2‖A‖∞)mn.

Augmentation algorithms for IP and Graver-best oracle

There is a general framework for solving (IP) by utilizing G(A), which was developed in
a series of papers [5, 17, 21, 27]. A recent paper by Koutecký et al. [28] formalizes this
framework and extends it to also obtaining strongly polynomial algorithms (algorithms whose
number of arithmetic operations does not depend on the length of the numbers on input).

We say that x is feasible for (IP) if Ax = b and l ≤ x ≤ u. Let x be a feasible solution
for (IP). We call g a feasible step if x + g is feasible for (IP). Further, call a feasible step
g augmenting if w(x + g) < w(x). An augmenting step g and a step length ρ ∈ Z form an
x-feasible step pair with respect to a feasible solution x if l ≤ x + ρg ≤ u. An augmenting
step h is a Graver-best step for x if w(x + h) ≤ w(x + ρg) for all x-feasible step pairs
(g, ρ) ∈ G(A)× Z. The next definition and theorem show that it is sufficient to focus all our
attention on finding Graver-best steps. This takes care of matters such as finding an initial
feasible solution, using a proximity theorem to shrink w,b, l,u and so on.

I Definition 9 (Graver-best oracle). A Graver-best oracle for an integer matrix A is one
that, queried on w,b, l,u and x feasible to (IP), returns a Graver-best step h for x.

I Theorem 10 ([28]). Given a Graver-best oracle for E, (IP) can be solved in strongly
polynomial oracle time.

We remark that the polynomial dependence on the dimension N and in particular the
number of bricks n when it comes to 4-block n-fold IP, can be reduced using an approximate
Graver-best oracle introduced by Altmanová et al. [1] and implicitly by Eisenbrand et al. [8].
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Finiteness theorems for n-fold and 2-stage stochastic matrices

Consider an n-fold matrix E that consists of A and D (i.e., B = C = 0 in a 4-block n-fold
matrix). It is shown that g∞(E) is OFPT(1). More precisely, we have the following lemma.

I Lemma 11 ([9, Lemma 28]). Let E be an n-fold matrix. Then g1(E) ≤ (‖E‖∞sDsA)O(sDsA).

I Lemma 12 ([9, Lemma 26]). Let F be a two-stage stochastic matrix. Then g∞(F ) ≤
f(tB , tA, ‖A,B‖∞) for a double-exponential function f .

Both lemmas hold for more general classes of tree-fold and multi-stage stochastic matrices.

The Steinitz lemma

The Steinitz lemma has been utilized in several recent papers [8, 10, 22] to establish better
algorithms for IP. We use it as well.

I Lemma 13 ([15]). Let an arbitrary norm be given in Rκ and assume that ‖xi‖ ≤ ζ for
1 ≤ i ≤ m and

∑m
i=1 xi = x. Then there exists a permutation π such that for all positive

integers ` ≤ m, ‖
∑`
i=1 xπ(i) − `−κ

m x‖ ≤ κζ.

3 4-block n-fold IP

In this section we consider IP (1) for arbitrary H and derive matching upper and lower
bounds on the `∞-norm of its Graver basis depending on the parameter sC = sD.

We first establish the following upper bound that improves significantly the current result.

I Theorem 1. For any 4-block n-fold matrix H, g∞(H) ≤ OFPT(nsD).

Proof. Let g ∈ G(H). Recall the definition of F in Eq (2). As F · g = 0, there exist
αj ∈ Z+, gj(F ) ∈ G(F ) and gj(F ) v g such that g =

∑m
j=1 αjgj(F ). Furthermore,

‖gj(F )‖∞ = OFPT(1) according to Lemma 12. Let hj = C · g0
j(F ) +

∑n
i=1 Dgij(F ), which

is an sD-dimensional vector such that ‖hj‖∞ = OFPT(n). As Hg = 0, it follows that
m∑
j=1

αjhj = h1 + h1 + · · ·+ h1︸ ︷︷ ︸
α1

+ h2 + h2 + · · ·+ h2︸ ︷︷ ︸
α2

+ · · ·+ hm + hm + · · ·+ hm︸ ︷︷ ︸
αm

= 0,

i.e., the sequence of hi’s sum up to 0. According to Lemma 13, there exists a permutation of
the sequence such that ‖

∑`
i=1 zi‖∞ ≤ sD ·OFPT(n) = OFPT(n) for all ` ≤ m′, where m′ =∑m

i=1 αi and z1, z2, · · · , zm′ is a permutation of the sequence h1,h1, · · · ,h1︸ ︷︷ ︸
α1

,h2,h2, · · · ,h2︸ ︷︷ ︸
α2

,

· · · , hm,hm, · · · ,hm︸ ︷︷ ︸
αm

. Let τ = OFPT(n) be the upper bound on ‖
∑`
i=1 zi‖∞, then we know

that
∑`
i=1 zi ∈ {−τ,−τ + 1, · · · , τ}sD . Consequently, if m′ > (2τ + 1)sD + 1, there exists

`1 < `2 such that
∑`1
i=1 zi =

∑`2
i=1 zi, i.e.,

∑`2−`1
i=1 zi = 0. Recall that every zi corresponds

to some hi′ . Suppose
∑`2−`1
i=1 zi =

∑m
j=1 α

′
jhj for α′j ≤ αj , then by the definition of hj it

follows that

C

 m∑
j=1

α′jg0
j (F )

+
n∑
i=1

D

 m∑
j=1

α′jgij(F )

 = 0.

Hence, H
∑m
j=1 α

′
jgj(F ) = 0. That is, if m′ =

∑m
j=1 αj > (2τ + 1)sD + 1, then there exists

some g′ = α′jgj(F ) such that Hg′ = 0, g′ @ g and g′ 6= g, contradicting the fact that
g ∈ G(H). Thus,

∑m
j=1 αj ≤ (2τ + 1)sD + 1, implying that ‖g‖∞ = OFPT(nsD). J
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33:8 New Bounds on Augmenting Steps of Block-Structured IP

We complement our upper bound by establishing a matching lower bound. We remark
that lower bound from Theorem 2 not only holds for the `∞-norm of Graver basis elements,
but even holds for any non-zero lattice element. This gives a sharp contrast to 3-block
n-fold IP. As we will show later in Theorem 6 and Theorem 4, a similar lower bound also
exists for the `∞-norm of Graver basis elements of kerZ(H0), however, kerZ(H0) does admit
a decomposition into lattice elements whose `∞-norm is bounded by OFPT(1).

I Theorem 2. For arbitrary integer t ∈ N, there exists a 4-block n-fold matrix H such that
si, ti ∈ O(t) for i = A,B,C,D, and for any g ∈ kerZ(H) we have ‖g0‖∞ = Ω(nt).

Proof. We let A = It×t, B = −It×t. We define (t− 1)× t matrices D and C such that

D =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

. . .
0 0 0 · · · 1 −1

 C =


−1 0 0 · · · 0 0
0 −1 0 · · · 0 0
...

. . .
0 0 0 · · · −1 0


Consider any nonzero y ∈ kerZ(H). According to Ay0 −Byi = 0, we know that y0 = yi

for every 1 ≤ i ≤ n. According to Cy0 +
∑n
i=1 Dyi = 0, we have (C + nD)y0 = 0, i.e.,

n− 1 −n 0 · · · 0 0
0 n− 1 −n · · · 0 0
...

. . .
0 0 0 · · · n− 1 −n

 · y = 0

Let y0 = (y1, y2, · · · , yt), the following is true:

(n− 1)yi = nyi+1, 1 ≤ i ≤ t− 1 (3)

It is easy to see that as long as y 6= 0, we have y0 6= 0 and consequently yi 6= 0 for every
1 ≤ i ≤ t. According to (n − 1)yt−1 = nyt, yt−1 is dividable by n. Let yt−1 = nzt−1
for some zt−1 ∈ Z6=0. According to (n − 1)yt−2 = nyt−1 = n2zt−1, we know that yt−2 is
dividable by n2. Let yt−2 = n2zt−2 and we plug it into (n − 1)yt−3 = nyt−2. In general,
suppose we have shown that yt−k = nkzt−k for all k ≤ k0. Now for k = k0 + 1, we have
(n − 1)yt−k0−1 = nyt−k0 = nk0+1zn−k0 , then yt−k0−1 is dividable by nk0+1. Hence, we
conclude that y1 is dividable by nt−1, i.e., ‖y‖∞ = Ω(nt−1) and Theorem 2 is proved. J

4 3-block n-fold IP

In this section we focus on 3-block n-fold IP where H = H0, i.e., C = 0. As we will show in
this section, 3-block n-fold IP admits several properties that make it a particularly interesting
and important special case. First, 3-block n-fold IP is without loss of generality – any
4-block n-fold IP reduces to 3-block n-fold IP with a constant increase in the parameters.
Second, any element of kerZ(H0) admits a decomposition into lattice elements with bounded
`∞-norm, which is in certain contrast to Theorem 2. Unfortunately, a strong lower bound of
Ω(nt) for feasible lattice elements still exists for si = ti = O(t). Nevertheless, we establish
an alternative upper bound of OFPT(nt2A+1) on the `∞-norm of the Graver basis elements
for 3-block n-fold IP which only depends on parameters of A.
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4.1 Decomposition into lattice elements with bounded `∞-norm
The goal of this subsection is to prove the following theorem.

I Theorem 4. Any g ∈ kerZ(H0) decomposes to
∑N
i=1 ei for some N ∈ Z≥0 with ei ∈

kerZ(H0) and ‖ei‖∞ ≤ OFPT(1) for each i.

Proof. Since H0g = 0, we know that F ·g = 0. Therefore, there exist αj ∈ Z+ and gj(F ) v g
such that g =

∑
j αjgj(F ), where gj(F ) ∈ G(F ). Consider each gj(F ). As F is a two-stage

stochastic matrix (recall its definition in Eq (2)), by Lemma 12 it holds for every j that
‖gj(F )‖∞ = OFPT(1). Note that each gj(F ) can be written into n + 1 bricks such that
gj(F ) =

(
g0
j (F ),g1

j (F ), · · · ,gnj (F )
)
where g0

j (F ) is a tB-dimensional vector, and gij(F ) is a
tA-dimensional vector for every 1 ≤ i ≤ n. It is obvious that ‖gij(F )‖∞ = OFPT(1) for every
0 ≤ i ≤ n, and it holds that

Bg0
j (F ) +Agij(F ) = 0, ∀1 ≤ i ≤ n.

The claim below follows from picking a suitable v∗j such that gij(F ) − v∗j has “balanced”
coefficients.

B Claim 14. For every gj(F ) and 1 ≤ ` ≤ |G(A)|, there exist some v∗j and αij,` ∈ Z≥0 with
gij(F )− v∗j =

∑|G(A)|
`=1 αij,`g`(A), ∀1 ≤ i ≤ n.

For every 1 ≤ ` ≤ |G(A)|, either |{i : αij,` > 0}| = 0, or |{i : αij,` > 0}| ≥ n/2.
maxi,j,` |αij,`| ≤ αmax, where αmax = 2g∞(F ) = OFPT(1)
‖v∗j‖∞ = OFPT(1).

Proof. Consider an arbitrary vj such that
(

g0
j (F )
vj

)
∈ kerZ([B,A]) and ‖

(
g0

j (F )
vj

)
‖∞ ≤

g∞(F ) = αmax/2. Such vj exists since gj(F ) satisfies that Bg0
j(F ) + Agij(F ) = 0 for any

1 ≤ i ≤ n. We have A(gij(F ) − vj) = 0 for every 1 ≤ i ≤ n, hence there exist ᾱij,` ∈ Z+,
g`(A) ∈ G(A) and g`(A) v gij(F )− vj such that for some integer m,

gij(F )− vj =
m∑
`=1

ᾱij,`g`(A), ∀1 ≤ i ≤ n.

Since ‖
(

g0
j (F )
vj

)
‖∞ ≤ αmax/2, consequently ‖gij(F ) − vj‖∞ ≤ αmax, and ᾱij,` ≤ αmax.

Consider the cardinality of the set {i : ᾱij,` > 0}. If 1 ≤ |{i : ᾱij,` > 0}| ≤ bn/2c, we say `
is unbalanced for gj(F ). Let ᾱij,max = max1≤`≤m ᾱ

i
j,` and UBj be the set of all unbalanced

indices `, we define

v∗j := vj +
∑
`∈UBj

ᾱij,maxg`(A),

then, gij(F )−v∗j =
∑

`∈{1,2,··· ,m}\UBj

ᾱij,`g`(A)+
∑
`∈UBj

(ᾱij,max−ᾱij,`)·(−g`(A)), ∀1 ≤ i ≤ n.

Note that −g`(A) ∈ G(A). For all the g`(A)’s in G(A) that do not appear in the above
equation, we take their coefficients as 0. Furthermore, we have |ᾱij,`| ≤ αmax and |ᾱij,max −
ᾱij,`| ≤ αmax for all i, `. As ‖vj‖∞ = OFPT(1), ‖g`(A)‖∞ = OFPT(1), we know that
‖v∗j‖∞ = OFPT(1). Thus, the claim is proved. C
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We call (g0
j(F ),v∗j ,v∗j , · · · ,v∗j ) as a canonical vector (of gj(F )). It is easy to see that

F (g0
j (F ),v∗j ,v∗j , · · · ,v∗j ) = 0. Since ‖v∗j‖∞ = OFPT(1) and ‖g0

j (F )‖∞ = OFPT(1), there are
at most τ = OFPT(1) different kinds of canonical vectors. This means, there may be different
gk(F )’s with the same canonical vector. We list all the τ possible canonical vectors and let
rj := (p∗j ,v∗j ,v∗j , · · · ,v∗j ) be the j-th one. Let CAj be the set of indices of all gk(F )’s whose
canonical vector is rj , then we have

g =
τ∑
j=1

(
∑

k∈CAj

αk)rj +
τ∑
j=1

∑
k∈CAj

αk (gk(F )− rj) . (4)

We say an n-dimensional vector α = (α1, α2, · · · , αn) ∈ Zn≥0 is balanced, if α = 0, or
‖α‖∞ ≤ αmax = OFPT(1) and |{i : αi > 0}| ≥ n/2. Then the following observation is true.

I Observation 15. For any nonzero balanced vector α it holds that ‖α‖1 ≥ n/2 · αi/αmax
for every 1 ≤ i ≤ n.

Using the concept of a balanced vector, Claim 14 indicates that if rj is a canonical vector
of gk(F ), then gik(F )− v∗j =

∑|G(A)|
`=1 αik,`g`(A) such that the vector (α1

k,`, α
2
k,`, · · · , αnk,`) is

a balanced vector. The nice thing about balanced vectors is that we can have the following
claim, which will be used several times later.

B Claim 16. Let y1,y2, · · · ,yk be a sequence of balanced vectors in Zn≥0 such that
‖
∑k
h=1 yh‖1 ≤ nΛ where Λ = OFPT(1), then ‖

∑k
h=1 yh‖∞ ≤ 2αmaxΛ = OFPT(1).

Proof of Claim 16. We prove by contradiction. Suppose on the contrary that ‖
∑k
h=1 yh‖∞ >

2αmaxΛ, then there exists some i∗ such that
∑k
h=1 yi∗h > 2αmaxΛ. Since yh’s are balanced

vectors, according to Observation 15, we have

‖
k∑
h=1

yh‖1 =
k∑
h=1
‖yh‖1 ≥ n ·

∑k
h=1 yi∗h

2αmax
> nΛ,

which contradicts the fact that ‖
∑k
h=1 yh‖1 ≤ nΛ. Hence, the claim is true. C

Since rj is a canonical vector of gk(F ), by Claim 14, there exist balanced vectors βk,`
such that Eq (4) can be rewritten as (ignoring g0):

gi =
τ∑
j=1

(
∑

k∈CAj

αk)v∗j +
τ∑
j=1

∑
k∈CAj

αk

|G(A)|∑
`=1

βik,`g`(A)

 , ∀1 ≤ i ≤ n,

or equivalently, gi =
τ∑
j=1

α′jv∗j +
|G(A)|∑
`=1

βi`g`(A), ∀1 ≤ i ≤ n, (5)

where α′j =
∑
k∈CAj

αk and each β` = (β1
` , · · · , βn` ) is the summation of balanced vectors.

As [0, D,D, · · · , D]g = 0, we have
τ∑
j=1

nα′jDv∗j +
|G(A)|∑
`=1

(
n∑
i=1

βi`)Dg`(A) = 0. (6)

Note that |G(A)| = OFPT(1), the equation above can be rewritten as

[Dv∗1, · · · , Dv∗τ , Dg1(A), · · · , Dg|G(A)|(A)] · (nα′1, · · · , nα′τ ,
n∑
i=1

βi1, · · · ,
n∑
i=1

βi|G(A)|) = 0. (7)
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Let V = [Dv∗1, Dv∗2, · · · , Dv∗τ , Dg1(A), Dg2(A), · · · , Dg|G(A)|(A)], which is an OFPT(1)×
OFPT(1)-matrix with ‖V ‖∞ = OFPT(1), then there exist λk ∈ Z+ and gk(V ) ∈ G(V ),
such that (nα′1, nα′2, · · · , nα′τ ,

∑n
i=1 β

i
1, · · · ,

∑n
i=1 β

i
|G(A)|) =

∑
k λkgk(V ). Note that since

α′j , β
i
` ≥ 0, we can restrict that every gk(V ) ∈ Zτ+|G(A)|

≥0 .
For ease of description, from now on we take the viewpoint of a packing problem. We

view each canonical vector r∗j and g`(A) as an item, whereas there are τ + |G(A)| different
kinds of items. There are n + 1 different bins. Bin 0 can only be used to pack items r∗j ,
1 ≤ j ≤ τ , and bin i (1 ≤ i ≤ n) can only be used to pack items g`(A), 1 ≤ ` ≤ |G(A)|.
Currently there are α′j copies of item r∗j in bin 0, and βi` copies of item g`(A) in bin i. This is
called a packing profile. Now we want to split this packing profile into several “sub-profiles”,
i.e., we want to determine integers µhj , σ

i,h
` ∈ Z≥0 such that the followings are true:

(i) µhj , σ
i,h
` = OFPT(1) and µhj + σi,h` > 0.

(ii)
∑
h µ

h
j = α′j ,

∑
h σ

i,h
` = βi`;

(iii) [Dv∗1, · · · , Dv∗τ , Dg1(A), · · · , Dg|G(A)|(A)]
· (nµh1 , · · · , nµhτ ,

∑n
i=1 σ

i,h
` , · · · ,

∑n
i=1 σ

i,h
|G(A)|) = 0 for every h.

A packing with µhj copies of r∗j in bin 0 and σi,h` copies of g`(A) in bin i is called a sub-profile.
Any sub-profile corresponds to a (tA + ntB)-dimensional vector eh = (e0

h, e1
h, · · · , enh) where

e0
h =

τ∑
j=1

µhjp∗j

eih =
τ∑
j=1

µhj v∗j +
|G(A)|∑
`=1

σi,h` g`(A), ∀1 ≤ i ≤ n

If all the three conditions on sub-profiles hold, then we know that ‖eh‖∞ = OFPT(1),
g =

∑
h eh and H0eh = 0 (to see why H0eh = 0 holds, simply recall that Fr∗j = 0 and

condition (iii) implies that [0, D,D, · · · , D]eh = 0), and furthermore, there are at most∑
j α
′
j +

∑
i,` β

i
` sub-profiles, which is finite. Hence, g =

∑
h eh and the theorem is proved.

We will construct eh’s iteratively. Once eh is constructed, we continue our decomposition
procedure on g−

∑h
k=1 ek.

Suppose we have constructed e1 to eh0−1 where conditions (i) and (iii) are satisfied
for each eh, α′j −

∑h0−1
h=1 µhj ≥ 0, β̄i` := βi` −

∑h0−1
h=1 σi,h` ≥ 0 and furthermore, each vector

β̄` = (β̄1
` , · · · , β̄n` ) can be expressed as a summation of all but one balanced vectors, more

precisely, there exist balanced vectors φ`,k ∈ Zn≥0, 1 ≤ k ≤ kmax such that

β̄` =
kmax−1∑
k=1

φ`,k + φ̄`,kmax , where φ̄`,kmax v φ`,kmax .

We show how to construct eh0 . Let ᾱ′j = α′j −
∑h0−1
h=1 µhj . According to condition (iii) of

each eh, we know that

[Dv∗1, · · · , Dv∗τ , Dg1(A), · · · , Dg|G(A)|(A)] · (nᾱ′1, · · · , nᾱ′τ ,
n∑
i=1

β̄i1, · · · ,
n∑
i=1

β̄i|G(A)|) = 0

Consequently, there exist λ′k ∈ Z≥0 and gk ∈ Zτ+|G(A)|
≥0 ∩ G(V ) such that

(nᾱ′1, nᾱ′2, · · · , nᾱ′τ ,
n∑
i=1

β̄i1, · · · ,
n∑
i=1

β̄i|G(A)|) =
∑
k

λ′kgk(V ).
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There are two possibilities.

Case 1. If there exists some λ′k ≥ n, we consider the vector-summand ngk(V ) out of λ′kgk(V ).
Let ngk(V ) = (nζ1, nζ2, · · · , nζτ+|G(A)|). We set µh0

j = ζj = OFPT(1) for 1 ≤ j ≤ τ . We set
the values of σi,h0

` such that
∑n
i=1 σ

i,h0
` = nζτ+`. Consequently, condition (iii) is satisfied for

eh0 . Now it suffices to set the values of each σi,h0
` such that they are bounded by OFPT(1).

Equivalently, this means out of the β̄i` copies of g`(A), our goal is to take σi,h0
` copies such

that in total we take nζτ+` copies and σi,h0
` = OFPT(1). We achieve this in a simple greedy

way. Let k∗ be the index such that
kmax−1∑
k=k∗+1

‖φ`,k‖1 + ‖φ̄`,kmax‖1 < nζτ+` ≤
kmax−1∑
k=k∗

‖φ`,k‖1 + ‖φ̄`,kmax‖1

Let φ̄`,k∗ v φ`,k∗ be an arbitrary vector such that

‖φ̄`,k∗‖1 +
kmax−1∑
k=k∗+1

‖φ`,k‖1 + ‖φ̄`,kmax‖1 = nζτ+`.

We set σi,h0
` = φ̄i`,k∗ +

∑kmax−1
k=k∗+1 φ

i
`,k + φ̄i`,kmax

. It is obvious that in total we have taken nζτ+`

copies of g`(A). Now it remains to show that ‖σh0
` ‖∞ = ‖φ̄`,k∗+

∑kmax−1
k=k∗+1 φ`,k+ φ̄`,kmax‖∞ =

OFPT(1). To see this, notice that each φ`,k is a balanced vector, hence

‖φ`,k∗‖1 +
kmax−1∑
k=k∗+1

‖φ`,k‖1 + ‖φ`,kmax‖1 ≤ nζτ+` + 2nαmax = OFPT(n).

According to Claim 16, ‖φ`,k∗ +
∑kmax−1
k=k∗+1 φ`,k + φ`,kmax‖∞ = OFPT(1). Consequently,

‖σh0
` ‖∞ = OFPT(1).
Also notice that after we take σi,h0

` copies of g`(A), β̄`−σh0
` =

∑k∗−1
k=1 φ`,k+(φ`,k∗−φ̄`,k∗),

which is still the summation of all but one balanced vector. Hence we can continue to
decompose g−

∑h0
h=1 eh.

Case 2. λ′k < n for every k. We claim that ‖g −
∑h0−1
h=1 eh‖∞ = OFPT(1). If this claim is

true, then g =
∑h0−1
h=1 eh + (g−

∑h0−1
h=1 eh), and Theorem 4 is proved. To show the claim, we

use a similar argument as that of case 1. First, nᾱ′j ≤ (
∑
k λk) ·maxk ‖gk(V )‖∞ = OFPT(n),

hence ᾱ′j = OFPT(1). Second, we consider the n-dimensional vector β =
∑|G(A)|
`=1 β`. Recall

that β̄i` := βi` −
∑h0−1
h=1 σi,h` ≥ 0 and each vector β̄` satisfy that

β̄` =
kmax−1∑
k=1

φ`,k + φ̄`,kmax

where φ̄`,kmax v φ`,kmax . Let β̄′` =
∑kmax
k=1 φ`,k and β′ =

∑|G(A)|
`=1 β′`. Given that φ̄`,kmax v

φ`,kmax and φ`,kmax is a balanced vector, ‖β̄′`‖1 ≤ ‖β̄`‖1 + nαmax. Consequently

‖β′‖1 ≤
|G(A)|∑
`=1
‖β̄′`‖1 ≤

|G(A)|∑
`=1
‖β̄`‖1 + nαmax · |G(A)|

≤
∑
k

λ′k ·max
k
‖gk(V )‖1 + nαmax · |G(A)| = OFPT(n).

Note that β′ is the summation of balanced vectors. According to Claim 16, ‖β′‖∞ = OFPT(1),
consequently ‖β‖∞ ≤ ‖β′‖∞ = OFPT(1). Combining the fact that ‖p∗j‖∞ = OFPT(1),
‖v∗j‖∞ = OFPT(1) and ‖g`(A)‖∞ = OFPT(1), we have ‖g−

∑h0−1
i=1 eh‖∞ = OFPT(1). J
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Theorem 4 indicates that, there exists some “basis” for 3-block n-fold IP with FPT-
bounded `∞-norms. Unfortunately, this basis need not be Graver basis; indeed, we will show
later that the Graver basis of 3-block n-fold IP does not have an FPT-bounded `∞-norm.
However, Theorem 4 provides a new perspective on the structure of the kernel space, which
can be utilized to bound the `∞-norm of the Graver basis through a “merging” technique for
the proof of Theorem 5 as we illustrate in the following subsection.

4.2 A sign-compatible decomposition
We have shown in the previous subsection that any element of kerZ(H0) admits a de-
composition into lattice elements whose `∞-norm is bounded by OFPT(1). However, this
decomposition is not necessarily “sign-compatible”, meaning that possibly none of its elements
is a feasible step on its own, which makes its immediate algorithmic use complicated. Towards
the algorithm for 3-block n-fold IP, we resort to Graver basis. The goal of this subsection is
to prove the following theorem.

I Theorem 5. For any 3-block n-fold matrix H0, g∞(H0) ≤ OFPT(nt2A+1).

Following the line of arguments in previous papers [4, 16, 18, 20], it seems very difficult
to derive an upper bound singly exponential in tA. To prove Theorem 5, we use a completely
different approach. We give a brief overview of the proof idea. The reader is referred to the
full version of this paper [6] for details.

Proof idea. The basic idea is to show that if ‖g(H0)‖∞ is too large for some g(H0) ∈ G(H0),
then we are able to find some z @ g(H0) and H0z = 0, contradicting the fact that g(H0) is
a Graver basis element. Suppose y = g(H0) and ‖y‖∞ is very large. The crucial idea is that
we do not search directly for z @ y, but rather search for z @ ỹ where ỹ is an “equalization”,
of y, and then prove that such a z also satisfies that z @ y.

Roughly speaking, we will divide the n bricks of y, i.e., yi for i = 1, 2, · · · , n, into
σ = OFPT(1) groups N1, N2, · · · , Nσ such that for any k ∈ Nj , ỹk ≈ 1

|Nj |
∑
i∈Nj

yi. Why do
we need to take such a detour in the proof? The problem is that by directly arguing on y we
run into a bound that is similar as [16]. Therefore, we use a completely different approach –
we adopt the decomposition of Theorem 4, and then modify such a decomposition into a
sign-compatible one by “merging” summands. Towards this, we first prove a merging lemma
(see Lemma 5 of the full version) which states that given a summation of a sequence of vectors,
we can always divide them into disjoint subsets such the summation of vectors in each subset
becomes sign-compatible. The merging lemma can turn an arbitrary decomposition into
a sign-compatible one, despite the fact that the cardinality of each subset is exponential
in the dimension of the vectors (which means the `∞-norm of the summands will explode
by a factor that is exponential in the dimension). Consequently, if we directly merge the
OFPT(n)-dimensional vectors in the decomposition of Theorem 4, we get a very weak bound.
To handle this, we consider an alternative sum ỹ, which is derived by averaging multiple
bricks of y as we mentioned above.

By altering the decomposition of y, we get a decomposition of ỹ such that the following
is true: all the n+ 1 bricks of each vector-summand can be divided into OFPT(1) subsets
where in each subset the bricks are identical. This indicates that, although we are summing
up OFPT(n)-dimensional vectors to ỹ, it is essentially the same as summing up OFPT(1)-
dimensional vectors. Such a transformation comes at a cost – summands summing up to
ỹ do not have OFPT(1)-bounded `∞-norms, indeed, each vector-summand consists of n
bricks whose `∞-norm is OFPT(1), and at most 1 brick (which is a tA-dimensional vector)
whose `∞-norm is OFPT(n). Applying our merging lemma, we derive a sign-compatible
decomposition of ỹ where the summands have an `∞-norm bounded by OFPT(nt2A+1).
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It remains to show that at least one summand z in the sign-compatible decomposition
of ỹ also satisfies that z @ y. To show this we need to go back to the definition of ỹ. We
are averaging bricks of y, but which bricks shall we average? Each brick is a tA-dimensional
vector and we consider each coordinate. We set up a threshold Γ. If the absolute value
of a coordinate is larger than Γ, we say it is (positive or negative) large. Otherwise it is
small. Therefore, each brick can be characterized by identifying its coordinates being positive
large, negative large or small (which is defined as the quantity type of a brick). We only
average the bricks of the same quantity type. By doing so, we can ensure that ỹi is roughly
sign-compatible with yi – if the j-th coordinate of yi is positive or negative large, then this
coordinate of ỹi is also positive or negative. Hence, any z @ ỹi is almost sign-compatible
with y – indeed, if we can ensure additionally that the j-th coordinate of zi is 0 as long as
the j-th coordinate of yi is small, then we can conclude that z @ y. This “if” can be proved
using a counting argument, and we get Theorem 5. J

5 4-block n-fold IP reduces to 3-block n-fold IP

In this section, we will show that for any 4-block n-fold IP, there exists an equivalent 3-block
n-fold IP which is kernel preserving, as we define in the following.

I Definition 17 (Extended formulation). Let n′ ≥ n, m′ ∈ N, A ∈ Zm×n, b ∈ Zm, l,u ∈
(Z ∪ {±∞})n and A′ ∈ Zm′×n′ , b′ ∈ Zm′ , l′,u′ ∈ (Z ∪ {±∞})n′ . We say that

A′(x,y) = b′, l′ ≤ (x,y) ≤ u′ (EF)

is an extended formulation of

Ax = b, l ≤ x ≤ u (OrigF)

if {x | Ax = b, l ≤ x ≤ u} = {x | ∃y : A′(x,y) = b′, l′ ≤ (x,y) ≤ u′}.

I Definition 18 (Feasibly kernel-preserving extended formulation). We say that (EF) is a
feasibly kernel preserving extended formulation of (OrigF) if for each (x,y) feasible in (EF),

A′(g,h) = 0, l′ ≤ (x,y) + (g,h) ≤ u′ =⇒ Ag = 0, l ≤ x + g ≤ u,

that is, each element (g,h) of ker(A′) which is feasible with respect to (x,y) corresponds to
an element g ∈ ker(A) which is feasible with respect to x.

Extended formulations are commonly used to show how a set of solutions can be embedded
in an extended space, perhaps using less inequalities or obeying some extra structural
requirements. The basic observation is that if we take an objective function f over the
original formulation (OrigF) and optimize f ′(x,y) = f(x) over (EF), the optimal solution
(x,y) over (EF) is such that x is an optimum over (OrigF). In the subsequent theorem we
will use it to show that any 4-block n-fold IP can be embedded in a 3-block n-fold IP without
blowing up the block sizes too much. The specific notion of a feasibly kernel-preserving
extended formulation is useful to show that also our lower bounds on lattice elements are
transferred, as we will show subsequently in Theorem 6.

Now we come to the main result of this subsection.

I Theorem 19. Any 4-block n-fold IP with parameters ∆, sA, sB , sC , sD, tA, tB , tC , tD has a
feasibly kernel-preserving extended formulation whose constraint matrix is a 3-block n-fold
matrix with parameters ∆̂, ŝA, ŝB , ŝD, t̂A, t̂B , t̂D satisfying

∆̂ = ∆ t̂A = t̂D = 2tC + tD + sA t̂B = tB ŝA = ŝB = sB + tC ŝD = sD = sC .
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Proof. Let us construct a 3-block n-fold IP instance which models the given 4-block IP
instance. It’s matrix Ĥ0 is a 3-block n-fold matrix composed of blocks Â, B̂ and D̂, and the
remaining data is b̂, l̂, û and ŵ. Let the blocks be defined as follows.

D̂ = (C D 0 0) Â =
(−I 0 I 0

0 A 0 I

)
B̂ = ( IB )

We call the four block columns of Â and D̂ subbricks and index them by greek letters α, β, γ
and δ, i.e., x1α is the α-subbrick of the first brick.

Now, we add an extra brick which we call an aggregation brick, denoted xd where d = n+1.
The idea is that the α subbrick is non-zero only at the aggregation brick and corresponds to
the first-stage variables of the original 4-block n-fold IP. We shall ensure that this is true
using lower and upper bounds. However, to subsequently “assign” the aggregated values
to the first stage variables, we also need to modify the B block, which, in turn, forces us
to introduce new slack variables. This is the meaning of the γ subbrick (slack variables for
bricks i 6= d) and δ subbrick (slack variables for the dth brick).

The right hand side b̂ is simply b̂
0

= b0 and b̂
i

= (0 bi) for i 6= d and b̂
d

= (0 0). We
set the new lower and upper bounds l̂, û as follows:
α subbrick l̂

iα
= ûiα = 0 for all i 6= d, and l̂

dα
= −∞, ûdα = +∞. This ensures the α

subbrick to be only possibly non-zero in brick d.
β subbrick l̂

iβ
= li and ûiβ = ui for all i 6= d and l̂

dβ
= ûdβ = 0. This ensures that the β

subbrick has the meaning of the original variables xi for all bricks except brick d, where
we enforce x̂dβ = 0.

γ subbrick l̂
dγ

= ûdγ = 0 and l̂
iγ

= −∞, ûiγ = +∞ for i 6= d. Without these variables
and due to the structure of Â and B̂, we would be enforcing for each brick i 6= d that
x̂0 = x̂iα, and since x̂iα = 0 this would mean x̂0 = 0. The γ subbrick relaxes this to
x̂0 = x̂iα + x̂iγ = 0 + x̂iγ which is trivially satisfiable considering our setting of the
bounds l̂

dγ
and ûdγ .

δ subbrick l̂
iδ

= ûiδ = 0 for all i 6= d, and l̂
dδ

= −∞, ûdδ = +∞, i.e., the same as for the
α subbrick. Similarly to the γ subbrick, without the δ subbrick we would be enforcing
Bx̂0 +Ax̂dβ = 0, however x̂dβ = 0 so we would be forcing Bx̂0 = 0, which is undesired.
Thus we relax it to Bx̂0 +Ax̂dβ + x̂dδ = Bx̂0 + x̂dδ = 0 which is trivially satisfiable.

To show that the constructed system

H0x̂ = b̂, l̂ ≤ x̂ ≤ û, x̂ ∈ Zt̂B+(n+1)t̂A (8)

is truly an extended formulation of Hx = b, l ≤ x ≤ u, x ∈ ZtC +ntA , let us define
a projection π : Zt̂B+(n+1)t̂A → ZtC +ntA which defines the mapping from the extended
formulation to the original instance. Specifically, we let

π((x̂0, x̂1α, x̂1β , x̂1γ , x̂1δ, x̂2α, . . . , x̂nδ, x̂dα, . . . , x̂dδ) = (x̂0, x̂1β , x̂2β , . . . , x̂nβ) .

By the arguments above we see that x̂0 has precisely the meaning of x0 and x̂iβ for i 6= d

has the meaning of xi.
Finally, let us argue that this extended formulation is also feasibly kernel-preserving.

Consider now a feasible solution x̂ of (8), and consider any ĝ in ker(H0) such that x̂ + ĝ is
again feasible. We have to show that Hπ(x̂) = 0 and l ≤ x + π(x̂) ≤ u. The latter follows
easily from the fact that l̂ ≤ x̂ + ĝ ≤ û and that π(̂l) = l and π(û) = u. To see the former,
consider separately first the upper row (C D · · · D) of H and after that the remaining rows.
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We have that

Cx̂dα +Dx̂dβ + 0x̂dγ + 0x̂dδ +
n∑
i=1

Cx̂iα +Dx̂iβ + 0x̂iγ + 0x̂iδ = 0 .

Omitting the zero blocks, we obtain

Cx̂aα +Dx̂aβ +
n∑
i=1

Cx̂iα +Dx̂iβ = 0 .

Recall that our bounds enforce x̂dβ = 0 and x̂iα = 0 for i 6= d, and finally x̂0 = x̂dα, so
plugging these in we obtain

Cx̂0 +
n∑
i=1

Dx̂iβ = 0,

which by the definition of π implies that Cπ(x)0 +
∑n
i=1 Dπ(x)i = 0 as desired. Now it is

left to show that, for each i 6= d, Bπ(x)0 +Aπ(x)i = 0. We have that

Bx̂0 + 0x̂iα +Ax̂iβ + 0x̂iγ + Ix̂iδ = 0 .

Omitting the zero blocks and recalling that our bounds enforce x̂iδ = 0 for each i 6= d, we
have

Ax̂0 +Ax̂iβ = 0,

which, by definition of π, is what we wanted to show. J

I Remark 20. Theorem 19 has several consequences. One is that 4-block n-fold IP is in FPT
if and only if 3-block n-fold IP is in FPT. Furthermore, as the reduction is kernel preserving,
we can also utilize Theorem 19 to transfer the Graver basis elements between 4-block n-fold
IP and 3-block n-fold IP, as is implied by Theorem 6.

I Theorem 6. For arbitrary integer t ∈ N, there exists a 3-block n-fold IP with a matrix H
such that si, ti ∈ O(t) for i = A,B,C,D, and for any feasible nonzero g ∈ kerZ(H0) we have
‖g0‖∞ = Ω(nt).

Proof. Consider the instance constructed in Theorem 2 with H being the 4-block n-fold
matrix from the proof. Apply Theorem 19 to this instance to obtain its feasible kernel-
preserving extended formulation, which is a 3-block n-fold IP, and consider any x̂ which is a
feasible solution for it. Denote by π the projection from the proof of Theorem 19.

Now let ĝ ∈ kerZ(H0) ⊆ ker(H0) be feasible with respect to x̂. By Definition 18, we
have g = π(ĝ) ∈ kerZ(H), and by Theorem 2 we have ‖g‖∞ = Ω(nt−1) and in particular
‖g0‖∞ = Ω(nt−1). By the definition of π these lower bounds transfer to ĝ and ĝ0. J

I Remark 21. The reader may wonder what if we take a “fat” kernel element of a 4-block
n-fold IP, which cannot be decomposed into “thin” kernel element whose infinity norm
bounded by OFPT(1), then use Theorem 19 to construct an equivalent 3-block n-fold IP,
and apply Theorem 4 to decompose the kernel element of the 3-block n-fold IP into thin
elements and transform them back to the original 4-block n-fold IP. This seems to suggest
that Theorem 19 is contradicting Theorem 2 and Theorem 4. We emphasize that such
a contradiction does not exist. Indeed, our definition of a feasibly-preserving extended
formulation is such that it takes kernel elements from 3-block n-fold IP to 4-block n-fold IP
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only if they are feasible in the 3-block n-fold IP. Note that the construction of Theorem 19
requires specific lower and upper bounds on the extended variables y. This is where the
non-conformality of the decomposition of Thm 4 comes into play: what happens is that we
decompose a kernel element of 3-block into “thin” kernel elements, however, we cannot take
them back to the 4-block because they do not satisfy the bounds on the extended variables,
and thus the definition of feasibly kernel-preserving extended formulation does not guarantee
anything for them.

6 Algorithms

Using the upper bound on the Graver basis elements, we can derive algorithms for 3-block
and 4-block n-fold IP by combining the idea from [16] and the recent progress in [28, 8], as
indicated by Theorem 7 and Theorem 3.

In the following we prove Theorem 7. Theorem 3 can be proved by plugging in the upper
bound of 4-block n-fold IP and proceed with the same argument.

I Theorem 7. 3-block n-fold IP can be solved in time min{OFPT(nO(sDtB),OFPT(nO(t2AtB))}.

Proof. Using the idea of approximate Graver-best oracle introduced by Altmanová et al. [1]
and implicitly by Eisenbrand et al. [8], it suffices for us to solve the following IP for each
fixed value ρ0 = 20, 21, 22, · · · :

min{wx : H0x = 0, l ≤ x0 + ρ0x ≤ u,x ∈ Zm, ‖x‖∞ ≤ min{OFPT(nsc),OFPT(nt
2
A+1)}}

Let x∗ be the optimal solution. Given that ‖x∗‖∞ ≤ OFPT(nt2A+1), we can guess x0
∗ and

there are OFPT(n(t2A+1)tB ) different possibilities. For each guess, say, x0
∗ = v, we solve the

following problem:

min{w · x : H0x = 0, l ≤ x0 + ρ0x ≤ u,x ∈ Zm,x0 = v}

By fixing x0, the above problem becomes exactly an n-fold IP, which can be solved efficiently
in OFPT(n2 logn2) time [8]. Notice that ρ0 may take OFPT(n logn) distinct values, the
overall running time is min{OFPT(nsDtB+3) log3 n,OFPT(n(t2A+1)tB+3 log3 n)}. J

7 Conclusion

We consider 4-block n-fold IP and its important special case 3-block n-fold IP, both gener-
alizing the two-stage stochastic IP and n-fold IP. We show that lattice elements of 3-block
n-fold IP admit a decomposition whose `∞-norm is bounded in OFPT(1), while any non-zero
integral element in the kernel of 4-block n-fold IP may have an `∞-norm at least Ω(nsc).
We provide a matching upper bound on the `∞-norm of the Graver basis for 4-block n-fold
IP, which gives an exponential improvement upon the best known result. We also establish
an upper bound of min{OFPT(nsc),OFPT(nt2A + 1)} on the `∞-norm of the Graver basis
for 3-block n-fold IP. A remaining important open problem is whether 4-block n-fold IP, or
equivalently, 3-block n-fold IP, is in FPT. Our lower bounds give some indication that this is
unlikely.
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