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RESEARCH Open Access

Temporal migration patterns between natal
locations of ruby-throated hummingbirds
(Archilochus colubris) and their Gulf Coast
stopover site
Theodore J. Zenzal Jr1,2* , Andrea J. Contina3, Jeffrey F. Kelly3 and Frank R. Moore1

Abstract

Background: Autumn latitudinal migrations generally exhibit one of two different temporal migration patterns: type
1 where southern populations migrate south before northern populations, or type 2 where northern populations
overtake southern populations en route. The ruby-throated hummingbird (Archilochus colubris) is a species with an
expansive breeding range, which allows opportunities to examine variation in the timing of migration. Our objective
was to determine a relationship between natal origin of ruby-throated hummingbirds and arrival at a Gulf coast
stopover site; and if so, what factors, such as differences in body size across the range as well as the cost of migration,
might drive such a pattern. To carry out our objectives, we captured hummingbirds at a coastal stopover site during
autumn migration, at which time we collected feathers from juveniles for analysis of hydrogen stable isotopes. Using
the hydrogen stable isotope gradient of precipitation across North America and published hydrogen isotope values of
feathers from populations of breeding ruby-throated hummingbirds, we assigned migrants to probable natal latitudes.

Results: Our results confirm that individuals from across the range (30–50° N) stopover along the Gulf of Mexico and
there is a positive relationship between arrival day and latitude, suggesting a type 1 migration pattern. We also found
no relationship between fuel load (proxy for migration cost) or fat-free body mass (proxy for body size) and natal
latitude.

Conclusions: Our results, coupled with previous work on the spatial migration patterns of hummingbirds, show a type
1 chain migration pattern. While the mechanisms we tested do not seem to influence the evolution of migratory
patterns, other factors such as resource availability may play a prominent role in the evolution of this migration system.

Keywords: Migration, Stable-hydrogen isotope ratio, Spatial patterns, Temporal patterns, Evolution, Deuterium, Gulf of
Mexico, Stopover, Ruby-throated hummingbirds, Alabama

Background
The majority of forest-dwelling, avian species that breed
in eastern North America migrate between temperate
breeding areas and tropical wintering grounds [1]. While
migration has been well studied, information is missing
on the migratory patterns of many species, notably the
relationship between breeding locations and arrival

timing at stopover sites, areas where migrants rest and
refuel while en route [2]. Spatiotemporal patterns of mi-
gration among populations have repercussions for re-
source competition at stopover sites with increasing
conspecific densities [3, 4]. If populations overlap en
route, then migrants will experience increased intraspe-
cific competition in addition to other challenges, such as
predation [5], unfamiliar habitat [6], interspecific compe-
tition [3], and weather [7].
Migratory movements involve both spatial and tem-

poral components, which have been succinctly defined
by Smith and colleagues [8]. Spatially, a species can
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exhibit: 1) a chain migration pattern, where northern and
southern populations show the same spatial pattern on
the breeding and wintering grounds; or 2) a leap-frog mi-
gration pattern, where southern breeding populations
winter further north than northern breeding populations.
In terms of timing, species can show: 1) a type 1 migration
pattern, where southern breeding populations initiate mi-
gration prior to northern breeding populations; or 2) a
type 2 migration pattern, in which northern breeding pop-
ulations begin to migrate before southern breeding popu-
lations. It is possible for species to show any combination
of the spatial and temporal patterns described (e.g., “type
1 chain migration”, “type 2 chain migration”, etc.; see
figure 1 in [8]), due to a variety of possible mechanisms.
For example, northern breeding populations may face
inclement conditions earlier in the season and initiate mi-
gration before southern breeding populations. Another
possible driver is seasonal resource availability, which may
influence initiation of migration between regional popula-
tions. Pienkowski and colleagues [9] hypothesized two
additional factors to influence migration patterns, these
include intraspecific competition and the cost of migra-
tion. If regional populations exhibit differential body size,
then migration patterns may have evolved to alleviate in-
traspecific competition between populations. Finally, the
cost of migration (the amount of time and energy it takes
to travel between breeding and wintering locations) can
influence migration timing of regional populations.
Ruby-throated hummingbirds (Archilochus colubris),

hereafter “ruby-throats”, are a species with an expansive
breeding range, which allows opportunities to examine
variation in timing of migration. Ruby-throats are latitu-
dinal migrants traveling between tropical wintering loca-
tions (Mexico and Central America) and temperate
breeding grounds (United States and central Canada)
along the same degree of longitude [10]. Preliminary
analysis of spatial migration patterns in ruby-throats by
Hutcheson and colleagues [11] suggests a chain migra-
tion pattern (sensu [12, 13]). Our objective is to expand
on their work to examine the temporal aspect of migra-
tion (type 1 chain migration or type 2 chain migration)
in ruby-throats passing through a stopover site along the
northern coast of the Gulf of Mexico using stable hydro-
gen isotope ratios. We hypothesize that timing of
rubythroats’ migration will exhibit a strong temporal re-
lationship with distance between the breeding location
and our stopover site (e.g., latitude) since their south-
bound migration seems tightly tied to resource availabil-
ity en route (see [14]). Specifically, we predict that
ruby-throats show a type 1 chain migration pattern given
that peaks in migration phenology seem to co-occur at
stopover sites in the northern and southern portions of
the species range [14, 15]. We also analyze factors identi-
fied by Pienkowski and colleagues [9] that may drive

temporal migration patterns. We expect individuals from
northern latitudes to have higher fat-free body masses (i.e.
larger body size) compared to individuals from southern
latitudes. We also expect lower fuel stores from individ-
uals originating from higher (northern) latitudes since
they would have travelled a longer distance compared to
more southerly individuals when arriving at our study site.

Methods
Field methods
We captured ruby-throats in Fort Morgan, AL (30°13′
49″ N, 88°0′13″ W; see [11] for a description of the
study site) between August 25 and November 1 in 2010,
2011, and 2014 using nylon mist nets (see [15] for a
complete description of capture effort). Netting effort
was both active (baiting some mist-nets with artificial
feeders) and passive. We banded ruby-throats with a
USGS aluminum band as well as sexed and aged (hatch-
ing year or after-hatching year) by bill corrugation,
plumage, and morphology [16]. We estimated subcuta-
neous fat [17], measured natural wing chord, recorded
mass, and collected two outer rectrix (R4) feathers, one
from each side of the tail. We stored feather samples in-
dividually in sealed and labeled paper envelopes until
analysis of stable hydrogen isotope ratios.

Feather sampling and stable isotope analysis
For each year, we randomly selected juvenile (hatching
year) individuals with feather samples (n = 25 for each
sex per year; n = 150 total) throughout the autumn mi-
gration season to relate natal origin with date of passage.
The feathers of hatching year birds during this phase of
the annual cycle should reflect the stable hydrogen iso-
tope ratios of the natal locations in which they were
grown. We sent raw feathers to the Colorado Plateau
Stable Isotope Laboratory (CPSIL; Flagstaff, Arizona,
USA) for preparation and analysis of stable hydrogen
isotope ratios. To prepare feathers for isotope analysis,
CPSIL first cleaned the feathers with a phosphate-free
detergent as well as a 2:1 chloroform methanol solution
and rinsed them with deionized water before drying
feathers at 50 °C overnight. CPSIL placed clipped feather
material (0.350 mg; range: 0.330–0.370 mg) into silver
capsules (3.5 × 5 mm) for analysis. CPSIL conducted
sample pyrolysis with a Thermo Scientific TC/EA and
hydrogen analysis via a Thermo Scientific Delta Plus
IRMS configured through a Thermo Scientific CONFLO
IV for automated continuous-flow analysis. The three
normalization standards analyzed with feather samples
included powdered forms of Keratin (SC Lot SJ; mean
± SD: −120.1 ± 1.0 ‰; expected: −121.6 ‰; n = 25), CBS –
caribou hoof (mean ± SD: −197.5 ± 1.0 ‰; expected: −197.0
‰; n = 8), and KHS – kudo horn (mean ± SD: −56.1 ± 1.6
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‰; expected: −54.1 ‰; n = 3). All δ2H values are reported
in parts per mil (‰).

North America isotope precipitation model
We developed a δ2H isoscape model based on North
American precipitation values analyzed in IsoMAP ([18, 19];
see [20] for results). We considered an extensive temporal
range (1980–2009) in relation to four summer months
(May–August) and based our δ2H isoscape inferences on
the following independent variables: temperature, elevation,
latitude and longitude [21, 22]. For the variable
“temperature”, we used min, max, and average temperatures
provided by Climate Research Unit [22]. We limited the
geographical extent of the δ2H isoscape model to a spatial
range compatible with the Ruby-throated Hummingbird
breeding distribution [23]. This set of variables and parame-
ters did not show significant spatial autocorrelation
necessary for developing a δ2H geostatistical model of
reference. Therefore, we adopted the δ2H statistical model,
which is based on multiple linear regressions between δ2H
precipitation values and the independent variables men-
tioned above [24].

Feather assignment
To determine the natal origins of migrants stopping over
along coastal Alabama, we built the species feather δ2H
isoscape using a known-origin calibration dataset of
published ruby-throat feather isotope data (n = 186) ob-
tained from ten breeding populations [11, 25]. Then, we
used the previously generated precipitation isoscape to ex-
tract environmental δ2H values at the same sampling loca-
tions reported by Hutcheson and colleagues ([26, 27]; see
Additional file 1: Table S1). We resampled feather and
precipitation δ2H values 1000 times using the site isotopic
mean and SD values of the calibration dataset to create
the rescaling function from our known-origin data. We
used the mean and standard deviation of these boot-
strapped regressions to convert the precipitation δ2H
isoscape to feather δ2H values prior to assignment (see
below and “rescale function” and “raster conversion func-
tion” in Additional file 2).
We adopted a likelihood approach to obtain natal

location assignment probability surfaces for each indi-
vidual sampled (n = 150) at Fort Morgan, AL in 2010,
2011, and 2014 and to generate the corresponding as-
signment map for each migrant using their δ2H feather
values. This allowed us to obtain the individual assign-
ment probabilities, which virtually connected each
migratory ruby-throat to its putative natal site. Our as-
signment computations included the tissue-specific δ2H
values from the raster conversion step, as well as the SD
values for the calibration raster and for the original
raster (regression model) computed in IsoMAP (for the
computation details, see [24] and Additional file 2). We

normalized the assignment probabilities with the cell-
Stats function in the R package “raster” [28] and con-
strained the probability surfaces to the Ruby-throat
breeding range (see Additional file 3: Figure S1,
Additional file 4: Figure S2, Additional file 5: Figure S3,
Additional file 6: Figure S4, Additional file 7: Figure S5
and Additional file 8: Figure S6) using species distribu-
tion data [23].

Assignment probabilities and latitudinal correlations
To summarize the origin trends among years, we ex-
plored the correlations between the inferred assignment
probabilities and correspondent latitudes. Once we ob-
tained a range of predicted natal latitudes for migrants
sampled at Ft. Morgan, AL, we selected the highest
probabilities within the top 10% of our dataset, which
we then randomly resampled to retain only 100 values
for each bird. We then used this matrix of 100 data
points containing latitude, longitude, and normalized as-
signment probability values for each migrant to calculate
the spatial centroid (i.e. geographic mean; Fig. 1) associ-
ated with the highest resampled assignment probability
mean value.

Statistical analysis
We implemented a Generalized Additive Mixed Model
to investigate the linear or non-linear relationship(s)
among predicted natal latitude (response variable) and
non-correlated (Spearman’s rho: < 0.06) predictor vari-
ables, which included arrival day, fat-free body mass,
and fuel load; year was included as a random factor. We
assumed birds arrived on the date of first capture and
transformed calendar date to an ordinal day. We calcu-
lated the sex-specific fat-free body mass of each individ-
ual using the data and regression method presented by
Zenzal and Moore [15] for ruby-throats at Fort Morgan,
AL, which is based the methods of Ellegren [29], as well
as Owen and Moore [30]. The fat-free body mass of each
individual allowed us to 1) estimate a proxy for each in-
dividual’s body size based on fat-free mass, and 2) esti-
mate the fuel load of each individual by subtracting the
fat-free mass from the mass at capture. We conducted
our analysis using the “mgcv” package [25, 31, 32] in the
R statistical language (version 3.3.3; [33]).

Results
Our results suggest that ruby-throats passing through our
study site originate from across the breeding range – the
Gulf coast states through Canada (Fig. 1; Additional file 3:
Figure S1, Additional file 4: Figure S2, Additional file 5:
Figure S3, Additional file 6: Figure S4, Additional file 7:
Figure S5 and Additional file 8: Figure S6). Arrival day and
natal latitude showed a significant, positive relationship
(p < 0.001; F1,1 = 28.09; Fig. 2); the direction of the
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Fig. 1 Summarized trends in natal population assignment probability surfaces among years. Each square represents the mean centroid of the top
10% of highest probabilities of predicted latitude for an individual. Color legend: dark green means high assignment probabilities, light brown
means low assignment probabilities. a 2010, b 2011, c 2014

Fig. 2 Relationship between arrival day at a Gulf coast stopover site and natal latitude. Data based on hydrogen isotope ratios of ruby-throated
hummingbird tail feathers (n = 150). Loess regression lines are plotted with 95% confidence intervals
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relationship conforms to the type 1 chain migration, that
birds originating from southern latitudes passed through
our site first followed by individuals from more northern
latitudes (sensu [8]). There was a weak, negative trend,
which was not statistically significant, between fuel load
and natal latitude (p = 0.10; F1,1 = 2.81), suggesting that
there is no overall negative effect of migratory distance on
fuel load at arrival. We found no pattern between natal
latitude and lean body mass, a proxy for body size, indicat-
ing no difference in body size across the range (p = 0.58;
F1,1 = 0.31).

Discussion
As expected based on peaks in phenology occurring simul-
taneously at northern and southern stopover sites [14, 15],
our results support a type 1 temporal migration pattern in
juvenile ruby-throats – individuals from southern latitudes
initiate migration before individuals from northern lati-
tudes. This temporal migration pattern has also been found
in sharp-shinned hawks [8] and two species of wood warb-
ler (Parulidae; [2]) in the western United States and Canada
during autumn migration. In our system, individuals from
the lower-southeast (~ 30–35° N) passed through our study
site in September followed by most individuals originating
from higher latitudes (~ 40–50° N) in October. If we
assume the same temporal pattern is exhibited as animals
arrive on the wintering grounds and take into consideration
previous work on the connectivity between breeding
and wintering locations [26], then it is likely ruby-
throats use a type 1 chain migration pattern during
autumn (see figure 1a in [8]).
There are several mechanisms that have been hypothe-

sized to drive the evolution of spatiotemporal migration
patterns and we tested two purported by Pienkowski
and colleagues [9]. First, we found no relationship
between ruby-throat body size (fat-free body mass) and
natal origin, which does not support the hypothesis that
differences in body size across the range reduce intra-
specific competition. This finding is similar to that of
American redstarts (Setophaga ruticilla; [34]) and con-
trasts with that of sharp-shinned hawks, which show a
similar temporal migration pattern [8]. However, Zenzal
and Moore [15] found two distinct peaks in the phen-
ology of juvenile ruby-throats, one peak in September
and a separate peak in October, that coincidentally
match when individuals from northern and southern lat-
itudes passed through our study site as revealed by
isotope analysis in this study. It is possible these peaks
represent a southern population and northern popula-
tion using stopover habitats along the northern coast of
the Gulf of Mexico at different times, a strategy that
would alleviate intraspecific competition. However, more
study is needed to determine the origin of birds arriving
during these separate peaks.

The second factor we tested, fuel load, did not support
our prediction that there would be differences in the
cost of migration across the range, rather individuals
from both northern and southern latitudes arrived with
similar fuel loads. These results are similar to other
studies [8, 35–37] that found no relationship between
fuel load and migratory distance. Moreover, most indi-
viduals in this study, as well as ruby-throats from this lo-
cation previously described by Zenzal and Moore [15],
typically arrived with some fuel stores. This may be due
to birds being in close proximity to an ecological feature
(Gulf of Mexico), where migrants tend to put on sub-
stantial fuel stores prior to negotiating a crossing (e.g.,
[38]). It is also possible given their small size [10] and
high metabolism [39], ruby-throats always carry
additional fuel stores to safeguard against times of en-
ergy shortfalls. Additionally, northern populations show
synchrony between migratory movements and resource
availability allowing birds to arrive on the Gulf coast in
good energetic condition [14].
While beyond the scope of our study, two other mech-

anisms may influence migratory patterns. One possibility
is that individuals show constant breeding area resident
time (sensu [40]), allowing southern birds to breed earl-
ier and hence migrate sooner than birds from northern
latitudes. Another possibility is the availability of re-
sources en route, which may influence when species time
their migratory movements (e.g., [14, 41–44]) and this is
strongly supported in hummingbirds [14, 41–43]. The
timing of individuals from northern latitudes in our
study tightly corresponded to the availability of Impa-
tiens capensis and Lobelia cardinalis described by Bertin
[14]. The evolution of migration patterns may be tied to
the ability to obtain resources en route, which has
important conservation and habitat management impli-
cations. While ruby-throats are not a species of conser-
vation concern, information on timing can be used to
inform the general public when to focus on providing
supplemental feeding – an activity with positive eco-
nomic impacts [45, 46] and likely positive impacts on
survival during migration.

Conclusions
Our results reveal that ruby-throats from across the
breeding range used our coastal Alabama stopover site,
with individuals from northern and southern latitudes
arriving at different periods over the migratory season.
When coupled with the spatial pattern described on the
wintering grounds [26], ruby-throats show a type 1 chain
migration pattern wherein individuals from southern lat-
itudes initiate migration before individuals from north-
ern latitudes. However, we were unable to identify the
mechanism that might drive this pattern. We found no
relationship between body size or migration cost and

Zenzal et al. Movement Ecology  (2018) 6:2 Page 5 of 7



natal latitude, indicating other factors such as resource
availability, competition, or constant breeding area resi-
dent time may be responsible for this migration pattern.
Future research should work to find the mechanism(s)
that may have influenced the evolution of the type 1 mi-
gration pattern in ruby-throats.
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