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Abstract 

Seasonal business operations hire workers within a time window that depends on environmental conditions 

and market prices. For example, in agricultural business, during the growing and harvest seasons, multiple 

workers are deployed in the jobs, performing activities such as tilling soil, sowing seed, spreading fertilizer, 

spraying pesticides, removing weeds, and threshing crops. This study proposes two mixed-integer 

programming (MIP) models with an effective heuristic to solve the problem of simultaneously assigning 

multiple multi-skilled workers to the multiple tasks requiring different skill sets during single-period and 

multiple-period operations. The MIP models are NP hard in the strong sense, and it seems unlikely that 

large sized realistic instances could be solved efficiently by exact algorithms directly except for some 

instances with very sparse tasks and skill sets. Thus, this study presents a heuristic algorithm using k-Opt 

as a diversification strategy embedded within the Tabu search for this complex problem. To assess the 

solution quality of k-Opt heuristic, we solved two sets of instances with different sizes by running the exact 

solver Gurobi and the proposed heuristic algorithm with single processor as well as running Gurobi with 

multiple processors.  This heuristic is applicable to other multitasking situations where a large number of 

workers with multiple capabilities are deployed. 
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1. Introduction 

Seasonal business operations hire workers within a time window that is restricted by environmental 

conditions and market prices. For example, in agricultural business, during the growing and harvest seasons 

of agricultural business, multiple workers are hired and deployed to perform activities such as tilling soil, 

sowing seed, spreading fertilizer, spraying pesticides, removing weeds, and threshing crops. The multiple-

period production cycle in agriculture demands highly complex production planning and effective supply 

chain risk management due to random yields and market demands (Lowe and Preckel 2004; Allen and 

Schuster 2004; Van Elderen 1980; Wijngaard 1988; Basnet, Foulds, and Wilson 2006; Edwards et al. 2015; 

He, Li, and Wang 2018; He and Li 2019).  

The decision to hire seasonal workers for the sole purpose of lowering labor costs without investing in 

training might lead to a higher overall cost if it results in less utilization of labor resource. Consequently, a 

firm operating with a low utilization of labor skills might not remain competitive. In other type of seasonal 

business operations such as traveling and sport tourism businesses, cross-training not only provides 

flexibility to the business and improve customer satisfaction, but also help employee retention and service 

quality (Salem and Abdien 2017; Mabert and Showalter 1990). The mathematical models for decision-

making under uncertain conditions are recently developed for cross-training  (Olivella and Nembhard 

2016).  

The strategy for addressing the challenge under uncertain conditions in seasonal business is to develop 

multi-skilled workforce using cross-training. Cross-training both improves workers’ productivity and 

increases their welfare (Eden and Gaggl 2018), and it becomes core competitiveness in retail industry. For 

example, the German Retailer Aldi uses cross-training to achieve lower operational cost by deploying four 

to five employees per store (Gerhard and Hahn 2005). In recent years, cross-training have attracted interest 

from academicians and practitioners for their potential to improve productivity as well as the socioeconomic 

welfare of workers.  

In this paper, we advance this line of research on two fronts. We examine the economic feasibility of 

hiring and cross-training seasonal workers to perform multitasking. We integrate both objectives and 

propose new mixed-integer programming (MIP) models for multi-skilled workforce management (MSWM) 

under single-period and multiple-period operations. We also present a heuristic algorithm to solve this 

complex problem and numerically evaluate the performance. We use Gurobi to solve two sets of instances 

with different sizes under both sequential and parallel computing environment and compare the results of 

the proposed k-Opt heuristic. 

The remainder of the paper is structured as follows: In section 2, we provide the theoretical and 
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conceptual background and the state of the art in managing a multi-skilled workforce in a multitasking 

environment. We introduce our models in section 3. Section 4 presents the results of a substantial simulation 

exercise, and finally, in section 5, we discuss the managerial implications along with limitations and future 

development. 

2. Literature review 

2.1 Cross-training  

Many firms found cross-training effective approaches to create a multi-skilled workforce to meet the 

demand with rising labor costs and aging workforce (Gerhard and Hahn 2005; Luce 2013; Gnanlet and 

Gilland 2014; Malhotra and Ritzman 1994). It is operational-intensive to manage the workers, and plan 

cross-training the multi-skilled workforce in these firms. In the meantime, others proposed conceptual 

models for empirical studies and investigated the managerial issues of multi-skilled workers under resource-

constrained environment.  The models and methods on cross-training and management of multi-skilled 

workforce of multitasking assignment are summarized in Table 1. 

Table 1 

Models and methods on cross-training and multitasking assignment 

Reference Application Model Solution 

Method/Solver 

Ebeling and Lee (1994) cross-training MILP GAMS solver 

Campbell (1999) cross-training MILP Dynamic Programming 

Shakeri and Logendran 

(2007) 

Multitasking 

assignment 

MILP Tabu search 

Kim and Nembhard 

(2013) 

cross-training MILP CPLEX solver 

Lusa, Corominas, and 

Pastor (2008) 

cross-training MINLP MINLP solver without 

specific detail 

Olivella, Corominas, 

and Pastor (2013) 

cross-training MILP CPLEX solver 

Telhada (2014) cross-training  MILP CPLEX solver 

Hall, Leung, and Li 

(2015) 

Multitasking 

assignment 

MILP Dynamic programming 

algorithms  

Hall, Leung, and Li 

(2016) 

Multitasking 

assignment 

MILP Dynamic programming 

algorithms  
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Cheng et al. (2017) Multitasking 

assignment 

Nonlinear 

programming with 

continuous variables 

Particle Swarm 

algorithm 

Liu et al. (2017) Multitasking 

assignment 
MILP Dynamic programming 

algorithms 

Zhu, Zheng, and Chu 

(2017) 

Multitasking 

assignment 
MILP Dynamic programming 

algorithms(Hall, Leung, 

and Li 2015) 

Ji et al. (2019) Multitasking 

assignment 
MILP Dynamic programming 

algorithms 

 

 The development of seasonal business operation requires a multi-skilled workforce able to perform in a 

multitasking environment. Seasonal business operation often faces these challenges in dynamic 

multitasking environments and depends on human operators with multiple skills. Hiring seasonal workers 

and training them in such skills requires extensive resources. In addition, uncertain environments create 

more complexity in scheduling seasonal workers. It is critical to make employment decisions months before 

the season starts.  

 

2.2 K-Opt heuristic 

In this study, we choose k-Opt strategies for solving improvement processes. k-Opt is the most widely cited 

local optimization method originally used to solve sequential problems such as TSP (Croes 1958; Lin 1965; 

Lin and Kernighan 1973), (Knox 1994; Potvin 1996; Helsgaun 2009; Blazinskas and Misevicius 2011; 

Mladenović et al. 2012; Taillard and Helsgaun 2019).   k-Opt is also integrated with other heuristic methods 

such as Tabu Search, Genetic Algorithm, GRASP, Simulated Annealing, Ant Colony and Particle Swarm, 

for solving applications in network optimization problems such as Fixed Charge Transportation Problem 

(Sun et al. 1998; Rodríguez-Martín and Salazar-González 2010), Facility Location and P-Median problem 

(Hansen and Mladenović 2001), Cluster Analysis(Hansen and Mladenović 2001), Bilinear QP with bilinear 

constraints (Hansen and Mladenović 2001), Maritime Inventory Routing (Papageorgiou et al. 2018),  

Maximum Clique (Katayama, Hamamoto, and Narihisa 2005), Machine Scheduling (Sadfi et al. 2005; 

Wang and Alidaee 2018, 2019; He, Zhong, and Gu 2006), and Mobile Network Design (Fournier and Pierre 

2005). The list of recent development and applications of k-Opt is given in Appendix A. We can observed 

that k-Opt is not limited to TSP and can be applied to some new applications such as MSWM in this study.  

Given the challenges of planning multiple dynamic tasks, and deploying multi-skilled employees, we 

present in the next section an integrated mathematical model as a holistic approach to the multi-skilled 
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multi-period work force scheduling problem. 

3. Model and solution methodology 

Seasonal businesses such as agriculture hire workers within a time window that is restricted by weather 

conditions and market prices. During the seasons, multi-skilled workers are assigned to a set of jobs 

according to their skills. In this study, we assume that there are enough workers with the required skills to 

perform the jobs. Managers often assign a worker to the same job sets throughout the production period 

and each job has one or more tasks. Hence, we investigate the cost challenge of scheduling workers with 

multi-skills for multitasking environments. First, we present a MIP model for seasonal planning during a 

single-period production cycle. In this study, we focus on the cost problems related to labor (hiring and 

cross-training) and cost to perform tasks in both single-period and multiple-period production cycles. The 

efficient use of worker’s skills reduces the cost of labor, thus, the improved scheduling of workers provides 

seasonal businesses with a better planning horizon.  

In subsection 3.1, we present a MIP model to solve the MSWM problem in a single-period production 

cycle. Then, in subsection 3.2., we introduce the necessary modifications to address the cost problem of 

multiple-period production for MSWM in a planning horizon. We propose an effective algorithm in 

subsection 3.3 to solve the MIP models in both scenarios. We begin by defining the input parameters and 

decision variables in the model with their respective notation for single-period and multiple-period 

production cycles. 

 

Input parameters for single-period production : 

Nj Set of specific tasks needed to be performed in a job j = 1… n, assuming there are enough 

qualified workers available in each period of planning horizon 

K  Set of all skill-types needed to do all task 

Mk Set of workers possessing skill for task 𝑘 ∈ 𝑁𝑗 

n Number of jobs in each period of the planning horizon 

m Number of qualified workers available to do the tasks in the jobs 

Qi Total time available for qualified workers i = 1… m in a day, 4 hours for a part-time worker, 8 

hours for a full-time worker (values randomly chosen between 4 and 8 hours) 

djk Time required (demand) to do task k ∈ 𝑁𝑗 in a job j = 1… n (values randomly chosen between 

1 and 8 hours) 

ai Fixed cost (e.g., initial hiring and cross-training of a worker) of deploying workers i = 1… m 

(values chosen between $150 and $1,000 based on worker’s skill set, fixed cost decreases if 

worker possessing more skills ) 
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cjki Cost of  deploying a qualified worker i = 1… m, working on task k ∈ 𝑁𝑗 in a job j = 1… n 

(hour rate value chosen between $7 and $20 per hour based on U.S. Department of Labor pay 

scales and the worker’s skill set, then multiple by the time required to do task, worker with 

more skills commands higher wage) 

Decision variables for single-period production: 

xjki Equal to 1 if task k ∈ 𝑁𝑗 on job j = 1… n is done by a qualified worker i = 1… m, or 0 

otherwise 

yi Equal to 1 if deploying a qualified worker i = 1… m or 0 otherwise 

3.1 Single-period production model 

The MIP model for single-period production is formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       ∑ 𝑎𝑖
𝑚
𝑖=1 𝑦𝑖 + ∑ ∑ ∑ 𝑐𝑗𝑘𝑖𝑥𝑗𝑘𝑖

𝑚
𝑖=1𝑘∈𝑁𝑗

𝑛
𝑗=1   

           s.t.  

∑ 𝑥𝑗𝑘𝑖 = 1,         ∀𝑗, 𝑘 ∈ 𝑁𝑗
𝑚
𝑖=1           (1) 

𝑑𝑗𝑘𝑥𝑗𝑘𝑖 ≤ 𝑄𝑖𝑦𝑖         ∀𝑗, 𝑘 ∈ 𝑁𝑗, 𝑖           (2) 

𝑦𝑖 , 𝑥𝑗𝑘𝑖 ∈ {0,1}        ∀𝑗, 𝑘 ∈ 𝑁𝑗 , 𝑖        (3) 

Constraints (2) can be substituted with the following two equations (Laporte, Nickel, and da Gama 2015) 

𝑑𝑗𝑘𝑥𝑗𝑘𝑖 ≤ 𝑄𝑖 ,           ∀𝑗, 𝑘 ∈ 𝑁𝑗, 𝑖        (2.1) 

𝑥𝑗𝑘𝑖 ≤ 𝑦𝑖 ,                 ∀𝑗, 𝑘 ∈ 𝑁𝑗 , 𝑖        (2.2) 

 

In the single-period production model, Constraints (1) guarantee that every task k of job j must be 

done by a qualified worker. Constraints (2) ensure that if a worker i works on several tasks, the time of each 

task must be within the availability of the qualified worker. Constraints (3) impose a binary restriction on 

the decision variables.  

Constraints (2) are capacitated, thus the single-period production problem is NP hard.  

3.2 Multiple-period production model 

Input parameters for multiple-period production : 

Nj Set of specific tasks needed to be performed in a job j = 1… n, assuming there are qualified 

workers available in each period of planning horizon  

K  Set of all skill-types needed to do all task  

Mk Set of workers possessing skill for task 𝑘 ∈ 𝑁𝑗 

n Number of jobs in each period of the planning horizon 

m Number of qualified workers available to do the tasks in the jobs 
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Qi Total time available for qualified workers i = 1… m  

T Number of periods in planning horizon (e.g., 10 weeks or 8 hours per day) 

djkt Time required (demand) to do task k ∈ 𝑁𝑗 in a job j = 1… n  during a period t = 1… T (values 

randomly chosen between 1 and 8 hours)  

qit Total time a qualified worker is available i = 1… m, during a period t = 1… T 

ait Fixed cost (e.g., initial hiring and training of a qualified worker i = 1… m), during a period t 

= 1… T (values chosen between $150 and $1,000 based on worker’s skill set and the specific 

period t, fixed cost decreases if worker possessing more skills in general) 

cjkit Cost of a qualified worker i = 1… m  working on task k ∈ 𝑁𝑗in a job j 1… n  during a period t 

= 1… T (hour rate value chosen between $7 and $20 per hour based on U.S. Department of 

Labor pay scales and the worker’s skill set, then multiple by the time required to do task, 

worker with more skills commands higher wage in general with seasonal factor of the specific 

period t) 

Decision variables for multiple-period production: 

xjkit Equal to 1 if task k ∈ 𝑁𝑗 on job j = 1… n is done by a qualified worker i = 1… m during a 

period t = 1… T, and 0 otherwise 

yit Equal to 1 if a qualified worker i = 1… m starts first time during a period t = 1… T, and 0 

otherwise 

𝑣𝑖𝑡  Equal to 1 if a qualified worker i = 1… m works in a period t = 1… T, and 0 otherwise  

 

The MIP model for multiple-period production is formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒         ∑ ∑ 𝑎𝑖𝑡𝑦𝑖𝑡
𝑇
𝑡=1 + ∑ ∑ ∑ ∑ 𝑐𝑗𝑘𝑖𝑡𝑥𝑗𝑘𝑖𝑡

𝑚
𝑖=1

𝑇
𝑡=1𝑘∈𝑁𝑗

𝑛
𝑗=1

𝑚
𝑖=1    

              s.t. 

  ∑ 𝑥𝑗𝑘𝑖𝑡 = 1                           ∀𝑗, k ∈ 𝑁𝑗, 𝑡𝑚
𝑖=1                                 (4) 

𝑑𝑗𝑘𝑡𝑥𝑗𝑘𝑖𝑡 ≤ 𝑞𝑖𝑡𝑣𝑖𝑡                      ∀𝑗, k ∈ 𝑁𝑗, 𝑖, 𝑡      (5) 

∑ 𝑞𝑖𝑡𝑣𝑖𝑡 ≤ 𝑄𝑖                        ∀𝑖  𝑇
𝑡=1           (6) 

                         𝑣𝑖𝑡 ≤ ∑ 𝑦𝑖𝑙
𝑡
𝑙=1                             ∀𝑖 , 𝑡                                                                                          (7) 

𝑦𝑖𝑡 , 𝑣𝑖𝑡 , 𝑥𝑗𝑘𝑖𝑡 ∈ {0,1}                       ∀𝑗, k ∈ 𝑁𝑗 , 𝑖, 𝑡     (8) 

 

In this model, Constraints (4) guarantee that every task k of job j must be done by a qualified worker 

during a period t of the horizon. Constraints (5) ensure that if a worker i works on several tasks during a 

period t; then the time of each task must be within the availability of the qualified worker i during that 

period. Thus, for the worker i and period t, we have max𝑗𝑘{𝑑𝑗𝑘𝑡𝑥𝑗𝑘𝑖𝑡} ≤ 𝑞𝑖𝑡𝑣𝑖𝑡. Note that Constraints (5) also 

ensure that the assignment of a qualified worker i for a task during period t is only possible if the qualified 
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worker i is deployed in that period. Constraints (6) ensure that the total working time of the worker i during 

the planning horizon is limited by its availability Qi. Constraints (7) ensure that if worker I works in period 

t, then he/she must have been trained earlier or during time t and enforce the first time a worker starts to 

work will have some fixed cost. The fixed cost is related to worker’s skill set. Constraints (8) impose a 

binary restriction on decision variables.  

Constraints (5) and constraints (6) are both capacitated. MSWM problem is the special case of an 

uncapacitated facility location (UFL) problem, which is a NP hard in the strong sense (Galvão and Raggi 

1989; Garey and Johnson 1990). The comparison between MSWM and UFL problem is given in Appendix 

B. Therefore, it seems unlikely that large sized realistic instances could be solved efficiently by exact 

algorithms directly except for some instances with very sparse tasks and skill sets. Thus, we provide a new 

algorithm to solve the multiple-period production problems as well as the single-period production 

problems where t is equal to 1. 

For MSWM problem in multi-period production, we consider an instance with 3 jobs and 3 workers 

for 2 periods. The tasks of jobs and time of each task as well as the workers’ availability are given. The 

fixed cost for workers who start at any given day are determined by the workers’ skill set. The input data 

and results are given in Table 2 and the values of the decision variables are given in the Supplementary 

Material ST.14.  In the optimal solution, only worker M1 is deployed to complete three jobs in both periods. 

The associated variable costs cjkit and fixed cost ait are highlighted in boldface. Before worker M1 is 

deployed in period t1, the fixed cost a1t has to be occurred for hiring and training of worker M1. The variable 

costs for worker M1 to complete the task of Job 1, 2, and 3 in period t1 are 15, 30, 17, and 15. The variable 

costs for worker M1 to complete the task of Job 1, 2, and 3 in period t2 are 32, 17, 16, and 34. The objective 

function value is the sum of all variable costs and fixed cost of worker M1. 

Table 2  

Illustrated example for MSWM problem in multi-period production 

Job N1 N2 N3 N4 Worker M1 M2 M3 M4 

1 1  1  1 1 1 1 1 

2   1 1 2  1 1 1 

3 1 1   3 1  1  

djkt d11t d13t d23t d24t d31t d32t q1t q2t q3t 

t=1 1 2 1 1   8 8 4 

t=2 2 1   1 2 8 4 4 

cjkit c111t c112t c113t c131t c132t c133t c231t c232t c233t 

t=1 15 10 7 30 20 14 17 13 8 
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t=2 32 22 15 17 13 9    

cjkit c241t c242t c243t c311t c312t c313t c321t c322t c323t 

t=1 15 12 8       

t=2    16 14 9 34 22 15 

ait a1t a2t a3t Q1 16     

t=1 125 240 320 Q2 12 Solution 

t=2 135 260 340 Q3 10 Objective Function Value 301 

 

3.3 K-Opt strategies 

In seasonal businesses, if a set of specific tasks N j must be performed on job j, then for a given task k in Nj, 

each element of Nj needs a different worker to complete it during period t. If t is equal to 1, we are then 

addressing single-period production. To determine the assignment of a qualified worker X(j) = I who 

completes this task k during period t, we need to check all workers 𝑙 ≠ 𝑘 . Thus, we need to have a strategy 

for determining the order in which to check all workers to produce the greatest efficiency. Following Recent 

published procedures (Wang and Alidaee 2018, 2019), we borrow the k-Opt strategy from sequencing 

problems such as the traveling salesman problem (TSP) and use it to improve the assignment. In the process, 

we implement sequencing strategies 2, 3, 4-Opt, and ALL for the assignment of both tasks and workers (see 

Figures SF1–SF3 and detailed description in Supplementary Material). There are 5 movements for 2-Opt, 

24 movements for 3-Opt, and 8 movements for 4-Opt. Based on the k-Opt strategies we can choose one of 

those movements to improve the sequence of tasks and the assignment of workers. Therefore, we have a 

sequential order of workers in the assignment. We apply one k-Opt strategy at each step to create a new 

sequential order in order to check which qualified worker should be evaluated first. The improvement steps 

based on the k-Opt strategies are implemented by the TS algorithm with an embedded strategic oscillation 

(SO). Glover and Kochenberger (1996) first introduced this method of using the TS algorithm with an 

embedded SO and later implemented it in the xQx model (Glover, Kochenberger, and Alidaee 1998). The 

k-Opt strategy in this study is implemented as an exact constraint-guided search method where we fix the 

same set of variables in each iteration of the improvement process. Definitions for the full pseudo code of 

our improvement procedures in Fig. 1 are as follows: 

   

v Number of variables 

x A binary starting solution with v variables 

x* The best solution found so far by an algorithm 

Z The value of the objective function for variable x 
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Z* The value of the objective function for the best solution found 

π The vector for the order of tasks and workers 

𝐽𝑛𝑒𝑥𝑡(𝑋) A set of variables X where conditions of local optimality are not satisfied 

L1, L2 The sequence of tasks, the sequence of workers 

p1, p2 Two integer constants where 𝑝1 < 𝑝2 ≤ 𝑣; their values depend on the problem 

Tabu_ten An integer constant for the number of iterations for subsequent searches in which all moves 

are permissible (maximum value a variable can remain in Tabu status) 

Tabu(i) For i = 1… v, a vector representing Tabu status of tasks 

   

1 Initialization: 

       X= a starting feasible solution, X*=X, 𝑍𝑥 = �̅� p1, p2, Tabu_ten, 

       Tabu(i)=0, for i=1,…,v, and π = (𝜋1, ⋯ , 𝜋𝑣) calculate the set 𝐽𝑛𝑒𝑥𝑡(𝑋) 

2 Do while (until some stopping criteria, e.g., time limit, is reached)  

3     For K=p1 to  p2 

4         Do while (𝐽𝑛𝑒𝑥𝑡(𝑋) ≠ ∅) 

5             For i=1 to  v-1 

6     L1=𝜋1 

7      For j=i+1 to v 

8           L2=𝜋𝑗 

9           If (L1, L2ϵ𝐽𝑛𝑒𝑥𝑡) Then 

10                           �̅� = 𝒁 for 𝒙�̅� = 𝒙𝒋, 𝒋 ≠ 𝑳𝟏, 𝑳𝟐, and �̅�𝒋,𝟏 = 𝟏 −  𝒙𝒋,𝟏, �̅�𝒋,𝟐 = 𝟏 −  𝒙𝒋,𝟐 

11               If ((Tabu(L1)=0).and. Tabu(L2)=0) or (𝑍̅̅ ̅ > 𝑍∗)) Then 

12         𝒙𝒊,𝟏 = 𝟏 −  𝒙𝒋,𝟏, 𝒙𝒊,𝟐 = 𝟏 −  𝒙𝒋,𝟐     

13        Update: 𝐽𝑛𝑒𝑥𝑡(𝑋) Tabu (j), for j=1,…,v, 

14                                𝑍 = �̅�, 

15                              If  (𝑍̅̅ ̅ < 𝑍∗) 𝑍∗ = �̅� 

16                          End If    

17           End If 

18       End For 

19             End For 

20    Call k-Opt() 

21         End while 

22         Call rand_var_change(.) 

23     End For 

24   End while 

Fig. 1. Pseudo code of TS algorithm using k-Opt strategies 

Our algorithm randomly chooses a set of tasks Nj on a job j and randomly changes the worker 

assignment for each task (Line 1 in algorithm). When the stopping criteria is reached such as time limit, we 

reported the final solution (Lines 2 to 24). After the local optimality condition is reached, the function 

“rand_var_change” is invoked to change the worker assignments. We use the following rule for those 

changes. When a local optimality is reached after k-Opt improvement processes (Lines 4 to 21), a random 

number p is generated in the interval 𝑝 ∈ [1, 𝐾] where K is changing in the interval [p1, p2] then p tasks 
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are randomly selected and randomly make rand_var_change on a different worker (Lines 3 to 23).  The 

concept is closely related to the strategic oscillation used in many TS settings; see (Glover and 

Kochenberger 1996; Glover, Kochenberger, and Alidaee 1998). However, we use some randomness in our 

algorithm to implement a form of strategic oscillation. Most importantly, we never remove a feasible 

solution from the Tabu list. We only make a rand_var_change on a set of randomly chosen tasks; thus we 

always preserve any feasible solutions during the improvement process. During the implementation, we 

only examine the Tabu status on the tasks, not on the workers. Furthermore, we use a simple aspiration 

criterion in the TS algorithm. If the new solution is strictly better than the best known solution found so far, 

we override the Tabu status for the variables to be changed.  

4. Numerical study on a synthesized dataset 

In order to measure the performance of the proposed models and the algorithm, we first created an 

illustrative example using U.S. Department of Labor pay scale data (United States Department of Labor 

2017) and salary survey to calculate labor costs (Edwards and Johanns 2012). Then we evaluated the models 

and the algorithm with different parameter settings for mismatched supply of and demand for workers’ 

skills. We coded all k-Opt strategies in the proposed algorithm using Fortran language, which was compiled 

by GNU gfortran compiler v4.7 and ran on a single core of Intel Xeon Quad-core E5420 Harpertown 

processors, which have a 2.5 GHz CPU with 8 GB memory. To assess the solution quality of  k-Opt  

heuristic, we solved two sets of instances from 20 jobs and 40 workers up to 1000 jobs and 1500 workers 

by Gurobi solver version 8.1 (Gurobi Optimization 2019) as well as k-Opt Heuristic. We also explored the 

solver on parallel computing environments by setting the number of threads larger than one. All computing 

jobs were submitted through the Open PBS Job Management System. 

 

4.1 Parameter Tuning of Heuristic 

 

For seasonal businesses, manager hires both seasonal and permanent workers to perform jobs during the 

seasons (Wishon et al. 2015). Each job has multiple tasks and one or more workers can work together on 

the same job but different tasks. On this basis, we first chose 200 jobs and 400 workers to evaluate our 

models and the algorithm. We chose a different probability (demand side) for a specific task needed on a 

job randomly. We chose a different probability (supply side) for a qualified worker with a specific skill. 

This probability can also be used if we consider the ratio of seasonal workers to permanent workers. A high 

value indicates that the majority of workers are permanent, whereas a low value indicates more workers are 

seasonal. The probability values were 0.5 and 0.8, respectively. If the time a worker required to perform 

the tasks in a job was less than the time it was available during the day, we calculated the labor cost as the 

product of time and cost per hour of deploying that worker for that specific job. As far as the criteria for 
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stopping the algorithm, our initial implementation tested different values of p1 and p2. These values 

affected the amount of time required to run the algorithm and the quality of the solution. The values of 

Tabu_ten also affected the solution quality and we found Tabu_ten = 5 generated a significantly better 

solution than did values of 3, 10, and 15. Thus, we chose Tabu_ten = 5, p1 = 1, p2 = alpha * m + 1 where 

alpha = 0.05, 0.12, and 0.20 in our initial experiment. For each problem, we ran the algorithm 10, 20, and 

30 times. We chose three scenarios to generate the test problems with mismatches of demand for and supply 

of skill: the skill of the qualified worker is less than, is equal to, or is greater than the skill required to 

complete the task in the job. These scenarios also reflect on the decision to hire different ratios of seasonal 

and permanent workers. Results for 200 jobs and 400 workers are presented in Tables 3 - 5. 

We adopted the following notation: 

NW Number of times the whole algorithm was run 

Z* The value of the objective function for the best solution found 

TB[s] Time to reach the best solution in seconds 

TT[s] Total time to run the whole algorithm in seconds 

prob_job Probability that a task would require a specific skill (demand side) in a job 

prob_skill Probability that a worker has a specific skill (supply side) 

alpha Number of inner loops in the algorithm; use percentage of the number of workers 

  

Table 3  

Comparison of k-Opt strategies with different alpha values and n=200, m=400, Nj=6, NW=10  

prob_job=0.8 

prob_skill=0.5 

alpha=0.05 alpha=0.12 alpha=0.2 

Z* TB[s] TT[s] Z* TB[s] TT[s] Z* TB[s] TT[s] 

2-Opt 37439 3.72 16.32 37636 12.16 47.42 37595 38.09 84.16 

3-Opt 37584 0.19 16.26 37574 0.25 48.23 37554 23.44 85.49 

4-Opt 37619 0.13 16.17 37722 0.27 48.71 37563 1.75 82.30 

ALL 37522 5.70 15.82 37413 0.55 49.97 37535 76.86 85.35 

Average 37541 2.438 16.14 37586 3.306 48.58 37562 35.03 84.33 

prob_job=0.8 

prob_skill=0.8 

alpha=0.05 alpha=0.12 alpha=0.2 

Z* TB[s] TT[s] Z* TB[s] TT[s] Z* TB[s] TT[s] 

2-Opt 35738 0.26 15.50 35738 0.28 43.01 35624 67.63 76.17 

3-Opt 35756 14.44 15.84 35694 23.98 43.34 35684 50.36 75.76 

4-Opt 35640 1.00 15.07 35722 31.12 41.38 35721 26.36 76.56 

ALL 35557 3.76 15.58 35586 0.19 42.49 35688 33.90 76.54 

Average 35673 4.862 15.50 35685 13.89 42.56 35679 44.561 76.26 

prob_job=0.5 alpha=0.05 alpha=0.12 alpha=0.2 
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prob_skill=0.8 Z* TB[s] TT[s] Z* TB[s] TT[s] Z* TB[s] TT[s] 

2-Opt 24418 4.42 9.87 24559 15.69 26.05 24471 25.88 46.25 

3-Opt 24450 0.22 9.31 24505 0.09 26.44 24459 0.15 46.58 

4-Opt 24577 0.20 9.17 24531 6.08 25.66 24500 0.43 43.72 

ALL 24561 3.60 9.09 24508 0.20 25.04 24435 20.03 45.97 

Average 24502 2.11 9.361 24526 5.52 25.80 24466 11.62 45.63 

 

Table 4 

Comparison of k-Opt strategies with different alpha values and n=200, m=400, Nj=6, NW=20 

prob_job=0.8 

prob_skill=0.5 

alpha=0.05 alpha=0.12 alpha=0.2 

Z* TB[s] TT[s] Z* TB[s] TT[s] Z* TB[s] TT[s] 

2-Opt 37439 3.92 36.84 37510 55.85 117.72 37595 38.19 182.08 

3-Opt 37446 2.98 36.21 37539 96.45 116.24 37466 132.03 178.84 

4-Opt 37521 4.08 35.79 37419 63.14 98.27 37628 2.30 170.70 

ALL 37555 2.57 35.98 37531 81.74 113.60 37481 0.45 180.78 

Average 37490 3.39 36.21 37500 74.29 111.46 37543 43.24 178.10 

prob_job=0.8 

prob_skill=0.8 

alpha=0.05 alpha=0.12 alpha=0.2 

Z* TB[s] TT[s] Z* TB[s] TT[s] Z* TB[s] TT[s] 

2-Opt 35738 0.25 32.76 35696 82.76 92.36 35562 83.64 159.86 

3-Opt 35628 3.21 32.58 35740 1.11 92.05 35633 10.44 153.91 

4-Opt 35562 0.44 32.03 35717 80.00 89.97 35634 8.18 155.80 

ALL 35708 8.97 31.50 35771 11.02 93.01 35564 6.84 157.44 

Average 35659 3.22 32.22 35731 43.72 91.85 35598 27.27 156.75 

prob_job=0.5 

prob_skill=0.8 

alpha=0.05 alpha=0.12 alpha=0.2 

Z* TB[s] TT[s] Z* TB[s] TT[s] Z* TB[s] TT[s] 

2-Opt 24418 4.31 20.49 24462 28.77 60.17 24471 26.18 98.12 

3-Opt 24457 2.18 19.32 24423 30.27 56.41 24441 65.11 96.71 

4-Opt 24418 16.67 18.71 24402 2.76 50.82 24493 4.13 92.95 

ALL 24485 13.72 19.43 24474 22.46 52.84 24437 5.78 97.02 

Average 24445 9.23 19.49 24440 21.07 55.06 24461 25.3 96.2 

 

Table 5  

Comparison of k-Opt strategies with different alpha values and n=200, m=400, Nj=6, NW=30 

prob_job=0.8 

prob_skill=0.5 

alpha=0.05 alpha=0.12 alpha=0.2 

Z* TB[s] TT[s] Z* TB[s] TT[s] Z* TB[s] TT[s] 

2-Opt 37439 3.64 53.96 37510 52.96 154.26 37595 38.98 339.68 
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3-Opt 37525 2.25 56.86 37498 42.89 155.07 37553 267.82 294.54 

4-Opt 37480 5.66 52.47 37541 26.30 148.68 37586 100.22 265.29 

ALL 37480 39.61 52.29 37498 77.48 153.61 37506 224.88 325.08 

Average 37481 12.79 53.90 37512 49.91 152.90 37560 157.98 306.15 

prob_job=0.8 

prob_skill=0.8 

alpha=0.05 alpha=0.12 alpha=0.2 

Z* TB[s] TT[s] Z* TB[s] TT[s] Z* TB[s] TT[s] 

2-Opt 35710 33.77 50.14 35674 115.80 140.52 35562 83.41 248.14 

3-Opt 35752 16.82 49.86 35496 76.06 135.46 35550 217.61 249.52 

4-Opt 35552 48.42 48.81 35678 107.16 132.00 35661 130.55 238.59 

ALL 35649 45.72 49.66 35611 76.09 134.20 35628 0.38 243.84 

Average 35666 36.18 49.62 35615 93.78 135.54 35600 107.99 245.02 

prob_job=0.5 

prob_skill=0.8 

alpha=0.05 alpha=0.12 alpha=0.2 

Z* TB[s] TT[s] Z* TB[s] TT[s] Z* TB[s] TT[s] 

2-Opt 24418 4.32 30.23 24462 26.48 83.58 24471 25.92 148.33 

3-Opt 24409 24.68 28.42 24439 57.51 82.77 24447 93.85 142.60 

4-Opt 24417 30.24 30.50 24443 54.75 88.70 24469 9.77 140.79 

ALL 24411 25.32 29.24 24453 80.67 88.73 24384 59.47 143.78 

Average 24414 21.14 29.60 24449 54.85 85.94 24443 47.25 143.88 

 

 

Fig. 2. Solution Quality with different alpha values (n=200, m=400) 

 

In Tables 3–5, each pair of prob_job and prob_skill indicates a scenario of mismatched supply of 

and demand for skills in the test environment. There are three scenarios for each stopping criterion (NW = 

10, 20, and 30) with a total of 9 sets of results. We reported the objective function value (OFV), CPU time 

to reach the best solution, and total CPU time within the number of times the whole algorithm ran for each 

scenario under different alpha values and different k-Opt strategies, as well as the average OFV of four 
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strategies. We highlighted the best OFV found and the best average OFV of four strategies. Among the 9 

sets of results, our algorithm reported 4/9 of the best OFV and 5/9 of the best average OFV found when 

alpha was equal to 0.05; 4/9 of best OFV and 1/9 of the best average OFV found when alpha was equal to 

0.12; and 1/9 of best OFV and 1/3 of the best average OFV found when alpha was equal to 0.2. Thus, the 

algorithm performed much better when alpha was equal to 0.05. When alpha is equal to 0.05, we found the 

best improvement of solution quality while increasing the number of times the whole algorithm ran (Fig. 

3). %Deviation in Fig 2 is measured by: 

 
√

∑(𝑥−�̅�)2

𝑛

�̅�
⁄

 

We also analyzed the effect of the number of times required to run the whole algorithm on the 

solution quality (see Table AT.1 in Appendix). When we increased this number, we found a better OFV or 

better average OFV on all four strategies. When the skill of a qualified worker increases, the TT (total CPU 

time within the number of times the whole algorithm ran) value increased while the best OFV improved in 

correlation with increasing NW values (See Table AT.2 in Appendix). The possible correlation can be 

explained as follows: if more choices for assigning workers to tasks are available, then it takes more time 

to construct the initial solutions each time the whole algorithm runs. When the skill of a qualified worker 

increases, the TB (CPU time to reach the best solution) and the TT (total CPU time within the number of 

times the whole algorithm ran) values increase except that NW equals 30 ad the average OFV of four 

strategies improves along with increasing NW values (See Table AT.3 in Appendix).  

We performed more tests on parameter settings with alpha = 0.05 and NW = 30 on 200 jobs and 

400 workers to see how the problem of mismatches between supply of and demand for skills affects total 

cost. The probability value of the task demand and worker supply contains six combinations (0.3, 0.5), (0.5, 

0.3), (0.5, 0.6), (0.6, 0.5), (0.5, 0.9), and (0.9, 0.5). Table AT.4 in Appendix shows that total cost increases 

when task demands exceed the supply of skills. Conversely, total cost decreases when the supply of skills 

exceeds the task demands (Figs. 3 and 4). We found the same effect on the average TB and TT values.  

 

 

Fig. 3. Total cost under probability of 50% 
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Fig. 4. Total cost under the same level of work needed on the job 

 

To investigate the relationships between job size, worker availability, and match between demand 

for and supply of skills, we performed tests on 144 cases with 10 runs per case. The results of 1,440 

randomly generated problems are reported at https://doi.org/10.18738/T8/RSXR1T. The parameter settings 

are alpha = 0.05 and NW = 30 on problems ranging from 200 to 400 jobs and 50 to 2,000 workers. The 

probability values for supply and demand are 0.01, 0.05, 0.15, 0.5, and 0.8, respectively. The results showed 

that mismatches between supply and demand affect the total cost. We report the average OFV for each case 

with different k-Opt strategies in Tables ST-1 to ST-9 in the Supplementary Material.  

Tables AT.5 and AT.6 in the Appendix report the number of best solutions found, or the best CPU 

times found, on both types of problems (the ratio of jobs/workers is greater than 1 or less than 1) with the 

same average OFV of 10 randomly generated problems per 144 cases for each strategy. ALL strategy is 

better than the other three strategies on these test problems, especially on the large-scale problems. 2-Opt 

strategy is the least favorable among the four strategies. The complete results for different numbers of jobs 

and numbers of workers are given in Tables ST-10 and ST-11 in the Supplementary Material. 

 

 

Fig. 5. Effect of mismatched supply and demand of skills on total cost (n=200, m=50) 

 

22000

24000

26000

28000

0.3 0.6 0.9

Z
*

Probability of Supply

2-OPT

3-OPT

4-OPT

ALL

prob_job=0.05
prob_job=0.15

prob_job=0.5
prob_job=0.8

0

10000

20000

30000

40000

50000

60000

prob_s

kill=0.

05

prob_s

kill=0.

15

prob_s

kill=0.

5

prob_s

kill=0.

8

prob_job=0.05 15027 14206 11784 11246

prob_job=0.15 18923 17404 14675 13350

prob_job=0.5 35288 33603 28998 26384

prob_job=0.8 51481 49699 41845 39193

A
v
er

ag
e 

Z
*

Mismatched Supply and Demand of Skills

https://doi.org/10.18738/T8/RSXR1T


17 

 

 

Fig. 6. Effect of mismatched supply and demand of skills on total cost (n=200, m=500) 

 

 

Fig. 7. Effect of mismatched supply and demand of skills on total cost (n=400, m=1000) 
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remains stable at 1:2.5. In Figs. 6 and 7, we reported the effect of mismatched skills on cost reduction when 

there are more workers available to managers. If qualified workers have more skills, then the total cost will 

be much lower (Fig. 8). For the same amount of work needed on a job, if qualified workers have more 

skills, it is less costly to finish all jobs, which is consistent with the results reported by Henao Ferrer, Muñoz, 

and Vera (2016) and Mac-Vicar, Ferrer, Muñoz, and Henao (2017) for the service sector. 
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Fig. 8. Total cost of mismatched skills for different sizes of operation and available workers. 

 

4.2 `Solution Quality and Parallelism 

After the initial analysis of k-Opt heuristic, we evaluated its solution quality by comparing the 

results of Gurobi. First, we reported the optimal solutions for some instances found by Gurobi 

solver within the limit of computing resource and the best solutions found by the k-Opt heuristic 

in Tables 6 and 7. The computing time limit for the Gurobi solver is 288000 seconds and for k-

Opt is 3600 seconds on single processor. We also reported the results for both Gurobi solver and 

k-Opt heuristic within 3600 seconds in Tables C.1 and C.2. Our initial analysis showed the smaller 

alpha values, which is associated with smaller p2 values, producing better solution quality on 

different instances. Thus, in the final analysis, we used alpha=0.01, 0.05, and 0.12 for all instances 

in the final analysis. We also used time limit as stopping criteria instead of NW values to allow 

the algorithms running until reaching 3600 seconds in the final analysis. In Tables 6 and 7,   The 

data files of these instances are available at https://doi.org/10.18738/T8/RSXR1T. We reported the 

results for each instance with different k-Opt strategies in Tables ST-12 and ST-13 in the 

Supplementary Material. For small sized instances, k-Opt heuristic found the optimal solutions on 

all instances as Gurobi did and took less than 1 minute. For medium and large sized instances, the 
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Gurobi while the k-Opt heuristic uses less than 1% of time on average. For very large sized 

instances with high demand (prob_job=0.8), the k-Opt heuristic found a better solution than Gurobi 

under the time limit (Tables 6 and 7). 

We also explored the effect of parallelism of Gurobi for solving medium and large sized 

instances by setting “threads” parameters to allow it to run under a parallel computing environment. 

When we use “threads=2”, the total computing time limit on two processors allowed by the solver 

is 200% of the sequential run. We found a super-linear speedup on some large instances, in which 

the rate of speedup is larger than the number of threads used. For two large sized instances with 

high job demand, Gurobi was unable to find initial integer solutions within a time limit in the 

sequential run while it found good integer solutions under parallel computing environment. 

Because Gurobi solver uses branch-and-bound, branch-and cut, and backtracking dynamically for 

solving a tree search method in the optimization procedure, the thread, which performed the 

process of a branch-and-bound node or the process of backtracking, might affect the behavior of 

other threads by updating the new global bound of the objective function, and short-circuit the 

evaluation of nodes in the solution search procedure. In addition, when we compared the process 

log files from sequential run and parallel run, we found some feasible solution points and cuts in 

the sequential run missing in the parallel run. This gave us some evidence on short-circuiting the 

evaluation of nodes. For some large sized instances in Tables 6 and 7, the computational time on 

“threads=2” is better than the one on “threads=4”.  This might indicate the search strategies and 

effects different threads might have on updating the global bounds and the evaluation of nodes.  

There are several other factors on linear speedup including a balanced search tree with lot of search 

required and build-in heuristics within the solver.  

Table 6. Solution quality of k-Opt strategies and parallelism of Gurobi solver (prob_job=0.5 

prob_skill=0.3, Nj=8) 

 

 

100 jobs 200 workers 

alpha=0.01 for K-Opt/ 

threads=1 for Gurobi 

alpha=0.05 for K-Opt/ 

threads=2 for Gurobi 

alpha=0.12 for K-Opt/ 

threads=4 for Gurobi 

Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 19780a 0.53 19781a 1.25 19780d 0.02 

Gurobi 19780 

(19780) 

53.14 19780 

(19780) 

56.01 19780 

(19780) 

32.09 

150 jobs 300 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 28493c  2.492 28557c 0.019 28541b 0.076 
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Gurobi 28493 

(28493) 

873.9 28493 

(28493) 

523.116 28493 

(28493) 

319.21 

200 jobs 400 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 34467c 5.789 34487b 15.013 34473c 5.243 

Gurobi 34467 

(34467) 

190.197 34467 

(34467) 

166.845 34467 

(34467) 

106.373 

250 jobs 500 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 41125a 24.384 41125a 38.344 41150d 85.19 

Gurobi 41075 

(41075) 

4544.81 41075 

(41075) 

1401.05 41075 

(41075) 

1337.79 

300 jobs 600 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 46784c 121.065 46864b 43.551 46887a 181.34 

Gurobi 46784 

(46784) 

5956.57 

 

46784 

(46784) 

1510.92 46784 

(46784) 

2863.5 

400 jobs 800 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 59540b 121.22 59564b 184.325 59567c 630.327 

Gurobi 59506 

(59506) 

312246 59506 

(59506) 

121303 59506 

(59506) 

185467 

500 jobs 1000 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 60735b 127.406 60798c 120.264 60803b 623.172 

Gurobi 60732* 

(59924) 

1726470 60696* 

(60308) 

563573 60682* 

(60499) 

1150490 

a2-Opt, b3-Opt,c4-Opt,dALL algorithm, *Best found within the time limit 

 

Table 7. Solution quality of k-Opt strategies and parallelism of Gurobi solver (prob_job=0.8 

prob_skill=0.5, Nj=8) 

 

 

100 jobs 200 workers 

alpha=0.01 for K-Opt/ 

threads=1 for Gurobi 

alpha=0.05 for K-Opt/ 

threads=2 for Gurobi 

alpha=0.12 for K-Opt/ 

threads=4 for Gurobi 

Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 25596c 0.566 25607b 1.338 25609b 5.11 

Gurobi 25596 

(25596) 

215.713 25596 

(25596) 

181.518 25596 

(25596) 

109.779 

150 jobs 300 workers Z* TB[s] Z* TB[s] Z* TB[s] 
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k-Opts 36799b 2.076 36813 c 11.813 36815b 16.729 

Gurobi 36799 

(36799) 

16149.6 36799 

(36799) 

17041.5 36799 

(36799) 

4979.2 

200 jobs 400 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 47466a 29.293 47528d 46.492 47587d 15.892 

Gurobi 47466 

(47466) 

23144.6 47466 

(47466) 

5299.29 47466 

(47466) 

7420.67 

250 jobs 500 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 57519a 32.648 57554d 134.75 57562c 221.79 

Gurobi 57519 

(57519) 

25023.3 57519 

(57519) 

6458.2 57519 

(57519) 

11527.4 

300 jobs 600 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 59876d 151.283 59944b 66.065 59897b 323.77 

Gurobi 59932* 

(58976) 

288029 59878* 

(59477) 

575682 59856* 

(59480) 

1151460 

400 jobs 800 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 58799d 37.527 58773c 2.617 58873d 104.88 

Gurobi 59562* 

(57854) 

288306 58849* 

(57966) 

574757 58968* 

(58096) 

1151250 

500 jobs 1000 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 81289c 2075.01 81414c 6.609 81458c 145.41 

Gurobi 83229* 

(79882) 

288065 82272* 

(79979) 

575530 81983 

(80002) 

1151130 

a2-Opt, b3-Opt,c4-Opt,dALL algorithm, *Best found within the time limit 

 

5. Discussion and conclusion 

5.1 Managerial implications 

Seasonal businesses use different types of workers for the job to help keep labor costs in order to remain 

competitive. For example, recent economic and labor statistics from the U.S. Department of Agriculture 

suggests that a multi-skilled workforce could be an effective response to a declining labor force and high 

labor costs. In other business operations, such as event and tourist operations, hiring and training large 

number of seasonal workers in a short time windows, it is highly challenged to balance the labor utilization 

and cost of training. The results of this study showed how to seek the optimal balance with an effective 
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model and solution approach to such large scale assignment problem. 

The MIP model is popular for machine scheduling and workforce management because it is easy 

to integrate multiple objectives and accommodate different types of resource constraints. The model 

proposed in this study focused on reducing the cost of production while increasing resource utilization, 

which is the main finding of our analysis. The cross-training of workers could help to develop a multi-

skilled workforce and maximize use of the skills offered by qualified workers. Strategic workforce planning 

should be a high priority as technology advances.  

This study examines an integrated model to strategically balance scheduling of multi-skilled 

workers and workforce management of cross-training. A multi-skilled workforce is able to meet the 

demands of a task and fully utilize the skill of worker, leading to lower total costs. In fact, cross-training 

workers in multiple skills instead of hiring seasonal workers could help seasonal businesses to achieve their 

goal of improving productivity. Thus, the integrated model proposed here can help seasonal businesses to 

balance labor costs and human capital investments while developing a multi-skilled workforce that will 

exceed the demand for jobs. 

As pointed out earlier, both MIP models are NP hard in general and it might become computationally 

challenging to the planner if the number of jobs/tasks and workers increase. The computational time 

reported by our algorithm offered the technical feasibility to consider these conditions as additional 

constraints in the model. The MIP models can be calibrated to real data from seasonal businesses as a 

flexible planning tool. The results of the numerical study showed that the algorithm performed well after 

selecting the appropriate values for alpha and the number of runs. It took less than one hour to compute 

most large sized realistic instances and decision makers could adjust the plan in real time. Our finding is 

also applicable to many industries that depend heavily on automation and multi-skilled workers.  

        Nowadays, many scheduling software use cloud computing platforms that run on multiple 

servers and thousands of processors. Our exploration on solver parallelism provided an alternative 

general solution approach on solving large-sized instances using off-self commercial solvers in 

addition to developing heuristics.  However, if we consider the use of computing resources, 

heuristic algorithm is more efficient comparing to solvers. 

5.2 Limitations and future research 

Our integrated MIP models could benefit from a qualitative study to obtain more information on pay scales 

based on skill sets and labor market demand. Such a qualitative study could also provide information on 

important soft skills such as knowledge management, learning ability, collaboration, and awareness of the 

environment to improve modeling of complex environments. In addition, our proposed MIP models did not 
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account for workers’ ideal shifts, preferred jobs, and desired skills for cross-training. Many conditions affect 

the usage of an integrated model for a planning horizon including uncertainty of demand, a complex labor 

environment, volatile salaries and wages, high training costs, and other uncontrollable supply chain risks. 

We also did not consider workers’ absences due to sickness or personal issues for the planning horizon. 

However, for a planning horizon longer than one week, the manager would have to take absences into 

account for purposes of rescheduling tasks. In addition, we did not consider the natural interdependency of 

tasks in the jobs when we created the initial solution for worker and job sequence due to the seasonal 

planning reality. For example in agriculture business, weed removal should be performed before tilling, and 

tilling should be performed before fertilizing. Future lines of research could also analyze these conditions 

and interdependent structures. The results of this study showed that some combined settings produced more 

favorable solutions. In fact, the proposed models and the algorithm could be replicated in other 

multitasking, multi-skilled applications by using a similar data structure and including constraints such as 

available training time or budget, machine-oriented training options, productivity losses of mentors, and 

other cross-training-related resource limitations. We will report these findings in future papers. 
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Appendix  A   

Recent Development and Applications of K-Opt Method 

 

Reference Applications k-Opt as 

standalone  

k-Opt as part of integrated 

method 

Comparative 

method or solver 

for comparison 

Hansen and 

Mladenović 

(2001) 

Facility Location 

, P-Median 

problem, Cluster 

analysis, Bilinear 

QP with bilinear 

constraints 

Yes No Tabu Search 

Merz and Unconstrained Yes Yes, with greedy heuristics No 



24 

 

Freisleben 

(2002) 

Binary Quadratic 

Programming 

Fournier and 

Pierre (2005) 

Mobile Network 

Design 

No Yes, with Ant Colony Tabu Search 

Katayama, 

Hamamoto, and 

Narihisa (2005) 

Maximum 

Clique 

Yes No Genetic, iterated 

and multistart local 

search from 

DIMACS 

Sadfi et al. 

(2005) 

Machine 

Scheduling 

Yes No No 

Shylo, 

Prokopyev, and 

Shylo (2008) 

MAX-SAT Yes Yes, as part of global 

equilibrium search 

 framework 

Tabu Search, 

Simulated 

Annealing 

Rodríguez-

Martín and 

Salazar-

González 

(2010) 

Fixed Charge 

Transportation 

Problem 

No Yes, as local branch 

algorithm for CPLEX 

 solver 

Tabu Search 

Blazinskas and 

Misevicius 

(2011) 

TSP Yes No No 

Mladenović et 

al. (2012) 

TSP Yes No GRASP and GA 

Mahi, Baykan, 

and Kodaz 

(2015) 

TSP No Yes, with Particle Swarm  

and Ant Colony 

Neural networks, 

Simulated 

Annealing and 

other hybrid ACO 

Alidaee and 

Wang (2017) 

Maximum 

Diversity 

No Yes. Tabu Search No, but reported 

new best solutions 

for benchmark 

instances 

Alidaee, Sloan, 

and Wang 

(2017) 

MAX-Cut No Yes, Tabu Search No, but reported 

new best solutions 

for benchmark 
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instances 

Gokbayrak and 

Yıldırım (2017) 

wireless mesh 

networks  

Yes No CPLEX solver 

Wang and 

Alidaee (2018) 

Machine 

Scheduling 

No Yes, Tabu Search CPLEX solver 

Papageorgiou et 

al. (2018) 

Maritime 

Inventory 

Routing 

Yes No CPLEX solver 

Wang and 

Alidaee (2019) 

Machine 

Scheduling 

No Yes, Tabu Search and 

Genetic Algorithm 

IG algorithm 

Taillard and 

Helsgaun 

(2019) 

TSP Yes Yes, part of Partial 

OPtimization 

Metaheuristic Under 

Special Intensification 

Conditions framework 

No, comparing to 

TSPLIB instances 

 

Appendix B  

Comparison between MSWM and UFL problems 

In Section 3.2, we stated MSWM problem is the special case of an uncapacitated facility location (UFL) 

problem. To compare both problems in term of similarity, the description of UFL is given as follows: a set 

of clients 𝐼 = {1, ⋯ , 𝑚} is served by a set of facilities 𝐽 = {1, ⋯ , 𝑛}, if client i is served by facility j, the 

cost is cij,  fj is the fixed cost to operate facility j and p is the maximum number of facilities to operate. The 

values of two sets of binary decision variables: xij and yj, are determined to be 1 if facility j serves client i 

and facility j is in operation, 0 otherwise.  

The integer programming formulation for UFL is given (Galvão and Raggi 1989): 

𝑀𝑖𝑛 𝑍 = ∑ 𝑎𝑖
𝑛
𝑗=1 𝑦𝑖 + ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑚
𝑖=1

𝑛
𝑗=1                                                                                                                     (B.1) 

s.t.  

∑ 𝑥𝑖𝑗 = 1,         ∀𝑖𝑛
𝑗=1           (B.2) 

∑ 𝑦𝑗
𝑛
𝑗=1 ≤ 𝑝,                   (B.3) 

𝑥𝑖𝑗 ≤ 𝑦𝑗 ,                 ∀𝑗, 𝑖           (B.4) 

𝑦𝑖 , 𝑥𝑖𝑗 ∈ {0,1}        ∀𝑗, 𝑖        (B.5) 

 

Constraints (B.2) ensure each client is served by a facility, constraint (B.3) ensures at most p facilities can 
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be operated. Constraints (B.4) ensure a client can be served by a facility only if the facility is in operation. 

If we consider a task in MSWM problem as the client in UFL problem, the multi-skilled worker as the 

facility in UFL problem, the task does not require specific skill from the worker, then two problems are 

equivalent. The objective function of MSWM can be written as B.1 in UFL, constraints (1) in MSWM are 

equivalent to B.2 in UFL, constraints (2.2) in MSWM are equivalent to B.4 in UFL and constraints (2.1) in 

MSWM can be rewritten as B.3 in UFL. 

However, the task in MSWM problem requires specific skill from the worker, thus it is special case of UFL 

problem, where the client with specific demand is served by the facility with specific function to meet the 

demand.  

The UFL problem and its variants have many applications in the literature {Galvão, 1989 #143;Correia, 

2016 #142;Melo, 2006 #141}. These applications are formulated as MILP model and solved by CPLEX. 

 

Appendix C  

Computational Results of k-Opt Heuristic and Gurobi solver under 3600 seconds time limit 

Table C1. Solution quality of k-Opt strategies and parallelism of Gurobi solver (prob_job=0.5 

prob_skill=0.3, Nj=8) 

 

 

100 jobs 200 workers 

alpha=0.01 for K-Opt/ 

threads=1 for Gurobi 

alpha=0.05 for K-Opt/ 

threads=2 for Gurobi 

alpha=0.12 for K-Opt/ 

threads=4 for Gurobi 

Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 19780a 0.53 19781a 1.25 19780d 0.02 

Gurobi 19780 

(19780) 

53.14 19780 

(19780) 

56.01 19780 

(19780) 

32.09 

150 jobs 300 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 28493c  2.492 28557c 0.019 28541b 0.076 

Gurobi 28493 

(28493) 

873.9 28493 

(28493) 

523.116 28493 

(28493) 

319.21 

200 jobs 400 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 34467c 5.789 34487b 15.013 34473c 5.243 

Gurobi 34467 

(34467) 

190.197 34467 

(34467) 

166.845 34467 

(34467) 

106.373 

250 jobs 500 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 41125a 24.384 41125a 38.344 41150d 85.19 

Gurobi 41075 694.05 41075 758.93 41075 514.17 
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(41075) (41075) (41075) 

300 jobs 600 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 46784c 121.065 46864b 43.551 46887a 181.34 

Gurobi 46784 

(46784) 

1819.16 46784 

(46784) 

883.29 46784 

(46784) 

1251.40 

400 jobs 800 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 59540b 121.22 59564b 184.325 59567c 630.327 

Gurobi 60195 

(59006) 

3600 60166 

(58878) 

3600 59551 

(58878) 

3600 

500 jobs 1000 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 60735b 127.406 60798c 120.264 60803b 623.172 

Gurobi 60821 

(59926) 

3600 60852 

(59924) 

3600 60997 

(59925) 

3600 

a2-Opt, b3-Opt,c4-Opt,dALL algorithm 

  

Table C2. Solution quality of k-Opt strategies and parallelism of Gurobi solver (prob_job=0.8 

prob_skill=0.5, Nj=8) 

 

 

100 jobs 200 workers 

alpha=0.01 for K-Opt/ 

threads=1 for Gurobi 

alpha=0.05 for K-Opt/ 

threads=2 for Gurobi 

alpha=0.12 for K-Opt/ 

threads=4 for Gurobi 

Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 25596c 0.566 25607b 1.338 25609b 5.11 

Gurobi 25596 

(25596) 

215.713 25596 

(25596) 

181.518 25596 

(25596) 

109.779 

150 jobs 300 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 36799b 2.076 36813 c 11.813 36815b 16.729 

Gurobi 36892 

(36489) 

3600 36799 

(36799) 

2370 36799 

(36799) 

2013 

200 jobs 400 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 47466a 29.293 47528d 46.492 47587d 15.892 

Gurobi 47518 

(47302) 

3600 47506 

(47341) 

3600 47466 

(47466） 

3486.14 

250 jobs 500 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 57519a 32.648 57554d 134.75 57562c 221.79 
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Gurobi 57519 

(57519) 

2613.39 57519 

(57519) 

2901.60 57519 

(57519) 

3326.79 

300 jobs 600 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 59876d 151.283 59957d 301.52 59897b 323.77 

Gurobi 60636 

(59029) 

3600 60069 

(58977) 

3600 60123 

(59029) 

3600 

400 jobs 800 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 58799d 37.527 58773c 2.617 58873d 104.88 

Gurobi 59906 

(57965) 

3600 59624 

(57935) 

3600 59403 

(57995) 

3600 

500 jobs 1000 workers Z* TB[s] Z* TB[s] Z* TB[s] 

k-Opts 81289c 2075.01 81414c 6.609 81458c 145.41 

Gurobi 1888989 

(0) 

3600 83229 

(79886) 

3600 83229 

(79886) 

3600 

a2-Opt, b3-Opt,c4-Opt,dALL algorithm 
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