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Hierarchical Shape Construction and Complexity for Slidable Polyominoes
under Uniform External Forces∗

Jose Balanza-Martinez† David Caballero† Angel A. Cantu† Mauricio Flores†

Timothy Gomez† Austin Luchsinger† Rene Reyes† Robert Schweller†

Tim Wylie†

Abstract
Advances in technology have given us the ability to create
and manipulate robots for numerous applications at the
molecular scale. At this size, fabrication tool limitations
motivate the use of simple robots. The individual control
of these simple objects can be infeasible. We investigate a
model of robot motion planning, based on global external
signals, known as the tilt model. Given a board and
initial placement of polyominoes, the board may be tilted
in any of the 4 cardinal directions, causing all slidable
polyominoes to move maximally in the specified direction
until blocked.

We propose a new hierarchy of shapes and design
a single configuration that is strongly universal for any
w × h bounded shape within this hierarchy (it can be
reconfigured to construct any w × h bounded shape in
the hierarchy). This class of shapes constitutes the most
general set of buildable shapes in the literature, with
most previous work consisting of just the first-level of our
hierarchy. We accompany this result with a O(n4 logn)-
time algorithm for deciding if a given hole-free shape is
a member of the hierarchy. For our second result, we
resolve a long-standing open problem within the field: We
show that deciding if a given position may be covered by
a tile for a given initial board configuration is PSPACE-
complete, even when all movable pieces are 1 × 1 tiles
with no glues. We achieve this result by a reduction
from Non-deterministic Constraint Logic for a one-player
unbounded game.

1 Introduction

Advances in technology have given us the ability to
create and manipulate robots for numerous applica-
tions at the molecular scale. At this size, fabrication
tool limitations often make precise construction of
the objects infeasible and thus self-assembly meth-
ods have been employed. This allows the creation
of simple primitives that come together algorithmi-
cally to form the desired objects [11]. Similarly, the
individual control of these simple nano-scale objects

∗This research was supported in part by National Science
Foundation Grant CCF-1817602.
†Department of Computer Science, University of Texas Rio

Grande Valley, Edinburg, TX 78539-2999, USA

can be infeasible due to the cost or the desired sim-
plicity of the building blocks. Thus, a growing area
of interest is robot motion planning based on global
external signals, known as the tilt model [4, 5]. This
simple model gives all robots the same movement sig-
nal, which means all robots can be identical, and only
their location and the geometry of the board need to
be considered for fabrication.

The tilt self-assembly model consists of a 2D
grid board with “open” and “blocked” spaces, as
well as a set of slidable polyominoes placed on the
board. The model uses a global external force
to give all movable particles the same movement
instruction. This may be done through any external
force such as a magnetic field or gravity. This
model has a history of assuming gravity as the
external global force, hence the term tilt. In this
model, a board may be tilted (an application of the
global external force) in any of the four cardinal
directions, causing all slidable polyominoes to slide
maximally in the respective direction until reaching
an obstacle. Various puzzle games exist which utilize
the mechanics of this model; the maximal movement
of [1] and the global movement signals in [2].

1.1 Related Work. In [8], the authors introduced
a class of shapes constructed by “dropping” pixels
on a fixed seed from any of the four cardinal direc-
tions. Along with this new class of “drop-shapes”,
they presented a polynomial-time algorithm to check
if a given hole-free shape is in this drop class (i.e., it
can be constructed via this pixel dropping method).
Given a hole-free shape, they showed how to con-
struct a tilt model micro-factory which can build the
shape. In [10] the authors provide an algorithm to
determine if any given shape is in the class of drop
shapes with the run time being exponential in the
number of holes.
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Shape Class Result Theorem
Hole-free Level-1 Drop Shapes (D1) O(n log n) Thm. 5 in [8]

Level-1 Drop Shapes (D1) O(n2h!) Alg. 1 in [10]
Straight 2-Cuttable Hole-free Shape O(n3 log n) Thm. 2 in [12]

Straight 2-Cuttable Shape with Convex Holes O(n4 log n) Thm. 2 in [12]
Hole-free Drop Shapes (D) O(n4 log n) Thm. 3.1

Table 1: Known results for deciding membership in the drop-shape hierarchy of a size-n shape (We refer
to size as the number of tiles.). h denotes the number of holes in the shape. Previous results only decided
shapes in D1. With holes, no polynomial time algorithm is known even for D1.

Class Universal Tilts Board Size Theorem

Drop Shapes (D1)
No O(hw) O(h3w3) Thm. 6 in [8]
Yes O(h2w) O(h2w) Thm. 4.1 in [3]

Drop Shape Hierarchy (D)
No O(hw) O(h2w2) Thm. 3 in [12]

Yes O(h3w2) O(h2w2 log2(hw)) Thm. 4.1

Table 2: Construction results for shapes with a h× w bounding box.

The efficient construction of drop-shapes in the
tilt model was explored in [12]. The authors present
a construction which efficiently builds a particular
set of shapes in sublinear time through the use of
parallelization. They introduce a hierarchical process
whereby multi-tile subassemblies may be successively
combined in a drop fashion. They define two classes
of shapes 2-cuttable and straight 2-cuttable as any
polyomino that can be decomposed into monotone
subpolyominoes using valid 2-cuts and valid straight
2-cuts respectively. They also give a polynomial
time algorithm for determining if a given simple
polyomino, or one with convex shaped holes, is
straight 2-cuttable. They also have a polyomial time
algorithm for finding if a valid 2-cut exists in the same
two types of shapes. Given a shape in their buildable
class, a tilt model configuration could be generated
to assemble that shape through a sequence of tilts.

This drop-shape construction work was extended
in [3]. Rather than focusing on designing configu-
rations for specific drop-shapes, the authors create a
general drop-shape constructor. They introduced the
concept of universal constructors in the tilt model.
These are constructors which, starting from one ini-
tial configuration, can construct any shape from a
particular set. In this work, a configuration that is
universal for the set of drop-shapes was created.

These construction results are usually paired
with complexity results to decide what can be con-
structed. One of the most natural questions in the
tilt model asks if a particular location on a board

may ever be occupied by a particle from the start-
ing configuration. This problem, known as the oc-
cupancy problem, was first introduced in [4]. The
authors proved the problem was NP-hard, even when
considering the restricted case of a configuration with
only 1×1 tiles. The authors also showed that a dual-
rail logic fanout was not possible with only 1×1 tiles,
which seemed to serve as evidence that this prob-
lem was not PSPACE-complete. Following, in [3]
the authors proved that the occupancy problem is
PSPACE-complete if a single “large” polyomino is al-
lowed (they used a single 2× 2 polyomino along with
1× 1 tiles).

1.2 Our Contributions. In this paper, we for-
malize the notion of hierarchical construction (first
started in [12]) by presenting a hierarchy of shape
classes. In Section 3, we formally define a drop-
shape hierarchy. We also present a O(n4 log n)-time
algorithm for determining if a given hole-free shape
is in this hierarchy. To accompany this result, we
present the design for a configuration that is strongly
universal for any shape within the hierarchy in Sec-
tion 4. This result constitutes the most general set
of buildable shapes in the literature, with previous
work consisting of just the first level of our hierarchy.
The second main result of this paper is in Section 5,
where we resolve an open problem from [4] by show-
ing that the occupancy problem, contrary to expecta-
tion, is PSPACE-complete even when restricting all
polyominoes to be 1× 1 tiles.
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Problem Polyominoes Result Theorem

Occupancy/Relocation
1× 1 NP-hard Thm. 1 in [4]

1× 1, 2× 2 PSPACE-Complete Thm. 5.1 in [3]
1× 1 PSPACE-Complete Thms. 5.1, 5.1

Reconfiguration Minimization 1× 1 PSPACE-Complete Thm. 4 in [6]

Reconfiguration
1× 1, 2× 2 PSPACE-Complete Thm. 6.1 in [3]

1× 1 PSPACE-Complete Thm. 5.2

Table 3: Known complexity results in the full tilt model. All current results for occupancy also imply
hardness for relocation. Reconfiguration Minimization is finding the minimum length tilt sequence. Each of
the results that use a 2× 2 polyomino only uses a single one and multiple 1× 1s.

2 Model Preliminaries

Board. A board (or workspace) is a rectangular
region of the 2D square lattice in which specific
locations are marked as blocked. Formally, an m× n
board is a partition B = (O,W ) of {(x, y)|x ∈
{1, 2, . . . ,m}, y ∈ {1, 2, . . . , n}} where O denotes
a set of open locations, and W denotes a set of
blocked locations- referred to as “concrete” or “walls.”
We classify the different possible board geometries
according to the following hierarchy:

• Connected:1 A board is said to have connected
geometry if the set of open spaces O for a board
is a connected shape.

• Simple:2 A connected board is said to be simple
if O has genus-0.

• Monotone: A simple board is monotone if O is
either horizontally monotone or vertically mono-
tone.

• Convex: A monotone board is convex if O is both
horizontally monotone and vertically monotone.

• Rectangular: A convex board is rectangular if O
is a rectangle.

Our board definitions have changed since [3] in
order to create the hierarchy shown above.

Tiles. A tile is a labeled unit square centered
on a non-blocked point on a given board. Formally, a
tile is an ordered pair (c, a) where c is a coordinate on
the board, and a is an attachment label. Attachment
labels specify which types of tiles will stick together
when adjacent, and which have no affinity. For a
given alphabet of labels Σ, and some affinity function

1In [3], this hierarchy level was known as complex. We
modify this class to allow for a proper hierarchy of shape
classes.

2In [3], they define simple geometry based on the connectiv-
ity of W . We also modify the concept for hierarchical purposes.

G : Σ × Σ → {0, 1} which specifies which pairs
of labels attract (G(a, b) = 1) and which do not
(G(a, b) = 0), we say two adjacent tiles with labels a
and b are bonded if G(a, b) = G(b, a) = 1.

Slidable Polyominoes. A slidable polyomino is
a finite set of tiles P = {t1, . . . tk} that is 1) connected
with respect to the coordinates of the tiles in the
slidable polyomino and 2) bonded in that the graph
of tiles in P with edges connecting bonded tiles is
connected. When the context is clear, we often refer
to these simply as polyominoes. A slidable polyomino
that consists of a single tile is informally referred to
as a “tile”.

Configurations. A configuration is an arrange-
ment of polyominoes on a board such that there
are no overlaps among polyominoes, or with blocked
board spaces. Formally, a configuration C = (B,P =
{P1 . . . Pk}) consists of a board B, along with a set
of non-overlapping polyominoes P that each do not
overlap with the blocked locations of board B.

Step. A step is a way to turn one configuration
into another by way of a global signal that moves
all polyominoes in a configuration one unit in a
direction d ∈ {N,E, S,W} when possible without
causing an overlap with a blocked location, or another
polyomino. Formally, for a configuration C = (B,P ),
consider the translation of all polyominoes in P by
1 unit in direction d. If no overlap with blocked
board spaces occurs, then the new configuration is
derived by first performing this translation, and then
merging each pair of polyominoes that each contain
one tile from a now (adjacently) bonded pair of tiles.
If an overlap does occur, for each polyomino for which
the translation causes an overlap with a blocked
space, temporarily add these polyominoes to the set
of blocked spaces and repeat. Once the translation
induces no overlap with blocked spaces, execute the
translation and merge polyominoes based on newly
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bonded tiles to arrive at the new configuration.
If all polyominoes are marked as blocked spaces,
then the step transition does not change the initial
configuration. If a configuration does not change
under a step transition for direction d, we say the
configuration is d-terminal. In the special case that
a step causes a polyomino (or subpolyomino) to
leave the board, we remove the polyomino from the
configuration.

(a) Start (b) South (c) West (d) North

(e) West (f) South (g) West (h) South

Figure 1: Tilt Example

Tilt. A tilt in direction d ∈ {N,E, S,W} for a
configuration is executed by repeatedly applying a
step in direction d ∈ {N,E, S,W} until a d-terminal
configuration is reached. We say that a configuration
C can be reconfigured in one move into configuration
C ′ (denoted C →1 C ′) if applying one tilt in some
direction d to C results in C ′. We define the relation
→∗ to be the transitive closure of →1. Therefore,
C →∗ C ′ means that C can be reconfigured into C ′

through a sequence of tilts.
Tilt Sequence. A tilt sequence is a series of

tilts which can be inferred from a series of directions
D = 〈d1, d2, . . . , dk〉; each di ∈ D implies a tilt in
that direction. For simplicity, when discussing a tilt
sequence, we just refer to the series of directions from
which that sequence was derived. Given a starting
configuration, a tilt sequence corresponds to a se-
quence of configurations based on the tilt transforma-
tion. An example tilt sequence 〈S,W,N,W, S,W, S〉
and the corresponding sequence of configurations can
be seen in Figure 1.

Universal Configuration. A configuration C ′

is universal to a set of configurations C =
{C1, C2, . . . , Ck} if and only if C ′ →∗ Ci ∀ Ci ∈ C.

Configuration Representation. A configura-
tion may be interpreted as having constructed a
“shape” in a natural way. Define a shape to be a
connected subset S ⊂ Z2. A configuration strongly

represents S if the configuration consists of a sin-
gle polyomino whose tile coordinates are exactly the
points of some translation of S. A weaker version
allows for some “helper” polyominoes to exist in the
configuration and not count towards the represented
shape. In this case, we say a configuration weakly
represents S.

Universal Shape Builder. Given this repre-
sentation, we say a configuration C ′ is universal for
a set of shapes U if and only if there exists a set of
distinct configurations C such that 1) each u ∈ U is
represented by some C ∈ C and 2) C ′ is universal
for C. If each u ∈ U is strongly represented by some
C ∈ C, we say C ′ is strongly universal for U . Alter-
nately, if each u ∈ U is weakly represented by some
C ∈ C, we say C ′ is weakly universal for U . In a
similar way, a configuration can be universal for a set
of patterns.

3 Drop-Shape Hierarchy

We utilize the same definitions for polyominoes and
cuts as used in [12].

Polyomino. For a set P ⊂ Z2 of grid points
in the plane, let the graph GP be the induced grid
graph in which two vertices p1, p2 ∈ P are connected
if they are unit distance apart. For any set P
with connected grid graph GP , a polyomino may be
induced by replacing each point p ∈ P with a unit
square centered at p. A polyomino is said to be
hole-free or simple if the induced graph Z2 \ P is
connected. We say that polyominoes which are equal
up to translation have the same shape. We often use
these terms interchangeably.

Cuts. A cut is an orthogonal curve moving
between points of Z2. A p-cut is a cut that splits
a polyomino P into p subpolyominoes. We say that
a cut is valid if all of the induced subpolyominoes
may be partitioned into two nonempty groups which
may be pulled apart in opposite directions without
blocking each other. A polyomino A is blocked by
another polyomino B in direction d if A cannot be
pulled in direction d without colliding with B (note
that A sliding adjacent to tiles in B is also considered
as a collision). See Figure 2 for examples of valid and
invalid cuts.

Tangled Polyomino. A tangled polyomino is
one which does not have a valid 2-cut. That is, any
cut either splits the polyomino into two subpolyomi-
noes which cannot be pulled apart (invalid), or it
splits the polyomino into more than two subpolyomi-
noes (p-cut where p > 2). Figure 3a provides an
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(a) Valid 2-cut (b) Invalid 2-cut

(c) Valid 3-cut (d) Invalid 3-cut

Figure 2: Examples of valid and invalid cuts for a
given polyomino. It is important to note that along
with direct collision, we consider a cut to be invalid
if the resulting polyominoes must slide past adjacent
squares.

example of a tangled polyomino.

(a)

x

c

ScSb

Sa

(b)

Figure 3: (a) A tangled polyomino for which no 2-
cut exists. (b) An abstract representation of tangled
polyomino S from Lemma 3.2 which depicts the
required properties as stated in the proof.

Drop Construction Step. A drop construc-
tion step is described by a direction {N,E, S,W}
and a latitude or longitude l representing the col-
umn/row that a shape is placed. The shape arrives
from (l,∞) for north, (l,−∞) for south, (∞, l) for
east, and (−∞, l) for west. The shape moves along
the row/column until it reaches the first grid position
adjacent to to an existing tile. We will refer to this
as dropping a tile or shape.

Drop-Shape Hierarchy. Here we define the hi-
erarchy of drop-shapes (denoted D). We use notation
Dh to denote level-h of the drop-shape hierarchy. Be-

ginning with level-1, the levels of our hierarchy are
defined recursively, containing the specified elements
and nothing else:

• Level-0 (D0). The single tile.

• Level-1 (D1). The set of shapes in D1 is defined
recursively:

– (Base) D0 ⊂ D1

– (Drop Combinations) For any A ∈ D1, any
polyomino C that is produced by dropping
a single tile onto A is also in D1.

• Level-h (Dh). In general, the set of shapes in Dh

is defined recursively:

– (Base) Dh−1 ⊂ Dh

– (Drop Combinations) For any A ∈ Dh−1
and B ∈ Dh, any polyomino C that is
produced by dropping A onto B is also in
Dh.

• Strict Level-h (D̂h): The set of shapes that are

in Dh, but not in Dh−1. Formally, D̂h = Dh \
Dh−1.

• The Hierarchy (D): The hierarchy is defined as
the union of all levels. Formally, D =

⋃∞
i=0 Di

Since tangled polyominoes cannot be decom-
posed, no tangled polyomino is in the hierarchy.

Decomposition Tree. A decomposition tree
for a given polyomino P is a rooted binary tree
of polyominoes with root node being P , each leaf
being either a single tile or a tangled polyomino,
and all non-leaf nodes having two children consisting
of two polyominoes that make a valid 2-cut for the
polyomino at the given node. A decomposition tree
is said to be atomic if all leaves are single tiles.

Strict Decomposition Tree. A decompostion
tree is said to be a Strict Decomposition Tree if for
every node p,either p ∈ D0, or for some h > 0, p ∈ D̂h

and has children pi ∈ Dh and pj ∈ Dh−1.
Singly-Connected Tile. A tile t in polyomino

P is said to be singly-connected w.r.t. P if and only
if it is connected to P−t on only one of its four edges.

3.1 Membership in the Drop-Shape Hierar-
chy. A key contribution of this paper is a board con-
figuration that is universal for all shapes in the drop-
shape hierarchy of up to a given size n. This leads to
the natural question of how efficiently can we decide
if a given polyomino is a member of the drop-shape
hierarchy D. D is equivalent to the set of 2-cuttable
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shapes defined in [12]. There, the authors present
an algorithm for determining if a shape is in the set
of straight 2-cuttable shapes, which is known to be
a subset of D. It is currently unknown if the set of
straight 2-cuttable shapes is equivalent to D. In this
section we develop an efficient algorithm for deciding
membership in D for the case of genus-0 polyomi-
noes. We first formally define the drop-shape hierar-
chy membership problem. We then prove two tech-
nical lemmas (Lemmas 3.1, 3.2) that will be used to
establish the correctness of an efficient algorithm for
deciding membership, provided in Theorem 3.1.

Drop-Shape Hierarchy Membership Prob-
lem. The drop-shape hierarchy membership problem
asks: Given a polyomino P , is P ∈ D?

Lemma 3.1. Given a hole-free polyomino P , P ∈ D
if and only if there exists an atomic decomposition
tree for P .

Proof. This proof builds off of Theorem 2 from [7],
where they show that decomposition is the reverse
of construction. Clearly, P is in the drop-shape
hierarchy if such a decomposition tree exists, as
the reverse drop construction step sequence can be
performed to yield P . If no such decomposition
tree exists, this means that all decomposition trees
contain at least one leaf which is a tangled polyomino.
Since a tangled polyomino cannot be in the hierarchy
(as there are no valid 2-cuts), there must always exist
a drop construction step which uses a polyomino that
is not in the hierarchy.

Lemma 3.2. If there exists a decomposition tree for
hole-free polyomino P which has a tangled polyomino
S as a leaf, S must be a leaf in every decomposition
tree of P .

Proof. Given that there exists a decomposition tree
TA which has tangled shape S as a leaf, assume that
some other decomposition tree TB exists which does
not have S as a leaf. This implies that TB uses some
decomposition sequence which involves a polyomino
P ′ such that S ⊂ P ′ ⊆ P and there exists a 2-cut for
P ′ which also goes through subpolyomino S.

Let c be a valid 2-cut for P ′ which also cuts
through S. Since we know that S by itself is tangled,
one of the following must be true: 1) c was an invalid
2-cut through S which is now valid because of the
additional tiles introduced by P ′−S. 2) c was a valid
p-cut (with p > 2) through S which has now become a
valid 2-cut because of the additional tiles introduced

by P ′−S. Since the addition of more tiles can never
unblock a cut, we see that the first case cannot be
true. The second case is not so straightforward, and
requires more investigation.

First, consider the stand-alone polyomino S. We
know c was a valid p-cut through S (with p > 2)
which has now become a valid 2-cut through P ′. For
now, let it suffice to assume that c was a valid 3-cut
through S. We will generalize to p later. This means
that c cuts S into 3 subpolyominoes {Sa, Sb, Sc} that
can be partitioned into two sets which may be pulled
apart in opposite directions without blocking each
other. W.l.o.g., let that partition be {{Sa}, {Sb, Sc}}.
Figure 3b shows a sketch that highlights the essential
properties S must have. Since c is a 3-cut through
S, we know that there must exist a path of empty
spaces which separates Sb from Sc and begins at
an empty space x along c which is adjacent to Sa.
Furthermore, we know that subpolyominoes Sb and
Sc must both block each other in the direction that
{Sb, Sc} is pulled apart from {Sa}; otherwise, a valid
2-cut would have existed in S (by pulling Sb or Sc off
of S by itself).

Now, consider the polyomino P ′ with subpoly-
omino S. If location x contained a tile in polyomino
P ′, we know that said tile would be blocked in each
of the four directions by one of S’s three subpolyomi-
noes (there would be no way to remove the tile with-
out also removing some portion of S). This, along
with the fact that S is a node in the decomposition
tree Ta, shows that location x must be empty in poly-
omino P ′. In order for c to be a 3-cut through S and
a 2-cut through P ′, the induced subpolyominoes Sb

and Sc must be connected via a path of tiles in P ′−S.
Clearly, this path cannot exist on Sa’s side of c, as it
would make c an invalid 2-cut for P ′. So, this path
must connect Sb and Sc on their side of c. Since lo-
cation x cannot contain a tile in P ′ we see that the
connection between Sb and Sc must cut off x’s con-
nection to the outside plane. This cannot be the case,
however, because P ′ is a hole-free polyomino.

So, c could not have simultaneously been a valid
valid 2-cut through P ′ and valid 3-cut through S.
It is easy to observe that any valid p-cut through S
(which is also a valid 2-cut through P ′) must have
at least one pair of induced polyominoes with the
same properties as Sb and Sc, and all others may be
considered as Sa for the purposes of this proof. Thus,
no valid 2-cut through P ′ may cut through S. This
implies that decomposition tree TB must not exist,
as was originally assumed, and every decomposition
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tree must contain S as a leaf.

Theorem 3.1. A hole-free size-n polyomino P can
be checked for membership in the drop-shape hierar-
chy in O(n4 log n) time.

Proof. This algorithm is straightforward. Given hole-
free polyomino P , perform the following steps:

1. Base Case: If P is a single tile, return yes. If
P is tangled, return no. Otherwise, continue to
step 2.

2. Select a valid 2-cut which cuts P into subpoly-
ominoes A and B. Continue to step 3.

3. Recurse on A and B by performing to step 1 for
each of them. If both return yes, return yes;
otherwise, return no.

We see that this algorithm creates a decomposition
tree for polyomino P . The proof of correctness
follows from the previous lemmas. If all leaves in the
decomposition tree are single tiles, Lemma 3.1 tells
us that P is in the hierarchy. If the decomposition
tree contains a leaf which is a tangled polyomino,
Lemmas 3.1 and 3.2 together show that P is not in
the hierarchy.

The runtime is achieved as follows: Since a
decomposition tree for a size-n hole-free polyomino
P has at most n leaves, we know the tree has at
most 2n − 1 nodes. Therefore, we can say that our
algorithm is called at most 2n − 1 times. Step 1 of
the algorithm checks if the polyomino is tangled (i.e.,
it checks if P has a valid 2-cut). Theorem 5 from [12]
shows that a valid 2-cut can be found for a hole-
free size-n polyomino in O(n3 log n) time. So, our
algorithm is called at most 2n − 1 times, with each
call spending at most O(n3 log n) time to find a valid
2-cut. Thus, we achieve a runtime of O(n4 log n) to
determine if P is in the drop-shape hierarchy.

3.2 Hierarchy Characteristics. In this section
we derive some key properties of the drop-shape
hierarchy. In particular, in Theorem 3.2 we show
that any member of the hierarchy of size-n must
be a member of level Dblog |P |c. This result allows
us to efficiently bound the size of the board needed
to assembly size-n polyominoes in Section 4. Next,
in Theorem 3.3 we establish that the drop-shape
hierarchy is a true hierarchy, i.e. that each level h of
the hierarchy contains shapes that are not members
of any level lower than h.

Lemma 3.3. For any polyomino P ∈ D̂H there exists
a Strict decomposition Tree, for any H ≥ 0.

Proof. We will prove this by induction on the size of
the shape. For our base case we know any single tile
has a strict decomposition tree.

Now for our inductive step assume that there
exists a strict decomposition tree for any polyomino p
where 1 ≤ |p| ≤ n for some n. Consider a polyomino

P ∈ D̂H where |P | = (n + 1). We know that since

P ∈ D̂H there exists two polyominoes Pa ∈ DH and
Pb ∈ DH−1 that can be dropped onto each other to
build P . We know that since both Pa and Pb are
subpolyominoes of P , n ≥ |Pa| and n ≥ |Pb|. From
our inductive step we can assume that both Pa and
Pb have strict decomposition trees and the only new
node we add is P which has the properties required
by a strict decomposition tree.

From here we see that every polyomino in a strict
level H ≥ 0 has a strict decomposition tree.

Lemma 3.4. For any polyomino P ∈ D̂H such that
H > 0, any strict decomposition tree of P must have
a node P ′ with two children Pl and Pr such that
P ′ ∈ D̂H and both Pl ∈ D̂H−1 and Pr ∈ D̂H−1.

Proof. First we will prove there must exist a node P ′

with two children Pl and Pr such that P ′ ∈ D̂H and
both Pl ∈ DH−1 and Pr ∈ DH−1, then we will show
why they both must be strict.

Let us first look at the root P . If both children of
P are in DH−1 than P is the node we are describing.
Now consider the case where p is a child of P and p /∈
DH−1. Since we are looking at a strict decomposition

tree we know that p ∈ D̂H . Since the tree rooted
at p is also a strict decomposition tree we have the
same two cases. However since a strict tree is also an
atomic tree all the leaves of the tree must be single
tiles so eventually the first case must be true.

Now we will show Pl /∈ DH−2 and Pr /∈ DH−2.
Without loss of generality assume Pl ∈ DH−2, this
would mean that P ′ can be built by dropping a shape
in DH−2 onto a shape in DH−1 which by definition
would mean P ′ ∈ DH−1 which we know is not true

since P ′ ∈ D̂H .
Since Pl ∈ DH−1 and Pr ∈ DH−1, and Pl /∈

DH−2 and Pr /∈ DH−2 we can see that Pl ∈ D̂H−1
and Pr ∈ D̂H−1. Therefore there must exist a node

P ′ ∈ D̂H with both children in D̂H−1.

Lemma 3.5. For any polyomino P ∈ D̂H , |P | ≥ 2H
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Proof. We prove this by induction on H. For the base
case we can see that the only strict level-0 shape is
the single tile. We can see that 1 ≥ 20 is true.

For the inductive step assume for any p ∈ D̂H ,
|p| ≥ 2H . Consider a polyomino P ∈ D̂H+1.
We know from lemma 3.3 there must exist a strict
decomposition tree and from lemma 3.4 that there
must exist a node in a strict decomposition tree P ′

that has two children Pl, Pr ∈ D̂H . We can also see
that since Pl and Pr are children of P ′,

|P ′| = |Pr|+ |Pl|

From our assumption since both Pl, Pr ∈ D̂H , |Pr| ≥
2H and |Pl| ≥ 2H

|P ′| ≥ 2H + 2H

|P ′| ≥ 2H+1

Finally, since P ′ is a subpolyomino of P , |P | ≥
|P ′|.

|P | ≥ 2H+1

Theorem 3.2. For any polyomino P ∈ D, P ∈
Dblog |P |c

Proof. We can see from lemma 3.5 for any P ∈ D̂h,
log |P | ≥ h. We also know that for any H ≥
h, P ∈ DH . Let H = blog |P |c, we can see that
P ∈ Dblog |P |c.

Lemma 3.6. For all positive integers h, given a hole-
free polyomino P ∈ Dh, for any singly-connected,
non-blocked tile t ∈ P , P − t ∈ Dh.

Proof. We will prove this is true by induction on
h. Lemma 3 of [8] showed that given a hole free
polyomino P1 ∈ D1, for any tile t1 ∈ P1 that is non-
cut (P1 − t1 is connected), non-blocked, and convex
(there exists a 2 × 2 square that solely contains t1),
P1− t1 ∈ D1. For simplicity we will refer to a singly-
connected, non-blocked tile as a candidate tile. A
candidate tile is convex and non-cut. In general,
we will say that C(Dh) is true if and only if for all
polyominoes Ph ∈ Dh, for any candidate tile t ∈ Ph,
P − t ∈ Dh.

The base case C(D1) was shown to be true by
Becker et al. in [8]. Assume C(Dh) holds. We will
prove by contrapositive that C(Dh) =⇒ C(Dh+1).

Assume ¬C(Dh+1). Consider a polyomino P ∈
Dh+1, a candidate tile t ∈ P , and a polyomino

P − t = P ′ /∈ Dh+1. Let T be a strict decomposition
tree of P . The first cut in T is not solely removing t,
since that would result in P ′ /∈ Dh+1 (violating the
strict decomposition tree), so we will also consider
T ′, a decomposition tree for P ′ that initially makes
the same cuts as T . Since T is a strict decomposition
tree, for the children of its root, pl and pr, one is
in Dh+1 and the other is in Dh. W.L.O.G., let t
exist in the child node pl. Now, consider the nodes
derived from making equivalent cuts in T ′, p′l and
p′r. Since t only existed in pl, pr = p′r. There are
two cases. First, if pl ∈ Dh. We know p′l /∈ Dh

because p′r = pr and pr ∈ Dh+1, but P ′ /∈ Dh+1.
This means that pl ∈ Dh and t ∈ pl was a candidate
tile, and pl − t = p′l /∈ Dh, and therefore ¬C(Dh).
The second case is pl /∈ Dh, but since it is a strict
decomposition tree it must then be in D̂h+1. If this
is the case, then consider pl as the root polyomino.
Repeat the same process to pl and p′l that we did to
P and P ′. Since all leaves in a strict decomposition
tree are single tiles, we eventually arrive at a child
node p in Dh, where t ∈ p is a candidate tile, and a
p−t = p′ /∈ Dh. Therefore, ¬C(Dh+1) =⇒ ¬C(Dh),
and by contrapositive: C(Dh) =⇒ C(Dh+1).

Theorem 3.3. For all positive integers h, there ex-
ists a polyomino in D̂h.

Proof. Polyominoes in D̂1 have previously been la-
beled as drop shapes. This is the set of shapes that
can be built by dropping only single tiles, excluding
the singleton tile itself. A polyomino in D̂2 can be
seen in Figure 4b. We will call this polyomino P2. We
can use a method we will refer to as fractalization to
generate a polyomino in D̂3 from P2. See Figure 4c.

To show existence of a polyomino for every
strict level of the hierarchy, we will show how a
polyomino p ∈ D̂h that was generated through
repeated fractalization to P2 can be used to create
a polyomino p′ ∈ D̂h+1. This method takes 2 copies
of p, which we will label p1 and p2, and places them
horizontally adjacent to each other 2 unit spaces
apart (without loss of generality, assume p1 is to the
left of p2). Then, two tiles are added; one above the
north-most right-most tile of p1 and the other above
the north-most left-most tile of p2. A string of single
tiles is then wrapped around both polyominoes such
that there is 1 unit space between the border and
the bounding boxes of the inner polyominoes. This
border polyomino connects the two tiles that were
added from above. The border polyomino blocks
both p1 and p2 in all directions, creating polyomino
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p′, See Figure 4a.
We know that p′ ∈ Dh+1, as it can clearly be

2-cut across the border resulting in two polyominoes
in Dh that can be built by dropping single tiles onto
p. This cut is shown in Figure 4. We must now
show that p′ is not in Dh. If p′ was in Dh, there
would exist a valid 2-cut in which at least one of the
resulting polyominoes derived from that cut was in
Dh−1. This cut can not occur solely across the border
connecting the two polyominoes, as the two resulting
polyominoes derived from that cut are polyominoes
that can be turned into p by repeatedly removing
non-blocked, singly-connected tiles. Therefore by
Lemma 3.6, since p ∈ D̂h we can see that these
polyominoes can not be in Dg for g < h. It is also
clear that this cut can not occur solely within p1
and/or p2, as they are are now both blocked in all
directions. It is also not possible for the cut to cross
both the border and p1 or p2. First observe that due
to the way these polyominoes are connected, there
will never be 2 × 2 square fully occupied by tiles.
Since there are also no holes, there is never a choice
of which path to take to get from one tile to another.
This means there is a single path of connectivity
between any two tiles in p′, and therefore a single
path of connectivity between any tile in p1 and any
tile in p2. This path will always include the border
that connects the two. If the cut occurs within the
border, then this path is removed, meaning there are
now 2 disconnected polyominoes. W.l.o.g., assume
this cut also occurs within p1, splitting it into pl and
pr. Since there is only one path between any two
tiles, there is now no path between pl and pr. There
is also no path between p2 and pl or pr. It follows
that there are now 3 disconnected polyominoes as a
result of this cut, leaving this cut an n-cut, where
n = 3. If the cut continued through p1 or into p2, n
could increase, but never decrease. This shows that
the 2-cut in question does not exist, meaning p′ /∈
Dh. Since p′ ∈ Dh+1 and p′ /∈ Dh, p′ ∈ D̂h+1. This
shows that the fractalization method can be repeated
to generate a polyomino in D̂h for all positive integers
h. Figure 4 shows the fractalization method being
used to create a polyomino in D̂3 and a polyomino in
D̂4.

4 Drop-Shape Hierarchy Constructor

This section presents a construction that builds any
shape in the drop-shape hierarchy. The construction
is a direct extension of [3]. In that work, a universal

p1

. . . . . .

. . .

. . .

. . . p2

(a) Generalization of the
fractalization method

(b) Polyomino in D̂2

(c) Polyomino in D̂3 (d) Polyomino in D̂4

Figure 4: Fractalization method used to reach higher
strict levels of the hierarchy. The gray tiles represent
the single tile border created, while the red tiles
represent the polyominoes in D̂h used. The green
dashed line represents the 2-cut that shows this shape
is in Dh+1.

constructor was given for drop-shapes (D1 of our
hierarchy) which fit in a w × h bounding box. At a
high-level, we can extend the construction with larger
chambers that are functionally identical to the D1

constructor, but are scaled to allow the dropping of
large polyominoes.

D1 Constructor. This construction (shown in
Figure 5a) was introduced in [3] and is capable of
building any polyomino P ∈ D1, provided P fits
within a given w × h bounding box. The high level
idea for this constructor is that tiles can be extracted
from the fuel chambers and dropped onto any row
or column of a shape in the center construction area.
For the reader, we have included a descriptions of
the tile selection, direction selection, and column
selection process from [3] in Figures 6 and 5b, as well
as the tilt sequences for these commands in Table 4.
This constructor uses a modified tilt selection gadget
which allows for the disposal of fuel tiles once the
desired polyomino has been built.

Di Constructor Gadget. This gadget (shown
in Figure 5b) is an extension to the D1 constructor.
Overall, this gadget is similar to the D1 constructor,
but scaled to allow the dropping of w×h polyominoes
rather than single tiles. Because we are dropping two
multi-tile polyominoes together, we need to double
the dropping area to account for any drop that might
be blocked by the adjacent wall in the dropping area.
However, the dimensions of the polyomino built after
the drop cannot exceed the w × h bounding box.
The same tilt sequences used in the D1 constructor
are used in this constructor. This allows for a large
polyomino to be dropped onto another in the same
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(a) D1 Constructor (b) Di Constructor Gadget

Figure 5: (a) The universal drop-shape constructor from [3] which builds any shape in D1. (b) The Di

constructor gadget which allows the dropping of large polyominoes, it also depicts the sequence for selecting
a direction to drop from. The paths from Di constructor gadget look the same in the D1.

fashion as a tile is dropped in the other constructor.
By attaching a series of these constructors onto a D1

constructor, we can build polyominoes which are in
higher levels of the hierarchy.

Bit String Tunnels. To connect the construc-
tor chambers, we use bit string tunnels (Figure 8)
which require a unique move sequence to move a
polyomino from a constructor Di to a constructor
Di+1. These tunnels require a sequence of up/down
tilts, which can be thought of as 0 or 1 bits. It’s
easy to see that a construction which builds level h
shapes requires log h many up/down selectors. At the
end of every bit string tunnel there is a reset gadget
as shown in Figure 7b section 3 which enforces all
subpolyominoes to be in their launch configurations
once a subpolyomino has traversed from constructor
to constructor.

D4 Constructor. Figure 9 shows a complete
constructor which can build any polyomino P s.t.
P ∈ D4 and P fits in a 4 × 4 bounding box. Since
P can have at most 16 tiles, Theorem 3.2 tells us
that P ∈ D4, i.e., the largest hierarchy level needed
is four. Thus, the bit string tunnel only needs two
up/down choice to encode all of the possible tunnel
transitions.

Theorem 4.1. Given positive integers w, h ∈ Z+,
there exists a configuration which is strongly uni-
versal for the set of shapes U = {u | u ∈
D, u fits in a w × h bounding box}. This configura-

(a) Bit String Tunnel 00 (b) Bit String Tunnel 01

(c) Bit String Tunnel 10 (d) Bit String Tunnel 11

Figure 8: This Figure demonstrates a 2-bit
string tunnel. Notice that the tilt sequence
〈W,N,W, S,W, S,W,N,W 〉 would only allow a shape
to completely traverse bit string tunnel 01.

tion has size O(h2w2 log2(hw)) and uses O(h3w2)
tilts to move into a configuration which strongly rep-
resents any shape u ∈ U .

Proof. This is a proof by construction. We begin
with a configuration C where the chambers of all Di

gadgets are empty except for the fuel chambers in
D1. We know from [3] that the D1 gadget can build
any level-1 drop shape. The building process follows
the flowchart in Figure 7a using the tilt sequences
in Table 4. This allows building any i-level shape
bounded by h and w where i ≤ log hw (by Theorem
3.2). While building the desired polyomino, all sub-
polyominoes follow the same sequence and thus reach
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(a) D1 Column Selection (b) Di Column Selection (c) Di Tile Selection Gadget

Figure 6: (a) The column selection gadget for D1 shapes. Assuming the shape to build is at a fixed location,
this gadget allows any column to be selected to drop the new tile onto. The number of columns to drop from
in this gadget determines the size of the shape we can build. Thus, this is for a drop shape within a 4 × 4
bounding box. This gadget is repeated on each of the four sides of the drop-shape constructor (with a slightly
modified one on the south side in order to allow a non-conflicting move sequence.). (b) The column selection
gadget for a 4× 4 Di constructor. Notice that the tunnels are large enough to accommodate shapes that fit
in a 4 × 4 bounding box, and the attachment area is twice as big as the D1 version. This is to allow large
polyominoes to be dropped onto any row/column of another large polyomino. (c) The fuel selection gadget
for D1. Each tile is pulled out with the sequence 〈E,N,W, S,E, S〉, and stops at the first square. Then the
left tile type (blue) is either pulled out of the gadget or put back in the storage area. This shows it being
added back to the storage with 〈E,S,W,N,W, S〉. This sequence puts the next tile type (red) in a decision
location. The red tile is selected with the sequence 〈W,N,W, S,W, S〉. Once the desired shape has been
built, one can remove the remaining fuel tiles off the board with 〈E,N,W, S,E, S,W, S,E, S,W, S,E,W 〉.
This sequence extracts both tile types off the storage area, and then removes them off the board.

the same position in their respective constructors si-
multaneously. Once a subpolyomino needs to move
from a Di to a Di+1 constructor, all subpolyomi-
noes are sent to their corresponding bit string tun-
nel. The uniqueness of each tunnel guarantees only
one subpolyomino successfully traverses towards the
next constructor while the others are held back in
the bit selector tunnel. The reset gadget at the end
of each bit string tunnel enforces sequence R in Table
4 which sets every polyomino to its launch position.

Once the desired polyomino has been built and
is located in the Di constructor, we can perform
sequence D until there is no more fuel pieces in the
fuel chamber. We then have configuration C ′ from
C by performing a series of tilts. Consequentially,
C →∗ C ′. The overall process of transitions from
the starting configuration to the configuration that
represents shape u ∈ U , is shown in Figure 7a.

5 Occupancy, Relocation, and
Reconfiguration Complexity

Here, we prove that the occupancy, relocation,
and reconfiguration problems are PSPACE-complete
when limited to only 1× 1 tiles by a polynomial time
reduction from Non-Deterministic Constraint Logic.

The occupancy problem asks whether a given position
within a given board configuration can be occupied
by a polyomino for some tilt sequence. Relocation
asks whether a given position may be occupied by a
specific given polyomino. And Reconfiguration asks if
a given initial board configuration may be converted
into a second given board configuration. The occu-
pancy problem was originally defined by Becker et
al. using only 1 × 1 tiles. They showed it is NP-
hard and the minimum move sequence for reconfigu-
ration is PSPACE-complete [4, 6]. The authors also
showed the impossibility of a fan out with dual rail
logic which could be viewed as evidence against the
problem being PSPACE-complete. However, recent
work showed that with even a single additional 2× 2
polyomino, the relocation and reconfiguration prob-
lems are PSPACE-complete [3]. In this section we
definitively answer the question with only 1× 1 tiles
and show all three problems to be PSPACE-complete
with only 1×1 tiles. To achieve this result we provide
a polynomial time reduction from Non-Deterministic
Constraint Logic [9]. The formal problem definitions
are as follows.

Occupancy Problem. The occupancy problem
asks whether or not a given location can be occupied
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Command Tilt Sequence

1. Extract blue tile (EBlue) 〈E,N,W, S,E, S,W,N,W, S,E, S,W,N,W 〉
2. Extract red tile (ERed) 〈E,N,W, S,E, S,E, S,W,N,E, S,W, S,W,N,W 〉
3. Add from east (AE) 〈N,E, S,W, S〉 + 〈S,W,N,W 〉j + 〈N,W,S,E, S,E, S〉
4. Add from north (AN ) 〈N,W,N,E, S〉 + 〈E,S,W, S〉j + 〈W,S,E,N,E, S,E, S,W, S,E, S,E, S〉
5. Add from west (AW ) 〈N,W,S,W,N,E〉+〈N,E, S,E〉j+〈S,E,N,W,N,E, S,E, S,E, S,E, S,W, S,E, S,E, S,W,N〉
6. Add from south (AS) 〈N,W,S,E, S,W,N〉 + 〈W,N〉j + 〈E,N,W, S,W,N,E, S,E, S〉
7. Send to BST (SBST ) 〈N,W,S,E, S,E, S,W, S,E, S,W, S〉
8. Traverse 1-bit (T1) 〈W,N,W, S,W 〉
9. Traverse 0-bit (T0) 〈W,S,W,N,W 〉
10. Reset to launch (R) 〈W,S,E, S,W,N,W 〉
11. Remove from board (D) 〈E,N,W, S,E, S,W, S,E, S,W, S,E,W 〉

Table 4: Commands EBlue, ERed move either a red or blue tile into launch configuration. Commands
AE , AN , AW , and AS add a subpolyomino in the launch configuration into the shape being built. These
said commands have been slightly modified from [3] to avoid conflicting with the remaining commands.
Commands SBST , T0, and T1 send the subpolyominoes to their respective bit string tunnels (BST’s) and
allow one of them to traverse through the tunnels. Command R returns back any polyominoes to their
corresponding launch configuration. Finally, command D removes one red and blue tile from the board.

by any tile on the board. Formally, given a config-
uration C = (B,P ) and a coordinate e ∈ B, does
there exist a tilt sequence such that C →∗ C ′ where
C ′ = (B,P ′) and ∃p ∈ P ′ that contains a tile with
coordinate e?

Relocation. The relocation problem asks
whether a specified polyomino can be relocated to a
particular position. That is, given a configuration, a
polyomino within that configuration, and a transla-
tion of that polyomino, does there exist a sequence
of tilts which moves the original polyomino to its
translation?

Reconfiguration. The reconfiguration problem
asks whether a configuration can be reconfigured
into another. Formally, given two configurations
C = (B,P ) and C ′ = (B,P ′), does there exist a
tilt sequence such that C →∗ C ′?

5.1 Non-Deterministic Constraint Logic. A
constraint logic graph is a weighted directed graph
with a constraint on each of the vertices [9]. The
constraint specifies the minimum weight required
from the edges directed in (the sum of the inflow)
to any vertex. An example of two vertices can be
seen in Figure 11b. When given a graph, the usual
problem studied is whether a particular edge can
be “flipped”- the direction of the edge changed, i.e.,
is there a sequence of edge flips that maintain the
constraints on all vertices, and allows the target edge
to be flipped? This is a one-player unbounded game.
The problem is still PSPACE-complete when the edge
weights are all strength 1 or 2, and vertices have

max degree 3. We address the following equivalent
problem.

Configuration-to-Configuration Problem.
Given two states of a constraint graph G and G′,
does there exist a sequence of edge flips starting with
G that results in G′ [9].

5.1.1 Vertex Gadget. We will assume a max
degree of three for all vertices, which means there
are 8 possible arrangements of in/out edges. Define
the vertex state as a label from 0 to 7 determined by
the directions of its incident edges. We label each
edge of a vertex Ea, Eb, Ec. The state is then the
decimal value of a binary string of length three with
each bit representing an edge (EaEbEc) where an edge
directed inward is a 0, and an edge directed outward
is a 1. Thus, the state values go from 000 to 111.
We say a vertex is in a legal state if the weight of all
edges pointed inward is greater than or equal to the
constraint of the graph.

A vertex gadget contains a single 1 × 1 tile
referred to as the state tile, a transition area, and a
number of state gadgets equal to the number of legal
states of that vertex. Since there are eight states,
there are eight basic paths in the gadget that the
state tile could be in representing the vertex’s state.
Figure 11a gives an example vertex gadget (a CL
AND vertex) and the possible paths, and also shows
the numbering of the states and the corresponding
orientations of the original edges for that state. Table
5 gives the only move sequences needed for the
system.
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Claunch

CE

CN

CW

CBST

Cstart

CS

CBST-O

(a) (b)

Figure 7: (a) A flowchart where each state represents a set of configurations and the symbols represent
sequences that can move from one state to another. The sequences for each of the symbols is shown in Table
4. The sequence marked as Ui is a unique combination of T0 and T1 tilt sequences for each ith constructor.
Note that after performing the SBST , Ui, R sequences one has successfully relocated the shape located in Di

to Di+1 and can add both shapes located in constructor Di+1 with either of the AN , AE , AS , AW sequences.
(b) This is an overview of the different sections of the hierarchy constructor. Section 1 is the D1 shape
constructor as shown in [3], section 2 is the bit string tunnels, section 3 is the reset gadget and section 4 is
the column selection chambers for the Di constructor.

Flipping an edge is represented by a move se-
quence performed while in a valid state that moves
the state tile from one state path to another, which
happens simultaneously in two vertex gadgets since
an edge connects two vertices. This edge flip happens
in all vertex gadgets, but if the edge is not incident
to that vertex, there is no effect on the path of the
state tile.

5.1.2 State Transition Gadget. The state tran-
sition gadget is the transition area and the concrete
that encode legal transitions from a given state. This
will be unique to each vertex gadget. These are out-
lined in Figure 11a as states 0− 4. Figure 11c shows
one of these areas with an explanation of the different
paths. There are |E| levels on the right, where each
level represents an edge in the graph. When a 〈W 〉
command moves the state tile left, the tile stops at
the blocked spot on that level. All edges not incident
to the vertex have no effect on the path of the state
tile (the dotted lines in Figure 11a and white rows in
Figure 11c). The three edges that are incident will
change the path of the state tile when a 〈S〉 com-
mand follows. If it is not a valid edge flip (due to the
constraints), the state tile will be permanently stuck
in a path representing an invalid state. If the new
state is valid, the state tile will be in that state path.

Flip edge ek ∈ E 〈〈E,S〉k, 〈W,N,E〉〉
Extraction 〈〈E,S〉|E|+1, 〈W,S〉〉

Table 5: Move sequences for the reduction. 〈·〉K
means repeat the sequence K times. |E| is the number
of edges in the original constraint graph, as opposed
to 〈E〉 which is the ‘east’ command.

Note this will happen for both vertex gadgets repre-
senting a vertex incident to the edge chosen. Figure
11d shows an example of two state transition areas
in two vertex gadgets representing two vertices that
share an edge.

5.1.3 Goal Area. An overview of the reduction
layout is in Figure 11e where the goal area is shown
at the bottom of all the vertex gadgets. Once all
the tiles are in positions that represent the target
configuration, the tiles can be extracted into the goal
area. An extraction is made the final level in a state
gadget. After extraction the tiles enter the goal area.
The goal area consists of two rows. The valid row and
the invalid row. The invalid row (top row) traps any
tiles that enter when a vertex was not in the specified
(in the target configuration) state. The valid row
(bottom row) contains the goal position (g in Figure
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Figure 9: D4 Constructor. This constructor is capable of building any 4× 4-bounded polyomino in D4.

Figure 10: (a) Di Constructor in Claunch configuration. Section 1 is where shapes in all Di constructors
will be located when in Claunch configuration. Section 2 indicates where a shape outputted from a reset
gadget will be located when in Claunch configuration. (b) D1 Constructor in Claunch configuration. Section
3 indicates where a single tile will be located after it is extracted from it’s corresponding storage chamber.
Similarly, once a tile is extracted from its storage chamber all shapes throughout the constructors will be
located in Section 1.

11e). The goal position is |V | positions to the right
of the left wall. Thus, |V | tiles must be in this row
in order to have the last tile be in this location. In
order to have enough tiles to reach the goal position,
each vertex must be in the correct state to output
the tile to the goal area. This ensures all vertices,
and thus the entire graph, is in the specified target
configuration.

Lemma 5.1. After performing a move sequence to
flip an edge, only the two vertex gadgets representing
vertices incident to that edge will have their state tile
change state paths. All other vertex gadgets will have
their state tile stay in the same state path.

Proof. Since we enumerate all the edges and make
each state gadget have an exit point for each edge,
a move sequence to select and flip an edge moves all

tiles out of their state gadget to the transition area.
We create the transition area for each vertex gadget
based on the edges that are connected to that vertex.
If flipping an edge causes a vertex to change states
we place a concrete block to stop the tile in the state
column of the new state. If flipping an edge does not
affect a vertex then when that tile leaves the state
gadget and goes to the transition area there will be a
block of concrete to stop the tile in the state column
of the state it was previously in. Since all tiles start
at the top of the state gadget, they all move out of
the same level, so only two vertex gadgets will have
their state tile change state gadgets. We can see this
in Figure 11d. Flipping the first edge will change the
state of the right vertex but not the left. Flipping the
third edge edge will change the state of both.
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}
}
}
}
}

0

1

2

3

4

State
Label

Ed
ge

   
  i

n 
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ch
 s

ta
te

NCL
Vertex

(a) An AND vertex gadget

(b) NCL AND and OR vertices

4
5

3
2
1

6

8
7

(c) Affected edges in a state

7023

(d) State changes

(e) Goal gadget overview

Figure 11: (a) A vertex gadget with the path/transition areas labeled with the corresponding state numbers
and the representative edge orientations in a constraint graph. Each state is a different color. Paths that do
not change the state of a tile are dotted. The grey lines are invalid states. (b) The necessary vertices for a
one-player unbounded game are reversible AND and OR vertices in a constraint graph with constraint 2 [9].
The AND vertex has two red edges (weight 1) and a blue edge (weight 2). Directing the blue edge outward
requires both red edges to be directed inward. The OR vertex has three blue edges. Only one edge needs to
be directed inward. (c) An example of a state transition area the vertex it represents. White rows represent
edges that do not change the state of the vertex (they are not incident). Red and blue rows represent the
incident edges and the weights of those edges. (d) The state gadgets for two different vertices Vl and Vr.
Both vertices share edge 3. Vl represents state 4 of an OR vertex. Vr represents state 3 of an AND vertex.
If edge 1 is selected (the red tile and line), Vl will remain in state 3 while Vr will go to state 7. Selecting
edge 3 changes the state of both gadgets. (e) An overview of the layout of the different components for the
reduction. The dotted red lines represent the vertex gadgets (not to scale), the green boxes below denote
the geometry specific to each vertex to force the state tile into the top row (if in the wrong state) or the
bottom row (if in the correct state). The bottom row requires all |V | state tiles in order for a tile to get into
the goal location g.

Lemma 5.2. If a vertex enters an illegal state, the
representative vertex gadget’s state tile will be trapped
in an ‘illegal’ state path and cannot be extracted.

Proof. If an edge flip would cause a vertex to enter
an illegal state the tile will still be sent out of the
state gadget into that states column. Since when
we create the vertex gadget we block off the right of
the top of any illegal state columns once a tile goes
to the top or bottom of a state column it can only
travel between the both of these. The only way this
tile can be removed from this column is if a second
tile enters this column. However, there is no way for
another tile to enter the vertex gadget so there is no

way to extract the tile once it becomes trapped in the
column.

Theorem 5.1. Occupancy is PSPACE-complete
with only 1× 1 tiles in the full tilt model.

Proof. We show Occupancy is PSPACE-hard with
only 1×1 tiles by a reduction from Non-Deterministic
Constraint Logic. Given an instance of a constraint
graph G (with initial configuration Ci) and a goal
configuration Cg of that graph, enumerate the edges
and vertices of the configuration. For each vertex
in the graph create a Vertex Gadget. We create
the configuration in the tilt model, Si, as described
above with the goal location g and vertex gadgets
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laid out side by side above the goal area as shown
in Figure 11e. The vertex gadgets will have a state
transition gadget for each legal state of that vertex.
The transition area is built based on the edges of the
vertex. Then there exists a sequence of edge flips
to transition Ci to Cg if and only if there exists a
sequence of tilt commands that transition board Si

to a board configuration with some tile at location g.
Given a sequence of edge flips to transition Ci

to Cg in G = (V, E), F = 〈f1, . . . fl〉 where fi ∈ E ,
we can directly translate this into the move sequence
necessary based on Table 5. Each vertex has its state
tile start in the starting state of the vertex. Lemma
5.1 shows we can select any specific edge and perform
a move sequence to select and flip that edge to change
the state of two vertices and leave all other state
tiles in the same state path. Since there exist move
sequences to flip edges and change the states of vertex
gadgets, a series of edge flips that are a solution to
an NCL configuration-to-configuration problem can
be turned into a move sequence that changes all
vertex gadgets to their goal states which can then
be extracted to solve the occupancy problem.

If given Si and a sequence of tilts T = 〈t1, . . . tz〉,
where ti ∈ {N,E, S,W}, that solved the occupancy
problem, the edges to flip could be found from the
sequences of Table 5. We know by Lemma 5.2 that
any tilt sequence not corresponding to a legal edge flip
would trap a state tile, and thus occupancy could not
be solved. Thus, if our sequence solves the problem,
only legal edge flips were made. Further, to solve
occupancy, we need all |V | state tiles in the goal area,
meaning all vertex gadgets were in the correct state,
as specified in Cg.

Corollary 5.1. Relocation is PSPACE-complete
with only 1× 1 tiles in the full tilt model.

Proof. If we ask whether we can relocate the state
tile in the vertex gadget for vn to the goal location
g, we have an equivalence of the Occupancy problem.

Corollary 5.2. Reconfiguration is PSPACE-
complete with only 1× 1 tiles in the full tilt model.

Proof. Since state tiles remain in their vertex gadget,
they remain in the same order when extracted. The
goal configuration is all tiles extracted from the
vertex gadgets in the valid row ordered by vertex
number. In order to extract all the tiles into the
valid row, all gadgets must be in the correct state
when extracted.

6 Conclusion

In this paper we presented a hierarchy of shapes
that are buildable within the full tilt model. We
proved several characteristics about the drop-shape
class, then gave an algorithm to decide membership
in the class for hole-free shapes. We then provided a
universal constructor that strongly builds this class
of shapes. We then answered an open question by
proving that the Occupancy problem in full tilt is
PSPACE-complete even with only 1× 1 tiles.

We leave a number of open problems. When
considering drop-shape membership, our algorithm
does not consider shapes with holes. Does there
exist an efficient algorithm to determine membership
in D for all shapes? Also in defining membership
in levels of our hierarchy we only consider one tile
type that sticks to itself in determining if a cut is
valid. What shapes can be built in lower levels of
the hierarchy if more tile types are allowed? Does
there exist a tile type hierarchy and how does it
relate to the drop shape hierarchy? In regards to
Theorem 3.2, does there exist a tighter bound on the
level of the hierarchy a shape must be in? Lastly,
for complexity of the occupancy, relocation, and
reconfiguration problems, we use a connected board
to show PSPACE-completeness. Is the problem easier
when limiting the board type to simple or monotone,
or does it remain PSPACE-complete?
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