
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Electrical and Computer Engineering Faculty
Publications and Presentations College of Engineering and Computer Science

3-2010

Design of Asynchronous Circuits for High Soft Error Tolerance in Design of Asynchronous Circuits for High Soft Error Tolerance in

Deep Submicron CMOS Circuits Deep Submicron CMOS Circuits

Weidong Kuang
The University of Texas Rio Grande Valley, weidong.kuang@utrgv.edu

Peiyi Zhao

J. S. Yuan

R. F. DeMara

Follow this and additional works at: https://scholarworks.utrgv.edu/ece_fac

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
W. Kuang, P. Zhao, J. S. Yuan and R. F. DeMara, "Design of Asynchronous Circuits for High Soft Error
Tolerance in Deep Submicrometer CMOS Circuits," in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 18, no. 3, pp. 410-422, March 2010, doi: 10.1109/TVLSI.2008.2011554.

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
ScholarWorks @ UTRGV. It has been accepted for inclusion in Electrical and Computer Engineering Faculty
Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information,
please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/ece_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/ece_fac?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.utrgv.edu%2Fece_fac%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

 1

Design of Asynchronous Circuits for High Soft Error Tolerance in Deep

Submicron CMOS Circuits

Weidong Kuang, Member IEEE, Peiyi Zhao, Member IEEE, J.S. Yuan, Senior Member, IEEE,

and R. F. DeMara, Senior Member, IEEE

Abstract – As the devices are scaling down, the combinational logic will become susceptible to soft errors. The

conventional soft error tolerant methods for soft errors on combinational logic do not provide enough high soft

error tolerant capability with reasonably small performance penalty. This paper investigates the feasibility of

designing quasi-delay insensitive (QDI) asynchronous circuits for high soft error tolerance. We analyze the behavior

of Null Convention Logic circuits in the presence of particle strikes, and propose an asynchronous pipeline for soft-

error correction and a novel technique to improve the robustness of threshold gates, which are basic components in

NCL, against particle strikes by using Schmitt trigger circuit and resizing the feedback transistor. Experimental

results show that the proposed threshold gates do not generate soft errors under the strike of a particle within a

certain energy range if a proper transistor size is applied. The penalties, such as delay and power consumption, are

also presented.

Index Terms – Soft error, asynchronous circuit, Null Convention Logic

I. INRODUCTION

Semiconductor devices are becoming susceptible to particle strikes as they shrink to nano-scale. Soft errors to be

addressed in this paper are radiation-induced transient errors caused by neutrons from cosmic rays or alpha particles from

packaging materials [1]. Specifically, when these particles with sufficient energy hit the silicon substrate of a

Complementary Metal Oxide Semiconductor (CMOS) chip, a large number of electron-hole pairs are generated and an

undesired short-duration current may be formed to change the output of a logic gate. A soft error occurs when this corrupt

output is captured by a memory cell, register, latch, or flip-flop.

Soft error protection is very important for enterprise computing and communication applications since the system-level

soft error rate (SER) has been rising with technology scaling and increasing system complexity [2] [3]. Several designs

today exploit extensive error correction codes (ECC) mainly for on-chip SRAMs and register files [4]. However, soft errors

in combinational logic circuits are significant contributors to the system-level SER [5]. The lack of efficient soft error

protection for combinational logic poses a major challenge to robust computing and networking system designs.

 2

Quasi delay insensitive (QDI) asynchronous circuits have a strong potential for soft error protection. First, the dual-rail

encoding scheme theoretically provides the QDI circuits with an ability to detect soft errors. For instance, a soft error can be

identified when code “11” is detected. Secondly, asynchronous handshaking communications allow the QDI circuits to

correct soft errors by re-computing. Upon the detection of soft errors, the QDI circuit has a chance to stop the corrupted

DATA from propagating, and to re-compute the result through modified handshaking circuitry. Besides soft errors, particle

strikes may cause other malfunctions on a chip, e.g., charges induced by particle strikes may slowly accumulate in the

substrate of a chip. Those long-term dose effects usually cause parameter shifts, in particular threshold voltages, which

affect the timing of the system. QDI circuits are very robust to timing variation. Monnet et.al proposed a metric, sensitive

time, to evaluate the sensitivity of asynchronous circuits to transient faults [6] [7], and developed several harderning

techniques for QDI circuits with full duplication of circuit parts and synchronization of replicated results through C-

elements [8]. By using doubled-up production rules, Jang et.al [9] proposed several SEU-tolerant QDI circuit designs

without any requirement of significant timing assumptions. However this approach usually results in large hardware cost and

significant performance overhead. Peng et.al [10] developed an efficient concurrent failure detection method for pipelined

asynchronous circuits so that the asynchronous circuits halt in the presence of failure by single stuck-at faults or single event

upsets, and [11] then they proposed a framework for constructing a self-healing asynchronous array based on

reconfiguration logic and deadlock detection. With several assumptions, Gardiner et.al [12] proposed a new latch to stop the

propagation of faults through asynchronous pipeline. The penalty associated with this method is the long latency of the latch,

which makes this latch less suitable for high speed applications.

This paper presents a built-in soft error correction (BISEC) technique by exploiting the handshaking protocol and dual-

rail encoding in QDI circuits. As shown later in this paper, all soft errors at the output of computational blocks can be fully

detected and corrected with very small area and speed overhead. Although the BISEC technique is developed through Null

Convention Logic (NCL) design paradigm [13], it can be applied in other QDI design paradigms. It is assumed that the

NCL registers and completion detection circuitry are soft error free since they are relatively small compared to

computational blocks and therefore less likely to be struck by particles. The discussion on the effects of soft error in register

and completion detection circuitry is beyond the scope of this paper. The major contributions of this paper include:

1) Understanding soft error generation and propagation in QDI circuits.

2) Soft error blocking technique that utilizes an inserted self-feedback register to block most of soft errors in

computational blocks.

 3

3) Soft error correction technique that detects the rest soft errors (not blocked in 2)), and performs re-computation

without affecting the pipeline handshake timing, under reasonable delay assumptions.

4) Optimization of threshold gates for soft error tolerance.

The rest of paper is organized as follows. Section II presents an overview of asynchronous logic, focusing on NCL.

Section III describes the generation and propagation of soft error in NCL. In Section IV, we describe the principle of the

built-in soft error correction. The simulation results are presented in Section V. Section VI concludes the paper.

II. OVERVIEW OF NULL CONVENTION LOGIC

A. Architecture and Dual-rail Encoding

Asynchronous circuits can be grouped into two main categories: bundled data and delay insensitive models [14]. The

bundled data model uses normal Boolean levels to encode data information, but requires matching delay elements for

handshaking protocols. This leads to extensive timing efforts to ensure correct circuit operation. On the other hand, delay

insensitive model uses dual-rail or quad-rail logic to encode data information. The delay insensitive circuits only assume

delays in both elements and interconnects to be unbounded, and wire forks within a component to be isochronic [15].

Completion detection of the output signal allows for handshaking to control input wavefronts. Delay insensitive design

paradigms therefore require very little, if any, timing effort to ensure correct operation.

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

completioncompletioncompletioncompletion
detectiondetectiondetectiondetection

computationalcomputationalcomputationalcomputational
 block 0 block 0 block 0 block 0

computationalcomputationalcomputationalcomputational
 block 1 block 1 block 1 block 1

completioncompletioncompletioncompletion
detectiondetectiondetectiondetection

R1R1R1R1 R2R2R2R2

KoKoKoKo

KiKiKiKi

KoKoKoKo KoKoKoKo KoKoKoKo

KiKiKiKi KiKiKiKi KiKiKiKi
Ki1Ki1Ki1Ki1

R0R0R0R0

Ki0Ki0Ki0Ki0 Ki2Ki2Ki2Ki2

DDDDin1in1in1in1 DDDDout1out1out1out1 DDDDin2in2in2in2

Fig. 1. NCL pipeline architecture

NCL is a quasi delay insensitive asynchronous paradigm since wires connecting components have to adhere to the

isochronic fork assumption. A typical NCL pipeline architecture consists of computational blocks, registers and completion

 4

detection circuits, as shown in Fig. 1. Two adjacent register stages interact through their request and acknowledge signals,

Ki and Ko, respectively, to prevent the current DATA wavefront from overwriting the previous DATA wavefront, by

ensuring that the two DATA wavefronts are always separated by a NULL wavefront. When a register (e.g. R2) detects a

complete set of DATA at the output of computational block, it will inform the previous register (e.g. R1) that the current

computation is done and a NULL wavefront is allowed to come into the computational block, by setting Ki1 low.

NCL circuits utilize dual-rail or quad-rail or quad-rail encoding technique to achieve delay insensitivity [13]. A dual-

rail signal D is encoded by two wires, D0 and D1, as shown in Table 1. The signal D may assume any value from the set

{DATA0, DATA1, NULL}. The DATA0 state (D0=1, D1=0) corresponds to a Boolean logic 0, the DATA1 state (D0=0,

D1=1) corresponds to a Boolean logic 1, and the NULL state (D0=0, D1=0) corresponds to the empty state meaning that the

value of D is not yet available. The two rails are mutually exclusive, such that both rails can never be asserted

simultaneously; otherwise the state is defined as an illegal state. One of the erroneous consequences of the particle radiation

is the occurrence of this illegal state, as shown later. It is this illegal state that provides a fundamental for soft error

detection in NCL designs.

TABLE 1. DUAL-RAIL ENCODING

Dual-rail encoding

(D
1
, D

0
)

Logic value

(0,0) NULL

(0,1) DATA0

(1,0) DATA1

(1,1) Invalid

B. Threshold Gates with Hysteresis

NCL circuits are comprised of a family of threshold gates with hysteresis. The primary type of threshold gate is THmn

gate where n is the number of inputs, m is the threshold, and 1 ≤ m ≤ n. A THmn gate will set its output high when any m

inputs have gone high and it will reset its output low only when all n inputs are low. A more general type of threshold gate

with hysteresis is referred to as a weighted threshold gate, denoted as THmnWw1w2…wR, where n is the number of inputs,

m is the threshold, w1, w2, …wR (1 < wi ≤ m, 1≤ R < n) are the integer weights of input 1, input 2, … input R, respectively.

For example, TH34 has 4 inputs (A, B, C, D) and a threshold of 3, as shown in Fig. 2 (a). When any three inputs go high,

its output will be asserted to high. Only when all inputs are low, the output will be reset to low. For all other input patterns,

 5

the output will remain unchanged. A weighted gate TH34W22 has the same number of inputs (4) and threshold (3) as TH34

gate, but there is a weight 2 applied to each of the first two inputs (A and B), as shown in Fig. 2 (b). For the gate TH34W22,

the output is asserted only when either input A is high along with any other input, or input B is high along with any other

input. The output is deasserted only when all inputs are low. NCL threshold gates may also include a reset input to initialize

the output. Either a d or an n is attached at the end of the gate name to designate these gates, such as TH22n shown in Fig. 2

(c). d denotes the gate as being reset to high while n to low. These resettable gates are used in the design of registers. The

principle of transistor-level threshold gate design can be found in [16]. A bubble attached at the output denotes an inverter

connected at the output, as shown in Fig. 2 (d). As an example, the schematic of TH23 is shown in Fig. 3.

3333

AAAA
BBBB
CCCC
DDDD

3333

AAAA
BBBB
CCCC
DDDD

zzzz zzzz

(a) TH34 (b)TH34w22

2n2n2n2n

reset

AAAA

BBBB
1111

AAAA

BBBB

zzzzzzzz

 (c) TH22n (d) TH12b

Fig. 2. Symbol examples of threshold gates

A

B

C

C

A

B

C

B

A

C

B

AB A B C

Z

Vdd

Gnd

Go to 0

Go to 1

Hold 0

Hold 1

p1

n1

p2
p10

p9

p8

p7p6

p5

p4

p3

n10

n9n8n7

n6

n5

n4
n3

n2

Fig. 3. Schematic of TH23

 6

C. Computational Block

It is noticed that any threshold gate with hysteresis, except the TH1n gate that is equivalent to an n-input OR gate, is a

sequential component. Therefore, strictly and generally speaking, there is no combinational logic block in NCL circuits. We

refer the NCL counterpart of combinational block in traditional synchronous circuits as to computational block. The dual-

rail computational block in Fig. 1 consists of various threshold gates described above. The following behavior constraints

on the computational block must be satisfied for quasi delay insensitivity: 1) its outputs may not transition from all NULL

to a complete set of DATA until the input values are completely DATA; and 2) its outputs may not transition from a

complete set of DATA to all NULL values until the input values are completed NULL. These constraints are equivalent to

the “weak conditions” [17], illustrated in Fig. 4. The orderings labeled in Fig. 4 are explained hereafter.

(1) Some inputs become DATA, and then some, not all, outputs become DATA.

(2) All inputs become DATA, and then all outputs become DATA.

(3) All outputs become DATA, and then some, not all, inputs becomes NULL.

(4) Some inputs become NULL, and then some, not all, outputs become NULL.

(5) All inputs become NULL, and then all outputs become NULL.

(6) All outputs become NULL, and then some, not all, inputs become DATA. And then repeat (1) through (6).

For example, a dual-rail full adder can be implemented in Fig. 5 with three dual-rail input signals (ci
1, ci

0), (x1, x0) and

(y1, y0), and two dual-rail outputs (co
1, co

0) and (s1, s0). The schematic of TH34W2 used in the full adder is illustrated in Fig.

6. However, one can not design a dual-rail circuit with only carry output (co
1, co

0) by simply deleting two TH34W2 gates in

the full adder, because the resultant design violates the weak conditions (1) and (4). A systematic method for the synthesis

of computational blocks can be found in [18].

 7

In
p

u
ts

 d
e

fi
n

e
d

A ll

D A T A

A ll

Nu ll

O
u

tp
u

ts
 d

e
fi
n

e
d

A ll

D A T A

A ll

Nu ll

(6) (1)

(2)

(3)

(4)

(5)

(6)

Fig. 4. Weak conditions for NCL

Due to the hysteresis of threshold gates, the signal transition in computation blocks possesses a monotonic property,

which does not exist in traditional Boolean combinational logic. Specifically, during the computation, i. e. transition from

NULL to complete DATA, the number of asserted gate-level nodes monotonically increases. On the other hand, during

returning to all NULL from complete DATA, the number of asserted gate-level nodes monotonically decreases to zero.

This monotonicity will be exploited to analyze the generation and propagation of soft errors in NCL circuits.

ci
0

x0

y0

ci
1

x1

y1

2

2

3

3

s0

s1

co
0

co
1

G1

G2

G3

G4

A

A

AA

B

B B

B
C

C

C

C
D

D

Fig. 5. An optimized NCL fulladder

 8

z

A

B

C

D

A

B C D A

B

C

D

A

B C D

Vdd

Fig. 6. Schematic of TH34W2 (input A with weight 2)

D. Register and Completion Detection

Registers and completion detection circuitry are required to coordinate the adjacent computational blocks to ensure the

correct data communications. A single-bit dual-rail register consists of two TH22n gates and one NOR gate, depicted in Fig.

7. The TH22n gates pass a DATA value from input to output only when Ki is request for data (rfd) (i.e. high) and likewise

pass NULL only when Ki is request for null (rfn) (i.e. low). The request signal Ki comes from the output of the completion

detection circuit of the following stage. The NOR gate generates Ko, which is rfn when the register output is DATA and rfd

when the register output is NULL. The register shown is reset to NULL for initialization since all TH22n gates can be

initialized to low. However, register could be instead reset to a DATA value by replacing exactly one of the TH22n gates

with a TH22d gate.

An N-bit register is comprised of N single-bit dual-rail register in parallel. These single-bit registers share a request

signal Ki and a reset signal, and generate N completion signals, one for each bit. The completion detection circuitry, shown

in Fig. 8, uses these N completion signals to detect complete DATA and NULL sets at the output of every register stage and

generate a total acknowledge signal Ko to request the next NULL and DATA set, respectively. This Ko is connected to Ki of

the previous register stage.

 9

2n2n2n2n

resetresetresetreset

IIII0000

2n2n2n2n

IIII1111

KKKKiiii

oooo0000

oooo1111

KKKKoooo 1111

Fig. 7. Single-bit dual-rail register

4444

4444

4444

4444

4444

4444

Ko[1]
Ko[2]
Ko[3]
Ko[4]

Ko[5]
Ko[6]
Ko[7]
Ko[8]

Ko[n-3]
Ko[n-1]
Ko[n-1]
Ko[n]

Ko

Fig. 8. N-bit completion detection circuitry

III. SOFT ERROR IN NULL CONVENTION LOGIC

A. Modeling Soft Error at Device Level

Since the NCL circuits are implemented in standard CMOS technology, modeling soft error for an individual transistor

in NCL circuits should be the same as what has been done for general CMOS technology [19]. Fig. 9 shows the mechanism

of soft errors in a Metal Oxide Semiconductor Field Effect Transistor (MOSFET). Electron-hole pairs with a very high

carrier concentration are generated as the particle loses energy in silicon when a particle hits the drain of the MOSFET, and

the resulting charges can be rapidly collected by the electric field to create a large transient current at that node. The

transient current can be modeled as

)exp(
2

)(
T

t

T

t

T

Q
tI −⋅=

π
 (1)

 10

where Q is the amount of collected charge, and T is a process technology-dependent time constant. The detailed discussion

about this model and related parameters can be found in [19]. For sake of simplicity, we use a trapezoid current model for

our sufficient circuit behavioral simulation.

DrainSource

S G D
S

G

D

I(t)

Neutron
strike

Fig.9. Mechanism of soft error in MOSFET and equivalent circuit

Whether the current is injected into or drawn from the node depends on the type of victim drain. For example, a current

is injected into the node if a particle hit occurs at a p-type drain, therefore momentarily increasing the node voltage. If the

logic value of the node is 0 and the current is injected to the node, a transient positive glitch (0-1-0) may occur at the node.

Similarly, a transient negative glitch (1-0-1) may be generated if an n-type drain is hit.

These transient glitches are either killed by three masks (logic mask, electrical mask, latching window mask) during

the propagation [20], or transformed into static errors when these transient glitches are captured by feedback logic circuits,

such as threshold gates in NCL circuits, D flip-flops and memory elements.

B. Soft Errors at the Output of Threshold Gates

It is well known that the basic gates in Boolean logic include NOT, NAND, NOR gates. However, threshold gates with

hysteresis are the basic gates in NCL circuits. Each threshold gate is a storage element due to the hysteresis behavior.

Therefore, it is essential to investigate the soft error generation at the output of an individual threshold gate.

Theoretically, there are four types of soft errors that may be generated at the threshold gate output. These four types

include positive glitch (0-1-0), negative glitch (1-0-1), positive static error (0-1), and negative static error (1-0). The type of

soft error depends on the input pattern, output state, and the location of the particle strike. For example, let us examine

TH23 in Fig. 3. When all inputs are low and the drain of NMOS transistor n6 (or n3 or n4) is hit, a positive glitch may be

generated, as shown in Fig. 10(a). If the input ABC=001 and the output is zero, the same strike may result in a positive

static error, as shown in Fig. 10 (b). If the input ABC=011 and the output is high, a particle strike on the drain of transistor

 11

p3 or p9 may generate a negative glitch at the output, as shown in Fig. 10 (c). If the input ABC=001 and the output is high,

a particle strike on the transistor p3 or p9 may generate a negative static error at the output, as shown in Fig. 10 (d).

Fortunately, it will be shown that, among the four types of soft errors, only two of them, named positive glitch and

positive static error, potentially jeopardize the functionality of the circuits.

2
0

0

0

0

21

1

10

2
0
0

1

0

2
0

0
1

1

(a)

(c)

(b)

(d)

Fig. 10. Soft error generations in threshold gates

C. Soft Errors at the Output of NCL Computational Block

 In this section, we will investigate the NCL computational block as a whole in terms of soft error. Three questions

will be answered: 1) how do soft errors propagate in computational block? 2) What kind of soft errors at the output of

computational block really lead to malfunctions? 3) How sensitive are a specific circuit topology to a random particle strike?

In order to understand the soft error propagation, it is useful to highlight the following characteristics of computational

block: 1) No feedback connection at gate-level. Signals flow only forward in computational block; and 2) during a complete

computation period, a computational block sequentially experiences four states: complete NULL, transition from NULL to

DATA, complete DATA, and transition from DATA to NULL. It is assumed that no two particle strikes occur

simultaneously.

It is difficult for glitch soft errors to propagate from a victim gate to the primary output. Due to the hysteresis, a glitch

soft error (0-1-0 or 1-0-1) will be either killed or transformed into a static soft error (0-1 or 1-0) by the following gate, as

shown in Fig. 11 (a)-(b) and (c)-(d) respectively. The only situation for glitch occurrence at the computation output is that

the victim gate delivers a primary output and its all inputs equal to zero, or that the propagation path consists of threshold

gates with thresholds equal to one and all inputs equal to zero. These two situations can be ignored since they seldom

happen. Furthermore, the generated glitch soft errors can be easily suppressed under a tolerant noise level by introducing a

Schmitt trigger at the output stage of threshold gates [21] [22]. The propagation of static soft errors depends on the input-

 12

output states of the gates along the path, as shown in Fig. 11 (e)-(f). Therefore, only static soft errors are considered to

occur at the output of computational blocks. Actually, among two possible types of static soft errors at the output of the

computational block, only positive static soft error (0-1) may cause error DATA in the NCL pipeline [23].

2
0
1

1
2

0
0

0

2
0
1

0
2

0
0

1

(a) (b)

(c) (d)

2
0

1
00

2
0

0
1 1

(e) (f)

Fig. 11. Soft error propagation through threshold gates

When the computational block is in the complete NULL state, i.e. all nodes at gate-level are low, no static soft error

happens at the output.

Fig. 12 is used to illustrate possible soft error effects on the input of the next stage. Due to the particle strike on the

computational block, a soft error may be generated at (D1, D0), and eventually affect the output of the register depending on

Ki. The dotted lines in Fig.12 denote soft error signals.

When the block is in the transition state from NULL to DATA, i.e. the number of nodes with high signals increases

monotonically, a particle strike can only generate positive static soft error at the output of computational block because the

gate states for negative static soft errors, shown in Fig. 10(d), Fig. 11(d) (f), never occur due to the monotonicity. For the

same reason, only positive static errors could occur at the output when the computational block is in a complete DATA

state. If the positive static soft error occurs at the rail whose error-free signal is high, but before the rising edge of the error-

free signal, as shown in Fig. 12(b), this soft error may lead to an earlier completion of the current computation, and

therefore a premature firing without affecting the circuit logic function. If the positive static soft error occurs at the rail

whose error-free signal low, it will result in an invalid dual-rail signal (1, 1) at the output of computational block, as shown

in Fig. 12 (c)-(f). This invalid dual-rail signal will lead to one of three possible consequences on the input DATA to the

next stage, depending on the timing relationship between the invalid dual-rail signal and Ki connected to the output register:

 13

1) No effect, as shown in Fig. 12(c). If the static soft error appears only when the Ki is low to allow NULL wavefront to

pass, the positive static soft error will be logically blocked by the register.

2) A wrong DATA value is delivered. For example, as shown in Fig. 12(d), the dual-rail DATA is expected to be DATA0

without soft error. However, A DATA1 will be delivered to the next stage.

3) An invalid dual-rail code (1, 1) is delivered to the next stage if the invalid code (1, 1) appears when Ki is high, as

shown in Fig. 12 (e) and (f).

D0

D1

Ki

(b) Early DATA(b) Early DATA(b) Early DATA(b) Early DATA

D0

D1

Ki

(c) No effect(c) No effect(c) No effect(c) No effect

D0

D1

Ki

(d) Wrong DATA delivered(d) Wrong DATA delivered(d) Wrong DATA delivered(d) Wrong DATA delivered

D0

D1

Ki

(e)Invalid (1,1) delivered(e)Invalid (1,1) delivered(e)Invalid (1,1) delivered(e)Invalid (1,1) delivered

D0

D1

Ki

(f)Invalid (1,1) delivered(f)Invalid (1,1) delivered(f)Invalid (1,1) delivered(f)Invalid (1,1) delivered

(g)Early NULL(g)Early NULL(g)Early NULL(g)Early NULL (h)Invalid (1,1) delivered(h)Invalid (1,1) delivered(h)Invalid (1,1) delivered(h)Invalid (1,1) delivered

D0

D1

Ki

D0

D1

Ki

computational
 block

re
gi
s
te
rD0

D1

Ki

(a) circuit addressed(a) circuit addressed(a) circuit addressed(a) circuit addressed

particle strike

Fig. 12. Soft error effects on the input DATA to the next stage

When the computational block is in the transition state from DATA to NULL, a negative static soft error may only

result in faster transition from DATA to NULL, as shown in Fig. 12(g), i.e. no error is delivered to the next stage. A

positive static soft error may result in an invalid dual-rail code (1, 1) only when Ki is high during this transition, as shown

in Fig. 12(h). This invalid code (1, 1) can be avoided by inserting a self-feedback register to make sure that Ki is low during

this transition, as shown in Section IV.

Based on the above analysis, only positive glitch soft errors (if big enough), and positive static soft errors may

jeopardize the circuit function. The following question is: how likely do these soft errors occur in a specific computational

block? To answer this question, it is assumed that: 1) each transistor is hit by a particle with equal probability; 2) the

 14

particle has enough energy to induce a soft error; 3) the dual-rail signal has equal probabilities 0.5 and 0.5, for “DATA0”

and “DATA1” respectively; and 4) the computational block is in a complete DATA state, i.e. both inputs and outputs are

complete DATA. This state is the worst case because it is much less likely for soft errors to occur in other three states.

TABLE 2. SOFT ERROR SENSITIVITY OF THE DUAL-RAIL FULL ADDER

Sensitivity of each

gate

Sub-

total

Inputs

(Ci

1
,Ci

0
) (x

1
,x

0
) (y

1
,y

0
)

G1 G2 G3 G4 Full
adder

(0,1) (0,1) (0,1) 0 4* 0 8 12

(0,1) (0,1) (1,0) 0 6 7 0 13

(0,1) (1,0) (0,1) 0 5 6 0 11

(0,1) (1,0) (1,0) 4 0 0 7 11

(1,0) (0,1) (0,1) 0 4 5 0 9

(1,0) (0,1) (1,0) 5 0 0 6 11

(1,0) (1,0) (0,1) 6 0 0 5 11

(1,0) (1,0) (1,0) 4* 0 8 0 12

Average sensitivity of the full adder 11.25

* Only positive glitch soft errors are generated in these two situations, only positive static soft errors are generated in all other situations.

Let’s consider an individual threshold gate first. If a positive soft error occurs at the output of the gate when a certain

transistor is hit by a particle, the victim transistor is called a sensitive transistor. The soft error sensitivity of the threshold

gate is defined as the number of sensitive transistors in the gate associated with a specific state vector {x1, x2… x3; y},

where xi is an input (i=1, 2 … n) and y is the output. For example, with input ABC=001 and output y=0, the sensitive

transistors in TH23 gate, shown in Fig. 3, include n1, n2, n3, n4, n6, and p10. So the soft error sensitivity of TH23 with state

{0, 0, 1; 0} is six. It is noticed that the soft error sensitivity for output y=1 is zero. Now we consider a computational block.

For a specific input pattern, the total number of sensitive transistors in the computational block is the sum of the

sensitivities of each threshold gates. The average number of sensitive transistors, Navg, is the statistical expectation of its

sensitivity over a specific input DATA probability distribution:

∑ ∑
−

= =

⋅









=

12

0 1

),(

n

i

i

m

j

avg pjiNN (2)

where n is the number of dual-rail inputs, m is the number of threshold gates, N(i,j) is the number of sensitive transistors in

threshold gate j for input pattern i, pi is the probability of input pattern i. Table 2 shows the calculation of average

sensitivity of the NCL full adder in Fig. 5 over uniform random input DATA. Notice that the total number of transistors in

the full adder is 84, and only 11.25 transistors in average are sensitive.

 15

D. Soft Error Propagation in NCL Pipelines

In traditional synchronous circuits, when a soft error propagates to the inputs of storage elements, such as D flip-flops,

it may be captured by the storage elements. If the soft error duration overlaps the clock rising edge by tsetup before the edge

and by thold after the edge, the soft error will be captured by the D flip-flop. Note that tsetup and thold are the setup time and

hold time of the D flip-flop, respectively. Unlike the traditional synchronous circuits, there is no global clock in NCL

circuits. The delivery of the computation results from one stage to the next stage is implemented by the handshaking

scheme. Therefore, whether a soft error at the output of a computational block introduces error DATA to the next state

through register depends on when the soft error appears relative to the handshaking signal Ki.

DATA

DATA

K
i1

Ki2

D
in1

Dout1

D
in2

DATA

DATA DATA

DATA

DATADATA

DATA

D
out1

sensitive
time slots

T1 T2 T3

circuit

sensitivity

T4 T5 T6

less
sensitive

more
sensitive

t1 t3t2

t

t

(A)(A)(A)(A)

(G)(G)(G)(G)

(F)(F)(F)(F)

(E)(E)(E)(E)

(D)(D)(D)(D)

(C)(C)(C)(C)

(B)(B)(B)(B)

Fig. 13. NCL pipeline timing diagram and soft error sensitive time slots

Fig. 13 shows the NCL pipeline timing diagram and soft error sensitive time slots. Let us focus on computational

block1 and its input register R1 and output register R2 in Fig. 1. Register R1 with high Ki1 passes the DATA from block0 to

block1 input Din1. The DATA arrives at block1 output Dout1 after a propagation delay. the DATA at Dout1 will be passed by

R2 to Din2 when Ki2 is high. The complete DATA at Din2 will turn Ki1 to low immediately with a completion detection delay,

and turn Ki2 to low depending on the completeness of computation in block2. Then Register R1 with low Ki1 passes the

 16

NULL to Din1. The NULL propagates to Dout1 with a propagation delay. When Ki2 is low, the NULL will be passed to the

next stage Din2. The NULL at Din2 will turn Ki1 to high to receive the next DATA, and Ki2 will eventually go to high upon

the completeness of nullifying in block3.

It is reasonable to assume that only positive static soft errors should be taken into consideration because positive glitch

soft errors can be easily suppressed by Schmitt trigger and transistor sizing for current or near future CMOS technology

[21]. Once a static soft error is generated at the output of computational block, it will survive until a complete NULL

overwrites the computational block. If there is an overlap between the lifetime of the soft error and high Ki2, the soft error

will result in an error at the next stage. Fig. 13 (F) sketches soft error sensitive time slots, which means that if a soft error

starts to appear at the output of computational block1 during those time slots (e.g. T1, T2, T3), an error DATA will be

delivered to the next stage, otherwise the soft error has no effect. It can be seen that any sensitive time slot starts when the

block output Dout1 begins to transition from NULL to DATA, and ends when either Ki2 changes to low or Dout1 returns to

NULL.

However, the computational block sensitive time slots, as shown in Fig. 13(G), are not the same as sensitive time slots

at the output of computational block due to location distribution of particle strikes and soft error propagation delay. The

computational block is partially sensitive to particle strike between the time when the input starts to leave all NULL state

and the time when the output starts to leave all NULL state, which is denoted by t1. A particle strike on a sensitive transistor

close to inputs during t1 has a chance to result in a positive static soft error at the output during T1 after a propagation delay.

Similarly, the computational block is also partially sensitive to particle strike during t3. A particle strike on transistor closer

to outputs during t3 may more likely generate a positive static soft error at the output during the sensitive time slot T1 after a

shorter propagation delay. The computational block is fully sensitive to particle strike during t2, which implies that as long

as a sensitive transistor is hit by a particle, a positive static soft error will propagate to next stage.

To evaluate the circuit sensitivity quantitatively, it is assumed that any threshold gate has equal rising and falling delay,

and that all stages in the NCL pipeline have an equal delay, and that the input data rate is less than the allowed maximum

input rate limited by component physical delays. The following parameters are defined:

T input DATA-NULL cycle

tR data forward delay of a register

tcomp completion detection delay in a register

tcomb the delay of the computational block

 17

∆ the transition time from all NULL to all DATA

The minimum allowed DATA-NULL cycle is given by

)2(2min compcombR tttT ++= (3)

A weight function w(t) is defined to describe the time dependency of the sensitivity of NCL pipeline, as shown in Fig.

13(G). w(t) is assigned “1” during fully sensitive time t2 while it is less than one during partially sensitive time t1 and t3.

Under the above delay assumptions, t1, t2 and t3 can be expressed as

∆+= combtt1 (4)

compR ttt += 22 (5)

combtt =3 (6)

The soft error sensitivity of a computational block in NCL pipeline is defined as the product of the average number of

sensitive transistors in the computational block and the weight function w(t)

)()(twNtS avg ⋅= (7)

The average soft error sensitivity of each stage in NCL pipeline is defined as

∫∫ ==

TT

avg
dttw

T

N
dttS

T
S)()(

1
 (8)

This equation is very useful for soft error evaluation and circuit design optimization for soft error tolerance. Navg is

determined by the computational block while function w(t) mainly depends on pipeline timing. An example of applications

of equation (8) can be found in [23], where a modified NCL pipeline architecture is evaluated for soft error tolerance based

on the equation.

IV. BUILT-IN SOFT ERROR CORRECTION

Based on the analysis of sensitivity in Section III, the asynchronous pipeline shown in Fig. 1 is much more vulnerable

to soft errors than its synchronous counterpart. Fortunately, a high soft error tolerance can be achieved by modifying the

asynchronous pipeline architecture. Most importantly, a soft error at the output of computational block can be detected and

corrected by utilizing the properties of asynchronous circuits. This section describes these techniques.

A. Glitch soft error suppression

 18

In general, a threshold gate consists of four transistor networks, a pair of feedback transistors (Mp, and Mn), and an

inverter, as shown Fig. 14(a). These four transistor networks are “Go to NULL”, “Hold NULL”, “Go to DATA” and “Hold

DATA”. The first two networks are built with PMOS transistors to generate low output at Z while the later two networks

using NMOS transistors to generate high output at Z. A positive glitch soft error is induced by particle strikes either on the

drain of any NMOS transistor connected to node A or on the drain of the PMOS in the inverter, when all inputs are zero.

Simulation shows that the drain of the PMOS in the inverter is much less sensitive to particle strike than the drain of NMOS

connected to node A.

In order to suppress glitch soft errors in NCL circuits so that the glitch soft errors (0-1) can be ignored at logic design

for soft error tolerance, a Schmitt trigger is introduced to substitute the inverter in threshold gate design, as shown in Fig.

14(b). A double-side trigger can suppress both positive and negative glitches. However, only positive glitches need to be

suppressed in NCL circuits, therefore a single-side Schmitt trigger can be used for this need with less delay and power

penalties. Furthermore, increasing the size of feedback transistor Mp can enhance the positive glitch suppression capability.

However, the Schmitt trigger has very little improvement in static soft error preventions.

Go toGo toGo toGo to
NULLNULLNULLNULL

HoldHoldHoldHold
NULLNULLNULLNULL

Go toGo toGo toGo to
DATADATADATADATA

HoldHoldHoldHold
DATADATADATADATA

VddVddVddVdd

ZZZZ

inputinputinputinput Mp

Mn

GNDGNDGNDGND

A

VddVddVddVdd

GNDGNDGNDGND

AAAA ZZZZ

VddVddVddVdd

GNDGNDGNDGND

(b) Schmitt trigger(b) Schmitt trigger(b) Schmitt trigger(b) Schmitt trigger
(a) threshold gate structure(a) threshold gate structure(a) threshold gate structure(a) threshold gate structure

VddVddVddVdd

GNDGNDGNDGND

AAAA ZZZZ

GNDGNDGNDGND

single-sidesingle-sidesingle-sidesingle-side

double-sidedouble-sidedouble-sidedouble-side

Ms

Fig. 14 Glitch soft error suppression using Schmitt trigger

B. Soft error detection and correction

A soft error at the output of computational block can be detected and corrected by utilizing the properties of

asynchronous circuits. Fig. 15 shows the proposed scheme for soft error detection and correction in NCL pipeline. Several

 19

blocks, which are assumed to be soft error free, are locally added for each stage while the asynchronous handshaking

protocol between stages (in Fig. 1) is maintained. A register is inserted between the computational block 1 and output

register R2. The output of completion detection, req, is connected to the Ki of its own. Once the inserted register passes a

complete DATA, the comp detect block will reset req to low so that any positive soft error at D1 after the complete DATA

wavefront can not propagate through the inserted register, as shown in Fig. 12 (c).

When a soft error reaches the inserted register before the DATA wavefront, the “reset circuit” will reset q to low

immediately, thus resetting the whole combinational block1. After this reset is completed, q will go back to high, and Din1

will come to the combinational block1 again for re-computation. The “SE detect” outputs 0 if “11” code occurs in D1. The

delay amount of “delay” block is around the difference between the propagation delay and contamination delay of the

combinational block 1. The function of “reset circuit” can be described by Table 3, and its schematic is shown in Fig.16. It

is reasonably assumed that Din1 would not change until the re-computation is completed. Although a corrupted DATA token

may occur at Dout1, the signal “error” can indicate the timing location of the corrupted DATA token so that the following

stage can discard the corrupted DATA based on the “error” signal and handshaking signals. Normally, the signal “error” is

low. If an erroneous DATA has been delivered to the next stage, a positive pulse “error” will be generated and attached to

this DATA, as shown in Fig. 17.

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

R
e
g
i
s
t
e
r

compcompcompcomp
detectdetectdetectdetect

computationalcomputationalcomputationalcomputational
 block 1 block 1 block 1 block 1

R1R1R1R1 R2R2R2R2

KoKoKoKo

KiKiKiKi

KoKoKoKoKoKoKoKo

KiKiKiKi
Ki1Ki1Ki1Ki1 Ki2Ki2Ki2Ki2

DDDDin1in1in1in1

DDDDout1out1out1out1 DDDDin2in2in2in2

compcompcompcomp
detectdetectdetectdetect

SE detectSE detectSE detectSE detect

resetresetresetreset
circuitcircuitcircuitcircuit

delaydelaydelaydelay

KiKiKiKi

error

req

q

D1D1D1D1

SE

k1

Fig. 15 Built-in soft error detection and correction scheme

req error q(n+1) R Sreq error q(n+1) R Sreq error q(n+1) R Sreq error q(n+1) R S

 0 0 q(n) 1 1

 0 1 0 1 0

 1 1 q(n) 1 1

 1 0 1 0 1

req

error
R

S

q

 Table 3. Truth table of reset circuit Fig. 16 Schematic of reset circuit

 20

For simplicity, the “computational block 1” in Fig.15 is designed as a dual-rail full adder with delay elements inserted

within the adder. The purpose of delay insertion is to generate the various delay distributions between output signals for

typical larger designs so that the correction scheme can be sufficiently verified. Besides error signal, only Dout1 is plotted in

Fig.17 as (S1, S0) and (C1, C0). A particle strike at a certain time and location in the full adder results in erroneous output (1,

0) for (S1, S0) identified by “error” pulse. It should not be difficult to design a circuit to filter out the erroneous DATA

based on the “error” signal. After resetting, an error-free re-computing result (0, 1) is followed. It should be pointed out

that the delays in Fig.17 are dominated by the inserted delay elements, and do not reflect the real delay information of the

full adder.

e
r
r
o
r

e
r
r
o
r

e
r
r
o
r

e
r
r
o
r

SS SS
00 00

SS SS
11 11

CC CC
00 00

CC CC
11 11

erroneous outputerroneous outputerroneous outputerroneous output
DATA for (SDATA for (SDATA for (SDATA for (S1111,S,S,S,S0000))))

re-computing resultre-computing resultre-computing resultre-computing result

Fig. 17 Behavior of proposed error correction scheme

C. Performance analysis

The traditional NCL pipeline without the proposed correction scheme is very sensitive to soft error, shown in Fig.13,

and the sensitivity is timing dependent. When the input data rate is close to the maximal pipeline speed, the sum of t2 and t3

(in Fig. 13) will reach the maximum, thus resulting in a maximal sensitivity. The proposed correction scheme eliminates

the sensitivity during t2 and t3 since the inserted self-feedback register blocks any soft errors after the completion of the data.

Fig. 18 is used to analyze the soft error tolerance capability, where td is the delay of the delay element. For sake of

 21

simplicity, the data bus D1 in Fig.15 consists of three dual-rail bits (X1, X2, and X3). Due to the multiple-paths, X3 is

assumed to be generated latest, as shown in Fig.18. Based on the analysis of Section III (c), only soft errors at zero-value

rail (e.g. X0
1, X1

1, and X2
1) of D1 need to be addressed, and among them those after DATA completion are eliminated by

the inserted register. Thus, the re-computation is needed only when a soft error appears at D1 zero-rail during ∆. For

example, a soft error at X1
1 during ∆ effectively generates error pulse signal and sets q to zero to reset the combinational

block for re-computation even without the delay element (i.e. td=0). However, if a soft error appears at the zero-value rail

X2
1 of the latest bit X2 during ∆, the DATA completion will falsely be detected before the true DATA completion or “11”

code, therefore a delay element is required to generate a positive pulse error. Fig. 19 shows the impact of delay td on the

soft error coverage, assuming that a soft error randomly appears at each zero-value rail during ∆ with equal probability. As

long as
2

T
t

d
≤≤∆ , where T is the DATA-NULL cycle, all soft errors will be detected, and result will be re-computed. If

∆≤
d

t , some soft errors may be missed with the worse case that all soft errors in the latest bit are missed when td=0.

Therefore, as a trade-off option, the delay element can be deleted with a 1/N decrease of error tolerance if the design and

overhead of delay element is a concern.

XXXX0000
0000

XXXX2222
1111

XXXX2222
0000

XXXX1111
1111

XXXX1111
0000

XXXX0000
1111

DATA completionDATA completionDATA completionDATA completion

SESESESE

k1k1k1k1

true DATA completiontrue DATA completiontrue DATA completiontrue DATA completion

false DATA completionfalse DATA completionfalse DATA completionfalse DATA completion

errorerrorerrorerror

reqreqreqreq

qqqq

ttttdddd ttttdddd

 soft error at non-latest bit X1 soft error at the latest bit X2

Fig. 18 analysis of soft error correction scheme

 22

T/2T/2T/2T/2 ttttdddd

so
f
t

e
r
r
or

so
f
t

e
r
r
or

so
f
t

e
r
r
or

so
f
t

e
r
r
or

c
o
v
e
r
a
g
e

c
o
v
e
r
a
g
e

c
o
v
e
r
a
g
e

c
o
v
e
r
a
g
e

100%100%100%100%

(N-1)/N(N-1)/N(N-1)/N(N-1)/N

0000

N is the number of
bits in the register

CircuitCircuitCircuitCircuit
energyenergyenergyenergy

(pJ)/cycle(pJ)/cycle(pJ)/cycle(pJ)/cycle

pipeline withoutpipeline withoutpipeline withoutpipeline without
correction circuitscorrection circuitscorrection circuitscorrection circuits

pipeline withpipeline withpipeline withpipeline with
correction circuitscorrection circuitscorrection circuitscorrection circuits

(no soft error)(no soft error)(no soft error)(no soft error)

pipeline withpipeline withpipeline withpipeline with
correction circuitscorrection circuitscorrection circuitscorrection circuits

(a soft error)(a soft error)(a soft error)(a soft error)

4.8754.8754.8754.875

6.006.006.006.00

12.37512.37512.37512.375

Fig. 19 the effect of delay element on soft error tolerance Table 4. Energy overhead of the correction scheme

The error correction scheme leads to a hardware overhead which depends on the size of the computational block. For

example, if the computational block is just a full adder that consists of 80 transistors, 66 transistors are needed for the

correction circuitry, and the relative overhead is 82%. If the computational block is a 4x4 unsigned multiplier consuming

2004 transistors [24], the overhead is approximately 7%. The delay overhead due to the AND gate and inserted register is

312 ps based on the pipeline simulation. To investigate the power overhead of the correction circuitry, the energy consumed

during one DATA-NULL cycle is measured for the circuit in Fig. 15 where the computational block 1 is implemented as a

full adder, under three different conditions: 1) without correction circuits and no soft error; 2) with correction circuits but

no soft error; 3) with correction circuits and a soft error. The results are listed in Table 4. The energy overhead of the

correction scheme is 1.125 pJ. It is noticed that a soft error doubles energy consumption due to recomputation. As the

increase of the complexity of the computational block, the relative energy overhead will drop accordingly.

V. SIMULATION RESULTS FOR HARDENING TECHNIQUE

The built-in soft error correction scheme has been verified by Cadence simulation, illustrated in Fig.17. The following

simulation will focus on the soft error hardening technique. In order to evaluate the effectiveness of the proposed soft error

hardening technique, we have performed the experiments on TH23 gate, and have compared the results of different

implementations. In our experiment, every circuit is designed in a 0.12um CMOS technology and simulated by Cadence

SPECTRE with supply voltage 1.2V. All transistors (NMOS or PMOS) have a channel width of 160nm and a channel

length of 120nm except stated otherwise. Fig. 20 shows a soft error occurrence model used in our threshold gate with

single-side Schmitt trigger. The same model is applied to other implementations of threshold gate in our experiment. The

load capacitor is set to 17 fF [25]. A pulse current source I is connected to node A to mimic the effect of particle strike.

When the output Z is low, a pulse current at A may result in a glitch (0-1-0) or a fault transition (0-1), as shown in Fig.21.

 23

For TH23 gate, when ABC=000 and Z=0, the possible soft error is a glitch; when ABC=001 and Z=0, the possible soft

error is a static soft error (0-1).

Go toGo toGo toGo to
NULLNULLNULLNULL

HoldHoldHoldHold
NULLNULLNULLNULL

Go toGo toGo toGo to
DATADATADATADATA

HoldHoldHoldHold
DATADATADATADATA

VddVddVddVdd

ZZZZ

inputinputinputinput Mp

Mn

GNDGNDGNDGND

A

IIII
CCCCloadloadloadload

Ms

 Fig. 20 Simulation setup

dynamic static

C

B

I(t)

Z

Fig. 21 Soft errors for TH23 with A=0

A. Transient Current Model

A transient current source can be used for soft error simulation, as shown in Fig.20. The current I(t) is modeled by

equation (1), where two parameters, T and Q, are needed to determine current I(t). T depends on semiconductor process,

and Q is proportional to particle energy. The T for 0.12um CMOS is assumed to be 20 ps according to [19], and the typical

range of Q is from 20 fC to 120 fC [26]. For simplicity, we use a trapezoid pulse current to approximate I(t), as shown in

Fig.22. The basic idea of approximation is that the trapezoid current pulse should generate the same charge as the

exponential pulse, i.e. their integrals with time are the same. In our experiments, tr=3 ps, tf=57 ps, pw=20 ps. Imax is

linearly proportional to Q, modeled as Imax=20Q uA. For example, Imax=400 uA corresponds to Q=20 fC.

 24

-10 0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

time (ps)

I
(u

A
)

Q=20fC

Q=40fC

Q=60fC

Q=80fC

Q=100fC

trapezoid approximation

pw

tr tf

Imax

Fig. 22 Trapezoid approximation for pulse current

B. Simulation Results

To demonstrate the performance of the proposed technique, we simulated three different implementations of TH23 gate:

basic, single Schmitt and double Schmitt, as shown in Fig.14. For each of them, three different widths (0.32 um, 0.64 um

and 1.28 um) for the feedback PMOS transistor Mp are used since a larger Mp is expected to suppress more soft errors.

Therefore, nine circuits are simulated and compared. To effectively compare the single Schmitt and the double Schmitt, we

set the NMOS transistor Ms in single Schmitt (Fig. 14) as three times big (0.48 um) as one NMOS (160 nm) in the double

Schmitt so that they consume the same area. All other transistors have the same size (W=160 nm, L=120 nm).

To measure the sensitivity of each circuit to particle strike, two current pulses are generated to mimic particle strike:

one at ABC=000, and another one at ABC=001 and Z=0. The former may create a dynamic glitch, and the later may lead to

a static soft error, as shown in Fig.21.

Fig.23 plots the dynamic glitch magnitude as a function of Q for different circuits. For example, “single32” means the

design with single-side Schmitt trigger and 320 nm wide feedback PMOS transistor. When Q is higher than 10 fC, the basic

designs will generate significant dynamic glitch that may eventually lead to a static soft error at the output of its succeeding

gates. The dynamic glitches generated by the designs with Schmitt trigger are much smaller than those generated by basic

designs for the same Q below 40 fC. Therefore, the Schmitt trigger does suppress dynamic glitches.

 25

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40 45 50

Q (fC)

tr
a
n

s
ie

n
t

p
u

ls
e
 m

a
g

n
it

u
d

e
 (

m
V

)
basic32
basic64
basic128
single32
single64
single128
double32
double64
double128

basic designsbasic designsbasic designsbasic designs

proposedproposedproposedproposed
designsdesignsdesignsdesigns

Fig. 23 Dynamic glitch magnitude

0

2

4

6

8

10

12

14

16

0.32u 0.64u 1.28u
w idth of feedback PMOS

T
o

le
ra

b
le

 Q
m

a
x

 (
fC

)

basic

single

double

Fig. 24 Particle strike tolerance for different designs in terms of static soft error

A static soft error will occur when Q is more than a threshold Qmax, even for the proposed designs. It is obvious that the

bigger the Qmax, the more robust the circuit. To find Qmax, during simulation we increase Imax of the pulse current source

until a static soft error occurs. The Qmax corresponds to the maximum Imax which does not cause a static soft error. The

Qmax is plotted in Fig.24 for nine circuits. From Fig.24, two conclusions can be drawn: 1) increasing the feedback PMOS

transistor can improve the robustness to particle strike; 2) both single and double Schmitt triggers significantly increase the

 26

maximum allowed Q without static soft error; and 3) single and double Schmitt triggers have very close impacts on the

robust improvement, compared to basic design.

The proposed technique increases the insensitivity of threshold gate to particle strike. On the other hand, the penalties

of the proposed technique include increased power consumption and increased delay. Fig. 25 shows the energy consumed

by TH23 gate during a switch cycle. A switch cycle is defined as the time duration when the output of the gate transitions

from 0 to 1, and back to 0. The circuits with single-side Schmitt trigger consume around 30% more energy than basic

designs. The double-side Schmitt trigger almost doubles the energy consumption of the basic design.

0

10

20

30

40

50

60

70

80

0.32u 0.64u 1.28u

width of feedback PMOS

E
n

e
rg

y
 p

e
r

s
w

it
c

h
 c

y
c

le
 (

fJ
) basic

single

double

Fig.25 Power consumptions for different designs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

basi
c3

2

ba
si
c6

4

ba
si
c1

28

si
ngl

e3
2

si
ngle

64

si
ngle

12
8

doub
le

32

do
ubl

e6
4

doubl
e1

28

Designs

D
e
la

y
 (

n
s

)

rising delay

falling delay

average delay

Fig. 26 Delays for different designs

 27

Fig. 26 shows the rising, falling and average delays for each design. The rising and falling delays are measured by

Cadence SPECTRE while the average delay is calculated by (rising delay+falling delay)/2. The proposed technique

imposes the average delay overhead. The double-side trigger increases the average delay by a larger amount than the single-

side trigger. The single-side trigger increases the rising delay and decreases the falling delay, but the average delay is bigger

than that of basic design. And also, for each specific design, increasing feedback PMOS transistor size will lead to an

increased delay.

Based on the above simulations, the high tolerance of particle strike can be achieved by sacrificing the power and delay

performance. To achieve the same particle strike tolerance, the single-side trigger designs sacrifice less than the double-side

trigger designs do. For example, single64 has similar tolerance with double64, illustrated by Fig 23 and Fig 24. The

double64 design increases power by 82% and average delay by 120% while the single64 design increases power by 29.4%

and average delay by 50%, compared to the basic64 design. Therefore, designs with single-side Schmitt trigger are better

than designs with double-side Schmitt trigger.

VI. CONCLUSION

Radiation-induced soft errors threaten the reliability of digital systems as devices sizes are shrinking. In this paper, we

have investigated the effect of soft errors in asynchronous circuits, and introduced a built-in soft error correction scheme

with an appropriate assumption. A framework has been proposed to analyze and develop soft error tolerated digital circuits.

Only positive error transitions (from low to high) may generate possible error data in the proposed asynchronous circuit.

Therefore, negative error transitions can be ignored in the analysis and design for soft error tolerance at logic level. This

greatly simplifies the scheme of soft error detection and correction. As a result, the corrupted data can be identified and the

correct data can be obtained by re-computation with a small overhead of logic block.

Another effort of this paper focuses on a technique to suppress soft error generation at gate-level with small area,

power and delay overhead. This technique employs single-side Schmitt trigger in threshold gates for Null Convention

Logic, and achieves a certain amount of soft error suppression. However, this hardening method will become less effective

as transistor scaling down. When considering applying this hardening technique, one should pay attention to the increased

power consumption and delay due to Schmitt trigger and the larger feedback PMOS transistor.

Based on the simulations, circuits in 120 nm or more advanced CMOS technologies are very sensitive to particle

strikes even the Schmitt trigger hardening technique is applied. Fortunately, the proposed asynchronous circuits are able to

 28

detect and correct all soft errors in computational blocks assuming registers and correction circuits be error-free. This

makes our soft error detection and correction scheme more attractive. However, from practical point of view, two topics

need to be investigated in the future work: 1) a logic design for discarding the wrong data token; and 2) design and analysis

of error tolerance for the correction circuits and registers.

ACKNOWLEDGMENT

This work is supported by Missile Defense Agency, the Department of Defense, USA, under the contract HQ0006-07-

C-0013.

REFERENCES

[1] R. C. Baumann, “Soft errors in advanced semiconductor devices – Part I: the three radiation sources,” IEEE Trans. Device Mater.

Reliab., vol.1, no.1, pp.17-22, Mar. 2001.

[2] P. Shivakumar, et al., “Modeling the effect of technology trends on the soft error rate of combinational logic,” in Proc. Int. Conf.

Dependable Syst. Netw., 2002.

[3] M. Zhang, and N. R. Shanbhag, “Soft-Error-Rate-Analysis (SERA) methodology,” IEEE Trans. CAD of ICs and Syst., vol. 25, no.

10, pp.2140-2155, Oct. 2006.

[4] C. L. Chen, and M. Y. Hsiao, “Error-correcting codes for semiconductor memory applications: a state-of-the-art review,” IBM J.

Res. Develop. vol. 28, no. 2, pp. 124-134, 1984.

[5] S. Mitra, M. Zhang, T. M. Mak, N. Seifert, V. Zia, and K. S. Kim, “logic soft errors: a major barrier to robust platform design,” in

Proc. IEEE Int. Test Conf., 2005, pp. 687-696.

[6] Y. Monnet, M. Renaudin, R. Leveugle, “Asynchronous circuits transient faults sensitivity evaluation,” DAC 2005, pp. 863-868, June

13-17, 2005, Anaheim, California, USA.

[7] Y. Monnet, M. Renaudin, R. Leveugle, “Asynchronous circuits sensitivity to fault injection,” in Proc. 10th IEEE International On-

Line Testing Symposium, 2004, pp.121-126.

[8] Y. Monnet, M. Renaudin, and R. Leveugle, “Hardening techniques against transient faults for asynchronous circuits,” in Proc. 11th

IEEE International On-Line Testing Symposium, 2005, pp. 129-134.

[9] W. Jang, and A. J. Martin, “SEU-tolerant QDI circuits,” In Proc. IEEE International Symposium on Asynchronous Circuits and

Systems, 2005, pp. 156-165.

[10] S. Peng, and R. Manohar, “Efficient failure detection in pipelined asynchronous circuits,” in Proc. IEEE International Symposium

on Defect and Fault Tolerance in VLSI Systems, 2005,

 29

[11] S. Peng, and R. Manohar, “Self-healing asynchronous arrays,” in Proc. IEEE International Symposium on Asynchronous Circuits

and Systems, 2006.

[12] K. T. Gardiner, A. Yakovlev, and A. Bystrov, “A C-element latch scheme with increased transient fault tolerance for asynchronous

circuits,” in Proc. 13th IEEE International On-Line Testing Symposium, 2007.

[13] K. M. Fant and S. A. Brandt, “Null Convention Logic: A complete and consistent logic for asynchronous digital circuit synthesis,”

in Int. Conf. Application-Specific Systems, Architecture and Processors, pp. 261-273, 1996.

[14] J. Sparso and S. Furber, “Principles of asynchronous circuit design: A systems perspective,” Kluwer academic publishers, 2001.

[15] K. Van Berkel, “Beware the isochronic fork,” Integration, the VLSI Journal, vol. 13, no. 2, pp. 103-128, 1992.

[16] G. E. Sobelman, and K. Fant, “CMOS circuit design of threshold gates with hysteresis,” in Proc. Int. Symp. Circuits and Systems, pp.

61-64, 1998.

[17] C. L. Seitz, “system timing,” in Introduction to VLSI Systems, Addison-Wesley, 1980, pp. 218-262.

[18] W. Kuang, Iterative ring and power-aware design techniques for self-timed digital circuits, Ph. D. Dissertation, Department of

electrical and computer engineering, University of Central Florida, August, 2003.

[19] P. Hazucha, C. Svensson, “Impact of CMOS technology scaling on the atmospheric neutron soft error rate,” IEEE Trans. on Nuclear

Science, vol. 47, no. 6, pp. 2586-2594, Dec. 2000.

[20] Y. S. Dhillon, et al., “Analysis and optimization of nanometer CMOS circuits for soft-error tolerance,” IEEE Trans. on VLSI syst.,

vol. 14, no.5, pp.514-524, 2006.

[21] Yoichi Sasaki, et. al., “Soft error masking circuit and latch using Schmitt trigger circuit,” in Proc. 12
th

 Int. Symp. on Defect and

Fault-Tolerance in VLSI Syst., 2006

[22] W. Kuang, et al., “Soft error hardening for asynchronous circuits,” in Proc. Int. 22
nd

 IEEE Int. Symp. Defect and Fault-Tolerance in

VLSI Syst., 2007.

[23] W. Kuang, et al., “Design asynchronous circuits for soft error tolerance,” in Proc. IEEE International Conf. on Integrated

Circuit Design and Technology, Austin, Texas, June, 2007.

[24] S. K. Bandapati, S. C. Smith, and M. Choi, "Design and Characterization of NULL Convention Self-Timed

Multipliers," IEEE Design and Test of Computers: Special Issue on Clockless VLSI Design, Vol. 30/6, pp. 26-36,

November-December 2003.

[25] J.M. Rabaey, A. Chandrakasan, B. Nikolic, “Digital integrated circuits, a design perspective,” Prentice Hall, 2003.

[26] H. S. Deogun, D. Sylvester, D. Blaauw, “Gate-level mitigation techniques for neutron-induced soft error rate,” in International

Symposium on Quality of Electronic Design, pp. 175-180, March, 2005.

	Design of Asynchronous Circuits for High Soft Error Tolerance in Deep Submicron CMOS Circuits
	Recommended Citation

	Microsoft Word - j_kuang_zhao_yuan_demara_tvlsi_08.doc

