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Hemodynamics and arterial stiffness in response to oral glucose loading in individuals with type II diabetes

and controlled hypertension.
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Abstract

Type 2 diabetes (T2D) is the fastest growing pandemic and is typically accompanied by various vascular
complications. A central hallmark of both T2D and vascular disease is insulin resistance which causes impaired
glucose transport and vasoconstriction concomitantly. Those with cardiometabolic disease display greater variation
in central hemodynamics and arterial elasticity, potent predictors of cardiovascular morbidity and mortality, which
may be exacerbated by concomitant hyperglycemia and hyperinsulinemia during glucose testing. Thus, elucidating
central and arterial responses to glucose testing in those with T2D may identify acute vascular pathophysiologies
triggered by oral glucose loading. This study compared hemodynamics and arterial stiffness to an oral glucose
challenge (OGC: 50g glucose) between individuals with and without T2D. 21 healthy (48410 yrs) and 20
participants with clinically diagnosed T2D and controlled hypertension (52+8 yrs) were tested. Hemodynamics and
arterial stiffness were assessed at baseline, and 10, 20, 30, 40, 50, and 60 minutes post-OGC. Heart rate increased
between 20-60 post-OGC in both groups (p<0.05). Central systolic blood pressure (SBP) decreased in the T2D
group between 10-50 minutes post-OGC while central diastolic blood pressure (DBP) decreased in both groups from
20-60 post-OGC. Central SBP decreased in T2D between 10-50 minutes post-OGC and central DBP decreased in
both groups between 20-60 minutes post-OGC. Brachial SBP decreased between 10-50 in healthy participants,
whereas both groups displayed decreases in brachial DBP between 20-60 minutes post-OGC. Arterial stiffness was
unaffected. An OGC alters central and peripheral blood pressure in healthy and T2D participants similarly with no

changes in arterial stiffness.
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INTRODUCTION

Type 2 diabetes (T2D) and its cardiovascular complications disease remain among the highest preventable causes of
mortality globally and is characterized by insulin resistance. The reciprocal relationship between insulin resistance
and endothelial dysfunction has been well-documented [1, 2] with vascular and metabolic diseases exacerbating
each other. Insulin's influence on the vasculature mediates vasodilation and arterial compliance, ultimately affecting
transportation of insulin and substrates to tissue for storage or metabolism [3]. Typically, insulin stimulates nitric
oxide production and glucose transporter translocation, increasing vasodilation, arterial elasticity, and glucose
uptake. However, insulin’s vascular actions are blunted in those with insulin resistance, obesity, and hyperlipidemia
[4]. In essence, poor arterial compliance is highly correlated with the presence of T2D [5]. In addition,
cardiometabolic dysfunction accelerates alterations to the structure and function of the arterial tree, inducing poor
arterial compliance [6] and reduced microvascular blood flow in skeletal muscle [7] and adipose tissue [8], thus
exacerbating the hyperglycemia-hypertension-vascular compliance cycle. Thus, insulin resistance and endothelial
dysfunction are intertwined on a cellular and molecular level, and both increase the risk of adverse cardiovascular
events [9], and mortality [10]. Oral glucose testing causes both acute hyperglycemia and hyperinsulinemia, which
impairs insulin-mediated endothelial nitric oxide synthase [11], potentially exacerbating risk of vascular
complications.

The risk-relationship between hypertension and cardiovascular events, coronary disease, and all-cause
mortality are well documented by the Framingham Heart Study [12]. Further, diastolic blood pressure (DBP) has
been shown to be an independent risk factor of cardiovascular events and coronary disease [13]. Likewise, central
pulse pressure is used as a predictor for cardiovascular and coronary diseases [14] and is positively associated with
morbidity and mortality in T2D [15]. Furthermore, the risk of cardiovascular mortality in people with T2D, without
prior cardiovascular complications, is equal to that of those with chronic cardiovascular disease without diabetes
[16].

Arterial stiffness, defined as thickening of the vasculature during the process of aging [17], further impairs
regulation of vascular tone [18], and is exacerbated by insulin resistance, T2D, hypertension, and metabolic
syndrome [19]. Increased arterial stiffness [augmentation pressure (AP), augmentation index (Alx), AIx normalized

at 75 bpm (AIx@75), and pulse wave velocity (PWV)] is associated with higher risk of cardiovascular events and
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all-cause mortality [20-22] while increased arterial stiffness and thickness, along with steeper slope between PWV
and age are noted in patients with T2D vs age-matched healthy individuals [23].

An oral glucose tolerance test (OGTT: 75g glucose) is widely used to determine individuals’ glucose
metabolism and serves as a diagnostic test for T2D and pre-diabetes [24]. Previous animal studies have reported that
acute hyperglycemia acts on endothelial cells, causing changes in vessel diameter and blood pressure [25-27]. Work
in healthy humans illustrates central DBP (cDBP) decreases after OGC, while central SBP (cSBP), Alx, and PWV
do not change [28]. However, results are not uniform, as another study showed increases in heart rate (HR) with no
change in brachial SBP (bSBP) and DBP (bDBP) after OGTT [29]. In patients with T2D, there are reductions in
Alx@75 with no change in cSBP and bSBP after OGTT [30], whereas Hashizume et al. [31] reported significant
decreases in postprandial cSBP and bSBP with no change in bDBP. Of important note for OGTT in those with T2D
is insulin’s reduced ability to regulate glycemia, leading to increased circulating glucose and insulin which together
act to inhibit IRS-1/PI3-k/Akt pathway that stimulates nitric oxide production [11] in favor of the MAPK/ERK
pathway which stimulates endothelin-1, vasoconstriction, hyperglycemia and cell proliferation [19].

Despite the use of an oral glucose load being prolific with both its global diagnostic use, and an abundance
of studies using an oral glucose load, little is known of their effects on central and peripheral hemodynamics or
arterial stiffness. Therefore, the purpose of the present study was to examine central and peripheral hemodynamic
responses and arterial stiffness to an oral glucose challenge among individuals with T2D and controlled
hypertension vs that of healthy individuals. We hypothesized that individuals with T2D and controlled hypertension
have impaired responses for on central and peripheral hemodynamics and arterial stiffness in response to an oral

glucose challenge compared to individuals without T2D.

METHODS
This study was approved by the University Institutional Review Board and was carried out in accordance with the
Declaration of Helsinki as revised in 2008. All participants provided written informed consent. Procedures followed

were in accordance with institutional guidelines.

Participants
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Participants were included in the study if they were between 18-60 years, were normal weight to obese (Body Mass
Index (BMI) = 19 — 35 kg/m?) and were weight-stable for the previous 3 months. We recruited people with a wide age
and BMI range to reflect the general community. Participants were excluded if they had a BMI >35kg/m?, or had a
personal history of smoking, cardiovascular disease, stroke, myocardial infarction, uncontrolled blood pressure (seated
brachial blood pressure >160/100 mmHg), peripheral arterial disease, pulmonary disease, arthritis/muscular skeletal
disease, malignancy within past 5 years, or severe liver disease. Participants taking statins or anti-hypertensive
medications could participate in the study and were instructed to not change their medication during the study in order

to better simulate traditional oral glucose testing conditions.

After obtaining written informed consent, participants completed a medical questionnaire and had their blood pressure,
height and weight evaluated to confirm eligibility. Eligible participants were placed in their respective T2D group or
healthy control group. For the clinical testing visit, participants fasted for 12 hours and refrained from alcohol and
exercise for 48 hrs prior. A catheter was placed in the antecubital vein of the non-dominant arm for blood draws.

Baseline vascular and metabolic data were collected prior to OGC being administered.

Oral Glucose Challenge (OGC)
An OGC (50g glucose) was given to quantify glycemic regulation and hemodynamic responses among study
volunteers as previously described [8, 32]. Fasting blood samples were taken at baseline and at 10, 20, 30, 40, 50, and

60 minutes post-OGC ingestion to measure glucose responses.

Hemodynamics and Arterial Stiffness

After one hour of supine rest, central [HR, cSBP, cDBP] and peripheral [bSBP, bDBP, brachial mean arterial
pressure (bMAP)] hemodynamics, and arterial stiftness [AP, Alx, AIx@75, PWV] were assessed by Mobil-O-Graph
(I.LE.M. Stolberg, Germany) — a brachial arterial cuff-based oscillometric device. The Mobil-O-Graph records
brachial blood pressure and brachial pulse waves while central blood pressure and central pulse waveforms were
calculated by ARCSolver algorithm (Austrian Institute of Technology, Vienna, Austria). The central pulse
waveforms then were separated into forward and reflected pulse waves to calculate AP, Alx, and PWV. Since there

is an inverse relationship between Alx and HR, the Alx then was normalized at 75 bpm by the device.



O J o U bW

AT UIUTUITUTUTUTUTUTUTE BB DD B DDA DNWWWWWWWWWWNNNONNNONNNONNNNR R RR R PR PR
O™ WNFRFOWO-JdNT D WNRPOW®O-JIAAUDRWNR,OW®OWJdNTIBRWNRFEOWO®OW-TOUB®WNREOWOW-10U D WK R O WO

Measurements were taken in triplicate at baseline, and then once every 10 minutes post-OGC for one hour. The

baseline measurements were averaged.

Blood analysis
Glycosylated hemoglobin (HbAlc) was measured at a nationally accredited pathology laboratory (Royal Hobart
Hospital, Hobart, Australia). Blood glucose was measured using a YSI 2300 StatPlus (Yellow Springs Instruments,

Yellow Springs, OH).

Power Calculation

A prior power calculation determined that sixteen people would be needed to detect a 30% difference in SBP between
T2D and healthy control groups (power = 0.8, a.=0.05) [33]. To account for a 10% drop-out rate, 21 individuals with
T2D (13 males, 8 females) and 21 healthy individuals (13 males, 8 females) were recruited through community

advertisement.

Statistical Analyses

A 2x2x7 repeated measures ANOVA was used to evaluate the effect of OGC across groups and time. All data are
expressed as means + SD. Independent samples t-tests were utilized to determine group differences for descriptive
variables. Student’s un-paired t-test was used to compare changes in response to OGC between groups. When data
were not normally distributed Signed Rank Test was performed. For all continuous variables, a two-way repeated
measures ANOVA (interactions: time: 0 — 60 min; group: T2D and healthy control) followed by a Student—
Newman—Keuls post-hoc was performed. Pearson’s bivariate correlation were used to evaluate relationships
between variables. Significance was set at p<0.05. Tests were performed using SigmaStat™ statistical program

(Systat Software, San Jose, CA, USA).

RESULRS

Participant Characteristics
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Participant characteristics are presented in table 1. There were no significant differences for age and height between
T2D and healthy control groups. However, T2D group had significant greater (p<0.05) weight, BMI, fasting blood

glucose, and HbA | than the control group.

Central and Peripheral Hemodynamics

There were no two-way interactions on any variables (Table 2). However, HR, cSBP, cDBP, bSBP, bDBP, and
bMAP were significant higher at baseline, 10, 20, 30, 40, 50, and 60 minutes post-OGC in T2D group compared to
healthy control group. There were significant differences by time for HR (Fe234=24.8, p<0.001), cSBP (Fs234=3.1,
p=0.0006), cDBP (Fs2:4=8.2, p<0.001), bSBP (Fs234=3.0, p=0.008), bDBP (Fs234=8.9, p<0.001), and bMAP
(F6234=8.2, p<0.001) such that HR was significantly increased at 10 (only healthy control), and 20, 30, 40, 50, and
60 minutes post-OGC compared to baseline in both groups; cSBP was significant reduced at 10, 30, 40, and 50 post-
OGC in T2D group and only at 60 minutes post-OGC in healthy control group compared to baseline; cDBP was
significant decreased at 20, 30, 40, 50, and 60 minutes post-OGC compared to baseline in both groups; bSBP was
significantly dropped at 10, 20, 40, and 50 minutes post-OGC compared to baseline in healthy control group only;
bDBP was significantly lower at 20, 30, 40, 50, and 60 minutes post-OGC compared to baseline in both groups; and
bMAP was significantly reduced at 10 (only T2D), 20, 30, 40, 50, and 60 minutes post-OGC compared to baseline

in both groups.

Arterial Stiffness

There were no two-way interactions for any variables (Table 3). However, there were significant (p<0.05)
differences between T2D and healthy control groups for PWV at baseline, 10, 20, 30, 40, 50, and 60 post-OGC such
that the T2D group had greater PWV compared to the healthy control group. There were no changes for AP, Alx, or

AIX@75.

DISCUSSION
Acute hyperglycemia caused by an oral glucose challenge, oral glucose tolerate test, or a mix-meal leads to
hyperinsulinemia. Insulin is well known by its action to facilitate skeletal muscles to uptake glucose by translocating

glucose transporter 4 to the cell membrane. In addition, insulin enhances the function of skeletal muscles glucose
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uptake by elevating vascular perfusions that are primarily rely on nitric oxide production causing increased blood
flow in skeletal muscles [3]. However, these responses are blunted in those with insulin resistance, possibly
mediated by the concurrent increases in glucose and insulin which inhibits eNOS production [11]. Thus, the purpose
of the present study was to compare central and peripheral hemodynamic responses and arterial stiffness to an oral
glucose challenge among individuals with T2D and controlled hypertension vs healthy controls. The main finding of
the present study was, a) that oral glucose challenge significantly altered HR, cSBP, cDBP, bSBP (only in T2D),
bDBP, and bMAP in both T2D group and healthy control group, b) arterial stiffness was not affected by an oral
glucose challenge in either the T2D or healthy control groups.

In agreement with previous studies, we observed a significant increase in HR [30] and decreases in bSBP
[31] and bDBP [31, 34] within 60 minutes of oral glucose challenge in individuals with T2D or metabolic syndrome.
Therefore, the responses of central and peripheral dynamics and arterial stiffness to oral glucose test, oral glucose
tolerate test, or a mix-meal are not universal. In contrast to our findings, Hashizume et al. [31] stated no changes in
HR after a mix-meal in individuals with T2D; while Higaki et al. [30] reported no changes in cSBP and bSBP after
oral glucose tolerate test in individuals with T2D; Funada et al. [34] showed no change in bSBP after a mix-meal in
individuals with metabolic syndrome. On the other hand, we did not observe any changes in arterial stiffness in
individuals with T2D while Funada et al. [34] demonstrated significant reduction in Alx after a mix-meal, and
Higaki et al. [30] reported significant decrease in AIx@75 after oral glucose tolerate test in individuals with T2D.
However, a key difference of this study was that participants did not refrain from taking their prescribed
antihypertensive medications the morning of testing.

Although we observed significant differences in participants characteristics between between healthy
individuals and individuals with T2D and controlled hypertension, the responses of central and peripheral dynamics
and arterial stiffness to oral glucose challenge are similar between healthy individuals and individuals with T2D and
controlled hypertension. In agreement with previous studies, we observed a significant increase in HR [28-30, 36]
and decreases in cSBP [30, 35, 36], cDBP [28, 35, 36], bDBP [34, 36], and bMAP [36] with no change in bSBP [29-
31, 34, 35] in individuals without T2D. However, the findings were not consistent with other studies. Russell et al.
[28] reported no change in cSBP after oral glucose challenge in healthy individuals while Hashizume et al. [31] and
Monnard et al. [29] showed no changes in bDBP after a mix-meal and oral glucose tolerate test, respectively, in

healthy individuals. On the other hand, in agreement with a previous study [28], we did not find any changes in
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arterial stiffness after oral glucose challenge in healthy individuals, but this is not universal. Previous studies found
significant decreases in AP [35, 36], Alx [34-36], AIx@75 [30, 36] and PWV [36] after either oral glucose tolerate
test or a mix-meal in healthy individuals.

Previous studies have demonstrated that acute hyperglycemia significantly increases Alx in healthy
individual and individuals with type 1 diabetes [37]. On the other hand, it has been showed that insulin significantly
decreases Alx by using the euglycemic insulin clamp technique in healthy individuals [34-36, 38] and individuals
with T2D [34, 39].

Our study was not without limitations. First, the age range in the present study was large (25-60 years old).
Second, the number of women and men were not equal. Third, previous studies used oral glucose tolerate test (75g
glucose) or a mix-meal while the present study used a lower dose of glucose (50g), which might affect outcomes
compared to other studies. Fourth, to mimic daily life, participants with controlled hypertensions in this study
continued taking anti-hypertensive medications during testing, which likely influence the variables we measured.
While this is listed as a limitation, it was done by design in order to more accurately reproduce T2D diagnostic
testing in the real-world setting.

In conclusion, the present study demonstrated that an oral glucose challenge alters central and peripheral
hemodynamics in a similar fashion with no changes in arterial stiffness in healthy individuals and individuals with

T2D and controlled hypertension.
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