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ABSTRACT
Learning in uncertain, noisy, or adversarial environments is
a challenging task for deep neural networks (DNNs). We
propose a new theoretically grounded and efficient approach
for robust learning that builds upon Bayesian estimation and
Variational Inference. We formulate the problem of density
propagation through layers of a DNN and solve it using an
Ensemble Density Propagation (EnDP) scheme. The EnDP
approach allows us to propagate moments of the variational
probability distribution across the layers of a Bayesian DNN,
enabling the estimation of the mean and covariance of the pre-
dictive distribution at the output of the model. Our experi-
ments using MNIST and CIFAR-10 datasets show a signifi-
cant improvement in the robustness of the trained models to
random noise and adversarial attacks.

Index Terms— Variational inference, Ensemble tech-
niques, robustness, adversarial learning.

1. INTRODUCTION

Recently, machine learning models have shown significant
success in various application areas, including computer vi-
sion and natural language processing [1, 2]. However, these
models may have limited suitability for mission-critical real-
world applications due to the lack of information about the
uncertainty (or equivalently confidence) in their predictions
[3]. Information about uncertainty and confidence can im-
prove a model’s robustness to random noise and adversarial
attacks [4, 5]. Many real-world applications, including vari-
ous autonomous, military, or medical diagnosis and treatment
systems, require the estimation of a model’s confidence in its
decisions [4, 5]. Quantitative estimation of uncertainty in the
model’s prediction can be accomplished by exploiting well-
established Bayesian methods.

In Bayesian settings, we start by defining a prior proba-
bility distribution over the unknown parameters, i.e., weights
and biases of a DNN. Bayes’ theorem allows us to infer the
posterior distribution of these parameters after observing the

training data [6, 7, 8]. However, inferring the exact poste-
rior distribution is mathematically intractable for most mod-
ern DNNs, as these models do not lend themselves to exact
integration due to a large parameter space and multiple layers
of nonlinearities [9]. One of the most common scalable den-
sity approximation approaches is Variational Inference (VI).
The VI approximation method converts the intractable density
inference into an optimization problem that is solved using
standard algorithms, e.g., gradient descent [9, 7]. VI meth-
ods pose a simple family of distributions over the unknown
parameters and then find (through optimization) a member of
this family that is closest, in terms of Kullback-Leibler (KL)
divergence, to the desired posterior distribution [10]. Over
the past few years, VI has been used to estimate the poste-
rior distribution for fully-connected neural networks, convo-
lutional neural networks (CNNs), and recurrent neural net-
works [11, 12, 6].

However, current Bayesian approaches based on VI do
not propagate the variational distribution from one layer of the
DNN to the next layer [11]. Instead, a single set of parameters
is sampled from the variational posterior and is used in the
forward pass [11]. Alternatively, the dropout is used at test
time, mimicking a Bernulli distribution for the weights, to
generate various samples, which, in turn, are used to calculate
uncertainty in the output using the frequentist approach [6].

Recently, Dera et al. proposed a scalable and efficient ap-
proach, called extended VI (eVI), to propagate the first and
second moments of the variational distribution through all
layers of a CNN [8, 13]. Their method provided a mean vec-
tor and a covariance matrix at the output, corresponding to the
network’s prediction and uncertainty, respectively [8]. The
authors used first-order Taylor series approximation to com-
pute the mean and covariance after propagating the variational
distribution thorough the activation functions. However, the
first-order Taylor series approximation may fail when the ac-
tivation function is highly nonlinear, e.g., ELU, SELU, and
Swish [14, 15, 16].

We build our Ensemble Density Propagation (EnDP)
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framework using the powerful statistical technique developed
for density tracking in Ensemble Kalman Filters [17]. We
propagate random samples across the layers of DNNs and
estimate the first two moments of the variational posterior af-
ter passing through each layer, including nonlinear activation
functions. Our results show that propagating the variational
posterior using EnDP results in increased robustness to Gaus-
sian noise and adversarial attacks.

The rest of this paper is structured in the following way.
In section 2, we describe the general VI framework and in-
troduce our proposed Ensemble Density Propagation (EnDP)
approach. EnDP results in the propagation of uncertainty in-
formation from the input, as well as networks parameters, to
the network output. In section 3, we present our results on a
classification task using the MNIST and CIFAR-10 datasets
and compare them to state-of-the-art VI approaches. In sec-
tion 4, we discuss our results and present the effect of the
ensemble size (number of random samples N) on the perfor-
mance of the proposed EnDP approach.

2. ENSEMBLE DENSITY PROPAGATION

A framework for the propagation of the variational posterior
density across layers of DNNs has been recently explored [8].
In this paper, we introduce the Ensemble Density Propaga-
tion framework for tracking moments across layers of DNNs.
We adopt the stochastic ensemble framework, drawing upon
the ensemble Kalman filter and other Monte Carlo approaches
[18, 19].

We define a prior probability distribution p(Ω) over the
set of weights Ω of a DNN. After observing the training
dataset D, we update our belief and find the posterior dis-
tribution p(Ω|D). As the direct inference of p(Ω|D) is in-
tractable, we employ VI to approximate the true posterior
with a parametrized distribution qθ(Ω), also known as the
variational posterior, with θ representing the distribution
parameters [10]. We assume qθ(Ω) to be a Gaussian distribu-
tion. In VI, we minimize the KL-divergence between the true
and the variational posterior distribution:

KL(qθ(Ω)
∣∣∣∣p(Ω∣∣D)) =

∫
qθ(Ω) log

qθ(Ω)

p(Ω)p(D|Ω)
dΩ. (1)

By rearranging the terms in (1), we obtain the following
objective function:

L(θ) = − Eqθ(Ω)[log(p(D|Ω)] + KL(qθ(Ω)
∣∣∣∣p(Ω)), (2)

where L(θ) is widely known as the variational free energy
and is composed of two terms, the expected log-likelihood,
which depends on the data, and the KL-divergence between
the prior and variational posterior, which does not depend on
the data and acts as a regularization penalty. For simplicity
and without loss of generality, we present our EnDP frame-
work for a single layer CNN with one max-pooling layer and
a fully connected layer before the soft-max function.

Convolution Operation: In our framework, the convolu-
tional kernels are assumed to be random variables endowed
with a multivariate Gaussian distribution. We assume that the
kernels within a convolutional layer are independent of each
other. This assumption reduces the number of unknown pa-
rameters and also forces convolutional kernels to extract fea-
tures that are uncorrelated with each other.

We consider the convolution operation as a matrix-vector
multiplication. We express the output of the convolutional
layer as z(kc) = X vec(W(kc)), kc = 1, · · · ,Kc, where X
represents a matrix whose rows are the vectorized sub-tensors
of the input image, W(kc) is the kth

c convolutional kernel with
vec(W(kc)) ∼ N

(
m(kc),Σ(kc)

)
, Kc is the total number of

kernels and (vec) is the vectorization operation. Thus, the
output of the convolution between the kth

c kernel and the input
image has a distribution z(kc) ∼ N

(
Xm(kc), XΣ(kc)XT

)
.

Nonlinear Activation Function: After the convolution, the
resulting random variables z(kc) will be propagated through
an element-wise nonlinear activation function ψ. We perform
stochastic sampling and draw N samples, z

(kc)
i , where i =

1, 2, · · · , N . We pass each ensemble member z
(kc)
i through

the activation function and obtain g
(kc)
i = ψ[z

(kc)
i ]. We find

the sample mean and covariance of g(kc) using:

µg(kc) =
1

n

N∑
i=1

g
(kc)
i , (3)

Σg(kc) =
1

n− 1

N∑
i=1

[
g
(kc)
i − µg(kc)

][
g
(kc)
i − µg(kc)

]T
.

Max-Pooling Operation: The max-pooling operation se-
lects the largest value in each patch of the given input. At the
output of the max-pooling layer, we approximate the mean by
µp(kc) = pool(µg(kc)). For the covariance matrix, we keep
rows and columns of Σg(kc) corresponding to the elements
of the mean vector retained after the pooling operation, i.e.,
Σp(kc) = pool(Σg(kc)). If we denote by d1 × d1 the dimen-
sion of g(kc). Thus, µg(kc) has the same dimension as g(kc)

and Σg(kc) has a dimension d21 × d21. At the output of max-
pooling, the dimensions ofµp(kc) , and Σp(kc) become d2×d2
and d22 × d22, respectively, where d2 = (d1 − p)/s + 1, p is
the patch size of the pooling operation and s is the stride.

Fully-Connected (FC) Layer: The input to the FC layer
b is obtained by vectorizing the output of the max-pooling
layer. The mean and covariance of b are given by:

µb =

 µp(1)

...
µp(Kc)

 ,Σb =

Σp(1) · · · 0
...

. . .
...

0 · · · Σp(Kc)

 (4)



We denote the hth weight vector of the FC layer by wh ∼
N (mh,Σh), for h = 1, · · · , H , where H is the number of
output neurons. By employing the derivations in [8] for the
product of random vectors, we can compute the output mean,
µf , and the output covariance, Σf , of the FC-layer as:

µfh = mT
hµb, (5)

Σf =

{
Tr
(
ΣhiΣb

)
+ mT

hi
Σbmhj + µTbΣhjµb, i = j.

mT
hi

Σbmhj , i 6= j.

where h, hi, hj = 1, 2, · · · , H , and i, j refer to any two
weight vectors in the FC layer.

Soft-max Function: For multi-class problems, the network
output is given by the soft-max function, i.e., ŷ = φ(f),
where φ represents the softmax function and f is the out-
put of the FC layer. We can approximate the mean µy and
covariance Σy using first-order Taylor series approximation:

µy ≈ φ(µf ), and Σy ≈ JφΣfJ
T
φ , (6)

where Jφ represents the Jacobian matrix of φ with respect
to f evaluated at µf . The proposed EnDP framework can
be easily extended to multi-layer CNNs and various archi-
tectures (such as recurrent neural networks) by following the
same derivation presented above.

3. EXPERIMENTS AND RESULTS

We evaluated the performance of the proposed EnDP method
on a classification task, using two datasets, i.e., MNIST hand-
written digits and CIFAR-10 [20, 21]. We compared test ac-
curacy of our model with the state-of-the-art in the literature,
including a vanilla CNN, Bayes-by-Backprop (BBB), Bayes-
CNN, Dropout-CNN, and eVI [11, 12, 6, 8]. We evaluated
all models using test datasets of MNIST and CIFAR-10 under
three conditions, i.e., noise-free, Gaussian noise, and adver-
sarial attack. The targeted adversarial examples were gener-
ated using the fast gradient sign method (FGSM) [22].

3.1. MNIST Dataset

We used a CNN having one convolutional layer with 32 ker-
nels of size 5×5, followed by the rectified linear unit (ReLU)
activation, one max-pooling layer and one FC layer. We used
N = 1000 samples for the ensemble density propagation.
We tested all models at two levels of Gaussian noise, i.e.,
σ2

noise = 0.1, and 0.2. The adversarial examples were gen-
erated to fool each model into predicting digit “3” with two
attack levels, i.e., σadversarial = 0.1, and 0.2.

In Table 1, we present test accuracies of EnDP, eVI, BBB,
and a vanilla CNN for the MNIST test set at various levels of
Gaussian noise and adversarial attacks. In Fig. 1, we present
selected test results of EnDP for three different noise condi-
tions, i.e., noise-free, Gaussian noise, and adversarial attack.

We present test images with their ground-truth and predicted
labels, and corresponding outputs of the soft-max function
(the mean vectors µy and covariance matrix Σy from Eq. 6).
The diagonal elements of the covariance matrix, i.e., the vari-
ance elements, provide a meaningful and calibrated measure
of the model’s uncertainty or equivalently confidence associ-
ated with every prediction.

In Fig. 2, we present the test accuracy and training time of
EnDP for various sample sizes N used for ensemble density
propagation.

3.2. CIFAR-10 Dataset

We used a CNN with three convolutional blocks and one FC
layer. Each convolutional block included two consecutive
convolutional layers, each followed by Exponential Linear
Unit (ELU) activation function and one max-pooling layer at
the end [15]. The convolutional kernels in all blocks were of
size 3 ×3. The number of convolutional kernels in the first,
second and third block was set to 32, 64, and 128, respec-
tively. In total, our network included six convolutional layers,
each followed by ELU activation.

For the ensemble density propagation, we used a differ-
ent number of samples for each of the six ELU layers, i.e.,
Ni = 2di, where i = 1, 2, . . . , 6 represent ELU layers, and di
is the dimension of the feature map obtained after the ith con-
volutional layer. In Table 2, we report test accuracy of EnDP,
eVI, Bayes-CNN and Dropout-CNN for the noise-free case
and under adversarial and Gaussian noise conditions. The
noise level was set to 5% of the the highest conceivable value
(HCV), where HCV = 3 σnoise [23]. We generated the tar-
geted adversarial examples to fool each network into predict-
ing the label “cat”.

4. DISCUSSION

We proposed a new method for propagating variational pos-
terior distribution through nonlinear activation functions in
DNNs using the ensemble approach. We draw N random
samples, pass these samples thought the nonlinear activation
functions, and calculate the mean and covariance of the trans-
formed output. The propagation of the distribution through

Table 1. MNIST Test Accuracy
Noise/Attack level EnDP eVI BBB CNN

No Noise 97% 96% 96% 96%
Gaussian Noise

0.1 95% 94% 86% 79%
0.2 86% 85% 76% 70%

Adversarial Attack
0.1 95% 95% 91% 58%
0.2 83% 81% 45% 14%



Fig. 1. The output of the EnDP model, i.e., the mean vector µy and covariance matrix Σy of the soft-max function, is
presented for three test images. In sub-figures (b) and (c), test images were corrupted with Gaussian noise (σ2

noise = 0.1)
and adversarial attack (σadversarial = 0.1), respectively. The green color refers to the predicted output, while the yellow color
represents the ground truth. When the yellow block is not shown, the network prediction and the ground-truth labels matched.
In the covariance matrix, a large variance value indicates a low level of confidence or high uncertainty in the prediction.

DNNs results in robust performance against Gaussian noise
and adversarial attacks.

In the noise-free case, our approach, referred to as EnDP,
performed better or equally on two benchmark datasets
(MNIST and CIFAR-10) as compared to the state-of-the-
art models, including eVI, BBB, Bayes-CNN, Dropout-CNN,
and a vanilla CNN. Under noisy conditions and adversarial at-
tacks, EnDP outperformed all models (except for the MNIST
dataset at a low level of adversarial attack where EnDP and
eVI produced 95% test accuracy, Table 1). We note that as
the level of noise or severity of adversarial attack increased
(Table 1), the EnDP model maintained better performance.
The gap between the accuracy of EnDP and other models
increased. Similarly, in relatively complex network architec-
ture (CIFAR-10 dataset, Table 2), EnDP performed robustly
as compared to all other models in noise-free conditions as
well as under noise attack.

4.1. Effect of Sample Size (N )

We note that both the accuracy and training time increase with
the increasing number of samples used for ensemble density
propagation (Fig. 2). This behavior agrees with the well-
known trade-off between accuracy and computational cost.
Our empirical results show that the number of samples re-
quired to achieve comparable accuracy depends upon the size
of the feature map resulting from the preceding convolutional
layer. We found that the number of samples approximately
equal to twice the size of the feature map produced good re-
sults. For the case of MNIST, the output of the convolution
operation z is of size d = 24×24 = 576. Therefore, we used
N = 1000 for our experiments, which resulted in comparable
accuracy at a reasonable computational cost. For CIFAR-10,
we varyN for each ELU layer depending upon the size of the
output of the preceding convolutional layer (Ni = 2di).



Fig. 2. The effect of number of samplesN used for EnDP on the test accuracy and training time for MNIST dataset is presented.
(a) Test accuracy increases as N increases. (b) Training time (in minutes) for one epoch as N is increased.

4.2. Robustness to Noise and Adversarial Attacks

We consider that the robustness of EnDP models to noise and
adversarial attacks is attributable to the propagation of mo-
ments of the variational posterior through the network layers.
The propagation of moments enables the model to use con-
fidence (i.e., variance/covariance) information during the op-
timization process. In the moment propagation settings, the
network learns “robust” parameters, including convolutional
kernels and weights of the FC layer. The learned “robust” pa-
rameters result in a robust behavior, especially when the input
is corrupted with noise or is adversarially attacked.

Both EnDP and eVI are based on variational posterior
density propagation and show robustness in noisy and adver-
sarial environments. However, the proposed EnDP method
is superior to eVI, as evident in the experimental results, es-
pecially at a high level of noise and adversarial attacks. In
our experiments, we used two activation functions, ReLU and
ELU. However, the EnDP framework is readily extendable
to all types of activation functions. Owing to the sampling
and stochastic nature of our proposed EnDP technique, we
consider that the performance of EnDP will be even better
for highly nonlinear activation functions. In fact, we expect
that for highly nonlinear activation functions (e.g., Gaussian
Error Linear Unit, and Scaled exponential linear unit), the
first-order approximation used in eVI might fail since higher-
order terms are neglected in the linearisation; however, the
proposed EnDP technique will perform robustly.

Table 2. CIFAR-10 Test Accuracy
Noise EnDP eVI Bayes- Dropout-
Type CNN CNN
Zero 86% 86% 85% 86%

Adversarial 82% 80% 68% 52%
Gaussian 85% 82% 77% 75%

4.3. Calibrated Uncertainty Information in the Model’s
Predictions

The predictions of modern neural networks (i.e., the output of
the soft-max function) are poorly calibrated and may provide
misleading interpretation, especially when the predicted out-
put is wrong [24, 25]. A key feature of the proposed EnDP
method is the availability of uncertainty information at the
output through the covariance matrix. For example, consider
the adversarial attack case in Fig. 1(c). The EnDP model erro-
neously predicted digit “3” instead of “2”; however, the vari-
ance values (diagonal elements) corresponding to digits “3”
and “2” were significantly larger as compared to all others. If
we set the confidence proportional to the inverse of the vari-
ance, the mentioned example revels that the EnDP model was
highly uncertain about its prediction and indicating low con-
fidence in its output. The availability of a calibrated measure,
i.e., the covariance matrix, can help establish the trustwor-
thiness of machine learning models. Furthermore, the vari-
ance information can provide insights that can help interpret
a model’s correct and incorrect predictions.

5. CONCLUSION

We proposed a new approach for the approximation of vari-
ational posterior in DNNs. We were able to propagate the
first two moments of the variational posterior through the lay-
ers of a multi-layer CNN using a stochastic ensemble tech-
nique. The proposed Ensemble Density Propagation (EnDP)
framework can approximate any number of moments. The
covariance matrix available at the output of an EnDP model
captures its uncertainty in the predicted decisions. Our ex-
perimental results using the MNIST and CIFAR-10 datasets
showed significantly increased robustness of the EnDP mod-
els to Gaussian noise and adversarial attacks. We consider
that the propagation of moments through layers of the net-
work results in robust learning and improved performance in
noisy conditions.
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[15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter, “Fast and Accurate Deep Network Learning by Exponen-
tial Linear Units (ELUs),” in Proceedings of 4th International
Conference on Learning Representations, 2016.

[16] Prajit Ramachandran, Barret Zoph, and Quoc V Le,
“Swish: a Self-Gated Activation Function,” arXiv preprint
arXiv:1710.05941, vol. 7, 2017.

[17] Simon J Julier and Jeffrey K Uhlmann, “New Extension of the
Kalman Filter to Nonlinear Systems,” in Signal processing,
sensor fusion, and target recognition VI. International Society
for Optics and Photonics, 1997, vol. 3068, pp. 182–193.

[18] Huazhen Fang, Ning Tian, Yebin Wang, MengChu Zhou, and
Mulugeta A Haile, “Nonlinear Bayesian Estimation: From
Kalman Filtering to a Broader Horizon,” IEEE/CAA Journal
of Automatica Sinica, vol. 5, no. 2, pp. 401–417, 2018.

[19] Rudolph Van Der Merwe, Arnaud Doucet, Nando De Freitas,
and Eric A Wan, “The Unscented Particle Filter,” in Advances
in Neural Information Processing Systems, 2001, pp. 584–590.

[20] L. Deng, “The MNIST Database of Handwritten Digit Im-
ages for Machine Learning Research,” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[21] A. Krizhevsky, “Learning Multiple Layers of Features from
Tiny Images,” Master’s thesis, Department of Computer Sci-
ence, University of Toronto, 2009.

[22] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into Transfer-
able Adversarial Examples and Black-Box Attacks,” in Pro-
ceedings of 5th International Conference on Learning Repre-
sentations, 2017.

[23] J Michael Duncan, “Factors of Safety and Reliability in
Geotechnical Engineering,” Journal of Geotechnical and
Geoenvironmental Engineering, vol. 126, no. 4, pp. 307–316,
2000.

[24] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger,
“On Calibration of Modern Neural Networks,” in Proceedings
of the 34th International Conference on Machine Learning-
Volume, 2017, pp. 1321–1330.

[25] Anh Nguyen, Jason Yosinski, and Jeff Clune, “Deep Neural
Networks are Easily Fooled: High Confidence Predictions for
Unrecognizable Images,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2015, pp.
427–436.


	Robust Learning via Ensemble Density Propagation in Deep Neural Networks
	Recommended Citation

	1  Introduction
	2  Ensemble Density Propagation
	3  EXPERIMENTS AND RESULTS
	3.1  MNIST Dataset
	3.2  CIFAR-10 Dataset

	4  DISCUSSION
	4.1  Effect of Sample Size (N)
	4.2  Robustness to Noise and Adversarial Attacks
	4.3  Calibrated Uncertainty Information in the Model's Predictions

	5  CONCLUSION
	6  Acknowledgement
	7  References

