
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Electrical and Computer Engineering Faculty
Publications and Presentations College of Engineering and Computer Science

4-2011

Soft error in FPGA-implemented asynchronous circuits Soft error in FPGA-implemented asynchronous circuits

Weidong Kuang
The University of Texas Rio Grande Valley, weidong.kuang@utrgv.edu

Yu Bai

Follow this and additional works at: https://scholarworks.utrgv.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
W. Kuang and Y. Bai, "Soft error in FPGA-implemented asynchronous circuits," 2011 VII Southern
Conference on Programmable Logic (SPL), 2011, pp. 221-226, doi: 10.1109/SPL.2011.5782652.

This Conference Proceeding is brought to you for free and open access by the College of Engineering and
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Electrical and Computer
Engineering Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/ece_fac?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

SOFT ERROR IN FPGA-IMPLEMENTED ASYNCHRONOUS CIRCUITS

Weidong Kuang*, and Yu Bai

Department of Electrical Engineering, University of Texas � Pan American
 1201 W. University Dr., Edinburg, TX 78539

 *Email: kuangw@utpa.edu

ABSTRACT

In this paper, we investigate the mechanism of soft
error generation and propagation in asynchronous circuits
which are implemented on FPGAs. The effects of the soft
errors on Quasi-delay-insensitive (QDI) asynchronous
circuits are analyzed. The results show that ����������
easier to detect the soft error in asynchronous circuits
implemented on FPGAs so that FPGAs can be
reprogrammed, compared with traditional synchronous
circuits.

1 INTRODUCTION

Soft errors may be generated when energetic neutrons
originating from cosmic rays and/or alpha particles coming
from radioactive contaminants in the package material hit
the surface of silicon devices. As semiconductor device
scaling down, radiation-induced soft errors are the major
reliability threat for digital VLSI systems [1] [2].

SRAM-based FPGAs are widely used in many
applications where short time-to-market, low-cost for low-
production volumes, and in-the-field-programming ability
are important issues. However, FPGA-based designs are
more susceptible to soft errors than application-specific
integrated circuit (ASIC) implementations [3]. In SRAM-
based FPGAs, the content of a configuration memory
(configuration bits) specifies the functionality of the circuit
mapped into the FPGA, whereas the user bits, such as flip-
flops, hold the current state of the circuit. After a design
being programmed into an FPGA, the content of
configuration bits is supposed to remain unchanged, while
the content of user bits may be changed at any clock cycle.
The majority of an FPGA chip area is dedicated to memory
cells which are the most vulnerable components (compared
to combinational logic) to soft errors. The change of a
configuration bit due to soft error will modify the
functionality of the mapped circuit. Furthermore, the
modification is an undetectable and permanent error in the
absence of error correction schemes.

Therefore, techniques are needed to mitigate radiation
effects in modern FPGAs. Many studies have focused on
solutions either at device level or at architecture level. At
device level, one possible solution [4] is to use radiation-
hardened FPGA devices at prohibitive cost. At architecture

level, redundancy designs such as triple module
redundancy (TMR) are explored to protect FPGAs from
soft errors [5]. TMR-based mitigation techniques impose
more than 200% overhead in terms of area and power.
Scrubbing, i.e., the periodic refresh of the configuration
memory, is another effective approach, especially when
used in conjunction with TMR.

In this paper, we investigated the generation and
propagation of soft errors in asynchronous circuits
implemented in FPGAs. The proposed asynchronous logic,
called Null Convention Logic (NCL) [6], employs dual-rail
encoding for each bit to achieve the quasi-delay
insensitivity of the whole circuit. The preliminary results
show the unique behavior of NCL mapped into FPGAs,
and thus provide a clue for possible solutions to soft error
problem in FPGAs through asynchronous design at circuit
level.

The rest of the paper is organized as follows. Section II
presents how NCL circuits are implemented on FPGAs.
Section III analyzes the behavior of the FPGA-
implemented NCL circuits. In Section IV, possible
mitigation techniques are discussed, and the paper is
concluded.

2 ASYNCHRONOUS CIRCUIT ON FPGAS

2.1 FPGA Architecture

An FPGA is a logic device that contains a two-
dimensional array of generic logic elements (LEs) and
programmable switches. A logic element can be
configured (i.e., programmed) to perform a simple function,
and a programmable switch can be customized to provide
interconnections among the logic elements. A custom
design can be implemented by specifying the function of
each logic element and selectively setting the connection
of each programmable switch. A logic element usually
contains a programmable look-up table (LUT),
programmable interconnects, and flip-flops (FF). An n-
input look-up table is typically implemented by a static
random access memory (SRAM), and is used to implement
any n-input combinational function. The flip-flops can be
selectively used to implement sequential circuits. Most
FPGA devices also embed certain macro cells, such as
BlockRAMs, dedicated multipliers, clock managers, and
I/O interface circuits. Logic elements are usually grouped
into logic array blocks (LABs).

U.S. Government work not protected by U.S. copyright

221

Fig.1 Architecture of SRAM-based 4-input look-up table (LUT)

The architecture of an SRAM-based 4-input look-up

table, implementing a logic function ()ABCDf ,,, , is

illustrated by Fig.1. The truth table of ()ABCDf ,,, is

stored in the memory cells. For instance, binary data
1110_1000_1110_1000 is stored in the memory cells as
shown in Fig.1, to implement logic function

is () ACBCABABCDf ++=,,, .

2.2 Null Convention Logic

Asynchronous circuits can be grouped into two main
categories: bundled data and delay insensitive models. The
bundled data model uses normal Boolean levels to encode
data information, but requires matching delay elements for
handshaking protocols. This leads to extensive timing
efforts to ensure correct circuit operation. On the other
hand, delay insensitive model uses dual-rail or quad-rail
logic to encode data information. Delay insensitive design
paradigms therefore require very little, if any, timing effort
to ensure correct operation.

NCL is a quasi delay-insensitive asynchronous
paradigm since wires connecting components have to
adhere to the isochronic fork assumption. A typical NCL
pipeline architecture consists of computational blocks,
registers and completion detection circuits, as shown in
Fig.2. Two adjacent register stages interact through their
request and acknowledge signals, Ki and Ko, respectively,
to prevent the current DATA wavefront from overwriting
the previous DATA wavefront, by ensuring that the two
DATA wavefronts are always separated by a NULL
wavefront. When a register (e.g. R2) detects a complete set
of DATA at the output of computational block, it will
inform the previous register (e.g. R1) that the current
computation is done and a NULL wavefront is allowed to
come into the computational block, by setting Ki1 low.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������
���������

�������������
�������

�������������
�������

����������
���������

�� ��

��

��

�� �� ��

�� �� ��
���

��

��� ���

�
���

�
���� ����

Fig. 2. NCL pipeline architecture

TABLE 1. DUAL-RAIL ENCODING

Dual-rail encoding

(D1, D0) Logic value

(0,0) NULL

(0,1) DATA0

(1,0) DATA1

(1,1) Invalid

NCL circuits utilize dual-rail or quad-rail or quad-rail
encoding technique to achieve delay insensitivity [6]. A
dual-rail signal D is encoded by two wires, D0 and D1, as
shown in Table 1. The signal D may assume any value
from the set {DATA0, DATA1, NULL}. The DATA0
state (D0=1, D1=0) corresponds to a Boolean logic 0, the
DATA1 state (D0=0, D1=1) corresponds to a Boolean logic
1, and the NULL state (D0=0, D1=0) corresponds to the
empty set meaning that the value of D is not yet available.
The two rails are mutually exclusive, such that both rails
can never be asserted simultaneously; this state is defined
as an illegal state.

NCL circuits are comprised of a family of threshold
gates with hysteresis. The primary type of threshold gate is
THmn gate where n is the number of inputs, m is the
threshold, and 1 � m � n. A THmn gate will set its output
high when any m inputs have gone high and it will reset its
output low when all n inputs are low. A more general type
of threshold gate with hysteresis is referred to as a
weighted threshold gate, denoted as THmnWw1w2�wR,
where n is the number of inputs, m is the threshold, w1, w2,
�wR (1 < wi � m, 1� R < n) are the integer weights of
input 1, input 2, � input R, respectively. For example,
TH34 has 4 inputs (A, B, C, D) and a threshold of 3, as
shown in Fig. 3 (a). When any three inputs go high, its
output will be asserted to high. Only when all inputs are
low, the output will be reset to low. For all other input
patterns, the output will remain unchanged. A weighted
gate TH34W22 has the same number of inputs (4) and
threshold (3) as TH34 gate, but there is a weight 2 applied
to each of the first two inputs (A and B), as shown in Fig. 3
(b). For the gate TH34W22, the output is asserted only

222

when either input A is high along with any other input, or
input B is high along with any other input. The output is
deasserted only when all inputs are low. NCL threshold
gates may also include a reset input to initialize the output.
Either a d or an n is attached at the end of the gate name to
designate these gates, such as TH22n shown in Fig. 3 (c). d
denotes the gate as being reset to high while n to low.
These resettable gates are used in the design of registers. A
bubble attached at the output denotes an inverter connected
at the output, as shown in Fig. 3 (d). The principle of
transistor-level threshold gate design can be found in [7].
The design of computational blocks, registers and
completion detection blocks using threshold gates is
available in [8]. For example, a dual-rail NCL full adder
can be optimized as Fig. 4.

��
�

��

��

�
�
�

��

��

�

�

�

�

��

��

�
�
�

��
�

��

��

��

��

�

�

��

�

� �

�
�

�

�

�
�

�

Fig. 3. Symbol examples of threshold gates Fig.4. An NCL full adder

2.3 FPGA-Based Implementation of NCL Circuits

Generally, a threshold gate is synthesized into three
logic elements in FPGAs, as shown in Fig. 5. Each logic
element, utilizing an SRAM LUT, performs Set, Reset, and
Hold respectively. The function of Set LUT is defined as
this: its output t1 is �1� when the number of inputs equal to
�1� reaches (or more than) the threshold m; otherwise the
output is �0�. For example, the Set function of TH23
is ACBCABt ++=1 , and the Set function of TH34w2

(A has a weight of 2) is BCDDCBAt +++=)(1 .

The function of Reset LUT for all threshold gates is an OR
gate delivering �0� when all inputs are �0�. The Hold LUT
delivers the final output with hysteresis using a feedback.

It is easy to find out that its function is ()zttz +⋅= 12 for

all threshold gates. The concept in Fig.5 has been verified
by implementing TH23 and TH34w2 gates on Altera
Cyclone II EP2C35F672C6N chip.

Set
LUT

Reset
LUT

Hold
LUT

inputs

z

t2

t1

Fig. 5 Threshold gate implemented on FPGAs

3 SOFT ERROR IN FPGA-BASED
ASYNCHRONOUS CIRCUITS

There are two major types of memory resources in
FPGAs: user bits and configuration bits. A single event
upset (SEU) induced by a particle strike in a user bit causes
a transient error, whereas an SEU in a configuration bit
would lead to a permanent error which remains in the
FPGA until the next reconfiguration of a new design. This
permanent error may result in a logic error or routing error
depending on which part of the configuration memory is
affected. A logic error may lead to complement one of the
entries of the LUT modifying the functionality of the
mapped logic function. A routing error may lead to a signal
getting misrouted or disconnected [9].

We focus on the permanent logic error due to bit-flips
in LUT configuration bits. It is assumed that a particle
strike lead to the change of a configuration bit in LUT.
Under this assumption, the implemented circuit such as a
threshold gate has been changed into an undesired circuit

3.1 Soft Error Generation in a Single Threshold Gate

The TH34w2 gate is used as an example to show how
and what kind of soft errors may be generated at the output
of a threshold gate. TH34w2 is mapped into a 4-input Set
LUT, a 4-input Reset LUT and a 3-input Hold LUT with
feedback, as shown in Fig.6. Each entry in LUT is
associated with a cell in SRAM. A particle strike may
randomly lead to the data flip in a cell.

TABLE 2 lists all possible soft errors of TH34w2
associated with different data-flip (SEU) locations. The
index of each box in K-map (for example, Fig.6) is used to
represent the location of LUT SRAM cell. Some SEUs,
such as Set LUT 0000 and Hold LUT 100 or 101, will not
lead to any error. Other SEUs result in four types of soft
errors: 1) premature fire, i.e., the output is erroneously
equal to 1 when the inputs do not reach the threshold), 2)
no fire, i.e., the output is equal to 0 when inputs reach the
threshold, 3) no return to 0, i.e., the output is still 1 even
when all inputs are 0, and 4) oscillating. �Early return to
0� usually does not lead to malfunction under reasonable
delay-timing assumption, therefore being ignored here.

0

a b

c d
00

00

101101

01

11

10

0

0

010

0 11

1

10 0 1

1

0

1

Set LUT

0

a b

c d
00

00

101101

01

11

10

1

111

1 11

1

11 1 1

1

1

1

Reset LUT

t1 t2

z

1 0110

0100

00 01 11 10

t1

t2

z

Hold LUT

3

a
b
c
d

z

Fig. 6 TH34w2 implemented on FPGA

223

Other threshold gates can be implemented on FPGAs
in the same way illustrated in Fig.6, except that different
threshold gates have different content in Set LUT.
Therefore, the above statement about four types of soft
errors is generally true for all threshold gates.

3.2 Soft Error Propagation in NCL Pipelines

The behavior of any computational block in Fig.2 has
a monotonic property that does not exist in traditional logic.
Specifically, during the computation, i.e., transition from
NULL to complete DATA, the number of asserted gate-
level nodes monotonically increases. On the other hand,
during returning to all NULL from complete DATA, the
number of asserted gate-level nodes monotonically
decreases to zero.

It is assumed that an SEU occur only in a
computational block in Fig.2 because computational blocks
consume the major resource of FPGAs. The behavior of an
NCL pipeline in the presence of SEU can be delivered by
considering: 1) dual-rail encoding, 2) monotonic property,
3) weak conditions, and 4) handshake protocol of pipeline.
TABLE 3 lists all possible soft errors at the output of
computational block and pipeline behavior originating
from SEU in the computational block. Premature fire will
eventually generate an invalid dual-rail code �11�. No fire
makes the computation process everlasting long while No
return to 0 makes the reset process unlimited long.
Oscillating may lead to an invalid dual-rail code �11�.

TABLE 2 Soft error of TH34w2

SEU location Soft error at Z (worst
case)

Set LUT:0000 (0�1) No error
Set LUT:
 0001,0010,0011,0100,
 0101,0110,1000 (0�1)

0�1 (premature fire)

Set LUT: others (1�0) 1�0 (No fire)
Reset LUT: 0000 (0�1) 0�1 (No return to 0)
Reset LUT:
 0001,0010,0011,0100
 0101,0110,1000 (1�0)

1�0 (Early return to 0)

Reset LUT: others (1�0) 1�0 (No fire)
Hold LUT: 000 (0�1) Oscillating (when abcd =

0000)
Hold LUT: 001 (0�1) 0�1 (No return to 0)
Hold LUT: 010 (0�1) 0�1 (premature fire)
Hold LUT: 011 (1�0) 1�0 (Early return to 0)
Hold LUT: 100,101 (0�1) No error
Hold LUT: 110 (1�0) 1�0 (No fire)
Hold LUT: 111 (1�0) Oscillating (when abcd •

threshold 3)

TABLE 3 Soft errors in NCL pipeline
Soft error at

TH gate
Soft error at

computational output
Behavior of

pipeline

Premature
fire

‘‘11’’dual-rail code Invalid DATA

No fire Never to complete
DATA

Deadlock

No return to 0 Never to complete
NULL

Deadlock

Oscillating ‘‘11’’dual-rail code Invalid DATA

4 SIMULATION RESULTS

The soft errors derived in Section III will be simulated
using Quartus II software. A fault in a cell of LUT SRAM
is introduced manually through Quartus II tool by choosing
a specific bit location. The TH34w2 gate and NCL dual-
rail full adder are used as test circuits.

4.1 Fault Injection

Quartus II provides an easy way to change the content
of a desired LUT SRAM cell after compiling the VHDL
files. This change is equivalent to a fault injection to the
cell. After saving the change, one can simulate the
behavior of the circuit with a fault injection.

TH34w2 is used an example to explain the procedures
of fault injection. From Quartus II tools �Netlist viewers
� Technology map viewer, one can find out TH34w2 is
implemented on three LUTs: Set LUT, Reset LUT, and
Hold LUT, as shown in Fig.6. The K-map, truth table, and
logic function are available for each LUT in Properties
pop-up window. The �Resource property editor� can be
used to change the logic function of any LUT so that the
K-map and truth table are changed accordingly as desired.

4.2 Simulation Results

First, TH34w2 gate implemented on Altera FPGA
Cyclone II EP2C35F672C6N with different soft errors was
simulated. The above method of fault injection is used to
introduce soft error to a specific location of LUTs. The
simulation results are shown in Fig.7 where a, b, c, and d
are inputs. Input �a� has weight 2. �z_error_free� is the
output of TH34w2 for the given input waveforms without
any soft error. For simplicity, we select some soft errors in
Table 2 for simulation. �z_no_fire� plots the erroneous
output when a soft error (1�0) occurs in Set LUT 1010
cell. When input abcd=1010, the output is wrong �0�. If a
soft error (0�1) occurs in Set LUT 0001, the output may
fire by mistake or fire earlier than normal depending input
combinations, as shown by �z_pre_fire�. If Reset LUT
0000 cell has a soft error (0�1), the output will never
return to �0� after reaching �1� plotted as �z_no_return_0�
in Fig.7. The output �z_early_0� returns to �0� earlier than
normal when some soft errors occur, such as Reset LUT

224

0001 cell (1�0). It is interesting to notice that some soft
errors will lead to oscillating at the output, shown by
�z_oscillate_0� and �z_oscillate_1� in Fig.7. Soft error
(0�1) in Hold LUT 000 cell leads to oscillation when all
inputs are equal to �0� while soft error (1�0) in Hold LUT
111 cell results in oscillation when the inputs meet the
threshold 3. The oscillating frequency depends on the
delay of Hold LUT.

Secondly, in order to investigate the soft error at RTL
level, instead of TH gate level, a simple pipeline in Fig.8 is
simulated with various soft errors injected into the
computational block. The Computational block is
implemented as an NCL full adder shown in Fig.4.
Without the loss of generality, soft errors are injected into
the different LUT SRAM cells in TH34w2 gate G3 that
delivers the output of sum rail0. The simulation results are
shown in Fig.9. From the simulation results, it can be
concluded that an erroneous output at computational block

may only result in one of the followings at the output of
the pipeline: 1) No error, 2) �11� invalid code, or 3)
deadlock. This conclusion provides the basics for soft error
detection in the future work.

c i
0

x0
y0

c i
1

x1
y1

2

2

3

3

s0

s1

co
0

c
o
1

G1

G2

G3

G4

A

A

AA

B

B B

B
C

C

C

C
D

D

reg1 reg2

ko kf

Fig.8 Circuit simulated

Fig.7 Simulation results of TH34w2 gate with different soft errors

(a) Invalid �11� appears at the output sum (soft error setting: Set LUT 0110 (0�1) in G3 gate in full adder)

225

(b) Invalid �11� appears at sum when G3 ocsillating (soft error setting: Hold LUT 000 (0�1) in G3 gate in full adder)

(c) No error appears at the output when G3 ocsillating (soft error setting: Hold LUT 0110 (1�0)) in G3 gate in full
adder)

(d) Deadlock in the pipeline when no fire at sum (soft error setting: Set LUT 1001 (1�0) in G3 gate in full adder)

Fig. 9 Simulation results for dual-rail full adder with different soft errors

5 DISCUSSIONS AND CONCLUSION

Null Convention Logic circuits can be implemented
through either full-custom design at transistor level or
FPGAs, but the effects of SEU on the two implementation
styles are different. In the full-custom implementation, the
soft errors are transient and no deadlock happens. The
corresponding soft error detection and correction scheme
was proposed in [10]. Unfortunately, the soft errors in
FPGA implementations are permanent. To remove the
errors, the FPGA has to be reprogrammed.

TABLE 3 gives us a hint to detect SEU in NCL
pipelines. Invalid code �11� can be easily detected by
ORing two rails for each bit at output of computational
block. Deadlock would never be detected without
sacrificing delay-insensitivity. In practice, the circuit delay
and data rate are usually known to be in a particular range,
therefore a counter can be designed to detect the deadlock
according to whether the time of computation or reset
elapses the worst case.

This paper investigated FPGA-based
implementations of asynchronous circuits and their
behavior in the presence of SEU in FPGA SRAM cells.
The preliminary results show that dual-rail asynchronous
circuits have inherent potential for SEU detection and thus
FPGA reprogramming. Future works could include the
estimation of soft error rate and specific reprogramming
scheme related to asynchronous circuits on FPGAs. It is
also essential to investigate the routing error in
asynchronous circuits.

REFERENCES

[1] R. C. Baumann, �Radiation-induced soft errors in advanced
semiconductor technologies,� IEEE Trans. Device and Materials
Reliability, vol. 5, no. 3, pp. 305-316, Sept. 2005.

[2] P. Shivakumar, et al., �Modeling the Effect of Technology Trends
on the Soft Error Rate of Combinational Logic,� Proceedings of the
International Conference on Dependable Systems and Networks,
2002.

[3] H. Asadi, and M.B.Tahoori, �Analytical techniques for soft error
rate modeling and mitigation of FPGA-Based Designs,� IEEE
Trans.VLSI Systems, vol.15, no.12, pp1320-1331, 2007.

[4] C.Carmichael, M.Caffrey, and A.Salazar, �SEU mitigation
techniques for virtex FPGAs in space applications,� in Proc.
Military Aerosp. Appl. Program. Logic Devices (MAPLD), 1999,
pp.B2.1-B2.11.

[5] F.Lima, CCarmichael, J.Fabula, R.Padovani, and R.Reis, �A fault
injection analysis of virtex FPGA TMR design methodology,� in
Proc. Radiation Effects Components Syst. Conf. (RADECS), 2001,
pp.275-282.

[6] K. M. Fant and S. A. Brandt, ‘‘Null convention logic: A complete
and consistent logic for asynchronous digital circuit synthesis,’’ in
Proc. Int. Conf. Appl.-Specific Syst., Arch. Process., 1996, pp. 261---
273.

[7] G. E. Sobelman, and K. Fant, �CMOS circuit design of threshold
gates with hysteresis,� Proceedings of the International Symposium
on Circuits and Systems, pp. 61-64, 1998.

[8] S. C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb,
"Optimization of NULL Convention Self-Timed Circuits,"
Elsevier's Integration, The VLSI Journal, Vol. 37/3, pp. 135-165,
August 2004.

[9] H.R.Zarandi, S.G.Miremadi, D.K.Pradhan, J.Mathew, �Soft error
mitigation in switch modules of SRAM-based FPGAs,� IEEE Intl.
Symp.on Circuits and Systems (ISCAS) 2007, pp.141-144.

[10] W. Kuang, P. Zhao, J.S. Yuan, R.F. DeMara, "Design of
asynchronous circuits for high soft error tolerance in deep
submicrometer CMOS circuits," IEEE Trans. VLSI Systems, vol.18,
no.3, pp.410-422, 2010.

226

	Soft error in FPGA-implemented asynchronous circuits
	Recommended Citation

	tmp.1664556036.pdf.eie75

