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ABSTRACT

Pulsars are neutron stars that spin rapidly, are highly magnetized, and they emit beams

of electromagnetic radiation like a lighthouse out in space. These beams of radiation

are only observed when the beams face towards Earth and can be measured by a radio

telescope. Pulsar studies have an abundance of scientific implementations in solid state

physics, general relativity, galactic astronomy, astronomy, planetary physics and have

even opened windows in cosmology.

This thesis reports the results of a study of pulsar (PSR) J0453+1559, a new

binary pulsar discovered in the Arecibo All-Sky 327 MegaHertz Drift Pulsar Survey. The

recorded observations of the times of arrivals of the pulses of the pulsar in the system,

J0453+1559, span a period of about 320 days, which allowed precise measurement of

its spin period (45.7 ms) and its derivative (1.85 ± 0.13 × 10−19 ss−1). From these

measurements we derived the characteristic age of the system as ∼ 3.9 × 106 years

and having a magnetic field of ∼ 2.9 × 109 G. These measurements point out that

this pulsar was mildly recycled by gradual accumulation of matter from the companion

star. The cyclic dance of this system has an eccentric (e = 0.11) 4.07-day orbit. This

eccentricity enables a highly significant quantification of the rate of advance of periastron

as ω̇ = 0.0379 ± 0.0005 ◦yr−1, which entails the total mass of the system as M =

2.73 ± 0.006 M⊙. We also discovered the Shapiro delay, which allows an approximation

of the individual masses being mp = 1.54 ± 0.006 M⊙ and mc = 1.19 ± 0.011 M⊙,

appropriately. These masses, along with the orbital eccentricity, propose that PSR
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J0453+1559 is a double neutron star system with a mass asymmetry. The anticipated

coalescence time due to the outflow of gravitational waves is ∼1.4 x 1012, approximately

100 times greater than the age of the Universe. This is the 10th recognized double

neutron star system in the known Universe, and below is its story.
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CHAPTER 1

INTRODUCTION

1.1 PULSAR BACKGROUND

Pulsars are rapidly rotating radio objects in the sky that are extremely magnetized,

and weigh more than our sun but are only about 10km in diameter, see Figure 1. The

formation of neutron stars occurs when stars with a high mass range of 8-20 M⊙ go su-

pernovae and leave behind compact and highly magnetized cores. The violent outburst

of a supernova blows off the outer layers of a star and creates an alluring supernova rem-

nant. The core of the star then crumples under its own gravity, so protons and electrons

fuse under gravity to form neutrons, consequently giving it the name “neutron star”.

These particularly condensed objects emit beams of radiation that streak across the sky

like light beams from a lighthouse. The term “lighthouse model” is used to describe the

underlying idea of the pulsar phenomenon. As the neutron star swiftly rotates, charged

particles are accelerated out along the magnetic field lines in the magnetosphere, see

Figure 1. This acceleration causes the particles to emit electromagnetic radiation. This

radiation is detected on Earth at radio frequencies as a series of observed pulses gen-

erated as the magnetic axis of the pulsar, and henceforth the radiation beam, meets

the observer’s field of vision with each rotation. The period of the pulses is directly

correlated to the rotational period of the neutron star itself.

The discovery of pulsars itself was a major historical event and gave rise to an

entirely new field of astronomy. The first pulsar was discovered in 1968 by Jocelyn Bell



and Anthony Hewish [19], since then about 2500 pulsars have been discovered so far. As

our technology advances this number keeps increasing.

The first pulsar was discovered by studying the effects of interplanetary scintillation

on closed-packed radio sources. Jocelyn Bell’s attention was drawn to a pulsed signal

with a constant tick of 1.337 seconds. Additional observations found that the signal

was consistently detected from the same sky coordinates, its beats were dispersed as

anticipated for a signal that journeys through interstellar gas, and the pulses were higly

precise, like a heart monitor recording the pulse of a heart that does not skip a beat.

After prolonged measurements it was discovered that the pulses did in fact change due to

the Earth’s orbital motion. At the time, the source of the pulses left people so baffled that

they were thought to originally come from aliens, and so it was called Little Green Men 1

(LGM-1). Soon three more heartbeat pulse signals with different spin frequencies and sky

locations were uncovered, hinting that more than likely it is a natural occurence in space

rather then Little Green Men. LGM-1 was renamed as PSR B1919+21. The letter B tells

you that the coordinates are from the 1950 epoch, which is then followed by the pulsar’s

sky coordinates. As the search to determine the origin of these pulsars commenced,

scientists Thomas Gold and Franco Pacini suggested that these exotic objects were in

fact rapidly rotating neutron stars [17] [28]. Soon after radio pulses were detected in

the Crab Nebula with a spin frequency of 0.033 seconds. This discovery was the first

substantial clue in deciphering how a star becomes a pulsar, hinting at an association

between a pulsar and a supernova remnant. The Crab supernova was first observed in

1054 AD, and was reported in cave paintings and portrayed in the pottery of different

2



cultures around the globe1 .

Since their discovery, pulsars have been contributing to science, pushing the thresh-

old of the limits of our understanding of our universe. The first extrasolar planets were

discovered orbiting pulsars [37]. The stability of the signal received from the pulsar is

so consistent, many scientists have decided to use pulsars to investigate one of the most

powerful predictions of general relativity: gravitational waves, which are the ripples in

the fabric of space-time generated by substantially heavy objects accelerating out in

space. The locations of pulsars can be used in interstellar navigation2. The engraved

plate on the Voyager spacecraft use pulsars to tell of the spacecraft’s origin, so should

it ever be intercepted by aliens they could find Earth. From planetary to cosmological

proportions, pulsars keep uncovering secrets of our universe.

Some of the pioneering discoveries made with pulsars are:

• The first notable discovery with pulsars, is of course the discovery of pulsars it-

self [19]. Anthony Hewish was later acknowledged with the 1974 Nobel Prize for

Physics, for his contribution to Radio Astronomy.

• In 1974, a discovery was made with pulsars that supported the existance of grav-

itational waves. This discovery was of the first double neutron star system, PSR

B1913+16, made by Russell Hulse and Joseph Taylor at the Arecibo radio tele-

scope [21]. This set of neutron stars are dancing around each other in an orbit of

7.75 hours, and in about 200 million years, the pair will merge together due to the

outpouring of energy at the price of its orbital decay. The magnitude of the orbital

1http:www.nasa.gov/multimedia/imagegallery/image feature 567.html
2http://www.nrl.navy.mil/content images/06FA5.pdf
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decay is about 1 centimeter per day. This was the first test that supported the

existence of gravitational waves. Hulse and Taylor were awarded the 1993 Nobel

Prize for Physics in recognition of their pioneering discovery.

• The first ultra fast rotating radio pulsar, PSR B1937+21, was discovered by Shrini-

vas Kulkarni, Donald Backer and collaborators at the Arecibo radio telescope [4].

This neutron star spins at about 642 times per second, this generated a new

class of pulsars called millisecond pulsars due to its millisecond spin period. PSR

B1937+21 remained the record holder for the fastest spinning neutron star known

until 2005. PSR J1748-2446 is currently the new record holder with a spin period

of 716 times per second [18].

• The first pulsar discovered in a rich collection of stars known as a globular clus-

ter, was discovered by Andrew Lyne and collaborators at the Jodrell Bank radio

telescope [25]. Since this discovery many more pulsars have been found in other

globular clusters, which has made it possible to study the physical properties of

the clusters using pulsars. An example of a discovery made possible by pulsars is

the first detction of ionized gas in the cluster 47 Tucanae [14].

• The first extraterrestrial planetary system was discovered in 1990, which was made

possible by PSR B1257+12, by Alexander Wolszczan and Dale Frail at the Arecibo

radio telescope [37]. This historic system is comprised of three planets, two Earth-

mass planets and one with the mass of our moon.

• PSR B1620-26 allowed for the discovery of the first triple system. The system

4



includes a pulsar, a white dwarf, and a Jupiter-mass object discovered by Stephen

Thorsett and collaborators in the globular cluster M4 [33]. This system gives

insight to the rich diversity of evolutionary scenerios feasible in globular clusters.

• In 2003, a double pulsar system was discovered by Marta Burgay and collaborators

called PSR J0737-3039 [6]. The binary system is composed of a 22.7 millisecond

pulsar in a cyclic orbit of 2.4 hours with a 2.7 second pulsar. This system is a

great tool for tests of general relativity.

Many cosmological tests have foretold that the universe contains a low frequency

stochastic gravitational wave background created in the big bang era. This stochastic

gravitational wave background is the addition of all the gravitational radiation in the

universe. Imagine the solar system barycenter and a distant pulsar as opposing ends

of an imaginary arm in space. The signal received by the pulsar is used as a reference

clock at one end of the arm sending out systematic signals which are recorded by an

observer on the Earth. The effect of a gravitational wave passing through the course of

the arm would minutely change the local space-time metric and cause a slight change in

the recorded signal of the pulsar, similar to a skipped heartbeat while being measured

by a heart monitor. Currently there is a world-wide endeavour to detect gravitational

waves that is composed of three major collaborations. The three major collaborations are

North American Nanohertz Observatory for Gravitational waves (NANOGrav), Euro-

pean Pulsar Timing Array (EPTA) and Parkes Pulsar Timing Array (PPTA). Together

these three collaborations are called the International Pulsar Timing Array (IPTA), a

consortium of consortia.
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For pulsar astronomy being as young as it is, a young astronomical age of 47, it has

been an extremely fruitful field of science. The future of pulsar astronomy looks brighter

than any pulsar known. As more pulsar surveys continue to become more sensitive,

the actual identity of the galactic neutron star population might soon be uncovered.

In the near future, many next generation radio telescopes will be operational. The

Square Kilometre Array (SKA), which will be operational by 2025 is an example of such

a telescope. These telescopes will enable us to see the universe much more precisely.

There are many more potential pioneering discoveries to be made in pulsar astronomy,

some of them scientists cannot even begin to imagine. To highlight a few discoveries that

are expected to be made: the use of millisecond pulsars in the detection of gravitational

waves, the first extragalactic pulsar, the uncovering of new double pulsar systems, and

the holy grail discovery of the first pulsar-black hole system.

1.2 DOUBLE NEUTRON STAR SYSTEMS

Double neutron star (DNS) systems are scarce and precious physical laboratories

that can be used to test relativistic theories. The very first system was PSR B1913+16,

which supplied evidence for an orbital decay due to the outpouring of gravitational

waves as anticipated by general relativity [21]& [35]. Since then, there have been eight

additional double neutron star systems discoveries (all of which are included in Table 2).

These systems are unique because you are able to study tests of general relativity and

other theories of gravity in the strong-field regime, thus making it the leading system

for such research.

A double neutron star system starts its life as two high-mass stars. The older,

6



more massive star will experience its death in a supernova explosion and give birth to

a neutron star that is still accompanied by its high-mass companion. After some time,

the high-mass companion star will start to transfer mass onto the neutron star, due

to the strong gravitational field of the neutron star. The neutron star will absorb its

companion’s mass and start to spin up. While this mass tranfer is occuring, it can be

detected as a high-mass X-ray binary system. After the companion survives the period

of mass transfer, it will also end its life by undergoing a supernova explosion, giving

birth to another neutron star. The first neutron star created will be recorded as a mildly

recycled pulsar, which was spun up by the violent period of accretion from the companion

star. The companion star will be recorded as a normal, slower spin period pulsar. These

systems are extremely rare due to the fact that both stars survive these violent stages

of their life, but the ones that do survive this storm, lead to the creation of a double

neutron star system.

This thesis reports the initial timing solution for the newly discovered PSR

J0453+1559, which is in a new a double neutron star system. PSR J0453+1559 has a

spin period of 45.7 milliseconds and a dispersion measure of 30.3 parsec per centimeter3

and was discovered in the Arecibo All-Sky 327 MHz Drift Pulsar Survey [12], which

began in 2010.

1.3 THE LIGHTHOUSE MODEL

The “lighthouse model”, which is a simplified picture of the electrodynamical pro-

cesses occuring in the pulsars magnetosphere, depicts the characteristics of the discharge

of a radio pulsar: its seemingly never ending beat or pulse periodicity, the changes in

7



Table 1: Double Neutron Star Systems known in the Universe

Pulsar Period Pb x e MT Mp Mc Reference
(ms) (days) (lt-sec) (M⊙) (M⊙) (M⊙)

J0737-3039A 22.699 0.1022 1.415 0.0877 2.587 1.338 [6]
J0737-3039B 2773.461 1.516 1.249
B1534+12 37.904 0.420 3.729 0.2736 2.678 1.333 1.345 [36]
J1756-2251 28.461 0.3196 2.756 0.1805 2.57 1.312 1.258 [13]
J1906+0746 144.071 0.1659 1.419 0.0853 2.6133 1.323 1.290 [24]
B1913+16 59.031 0.3229 2.341 0.617 2.828 1.439 1.388 [21]
B2127+11C 30.529 0.3353 2.518 0.6814 2.712 1.358 1.354 [2]
J1829+2456 41.009 1.76 7.236 0.1391 2.5 1.38 1.22 [7]
J1518+4904 40.935 8.634 0.2495 2.7183 2.62 [29]
J1811-1736 104.1 18.779 34.782 0.828 2.57 [26]
J0453+1559 45.782 4.072 14.467 0.1125 2.73 1.54 1.19

pulse period, and the narrow beacon of light, see Figure 1. The lighthouse model portrays

a greatly magnetized neutron star that is swiftly rotating. The pulsar has a magnetic

dipole axis that is inclined with respect to its rotational axis, and the model presents

the pulsar’s broadband radio discharge created above the magnetic polar caps in a co-

rotating magnetosphere of plasma and is beamed along the magnetic field lines. The

recorded “pulse” of a pulsar by a radio telescope is a consequence of one or sometimes

both of the beacons of light sweeping past the Earth during its stable rotational cycle,

see Figure 1. It should be noted that how pulsars generate their beams of radio and high

energy emissions, the formation and configuration of the neutron star itself are still not

known definitively [1].

1.4 PULSAR SPIN EVOLUTION

One of the pulsar’s defining properties is the change and evolution of its pulse

period, P. This is assuming that consistent loss of rotational kinetic energy occurs. If

we consider a pulsar as a straightforward rotating dipole magnet, this “spin-down” is

8



expected to follow under the rules of classical electrodynamics [22]. A rotating dipole

with dipole moment |m| emitting an electromagnetic wave at the rotational frequency

Ω = 2π/P. The release of radiation power is given by,

Ėdipole =
2

3c3
|m|2Ω4sin2α. (1)

where α is the angle between the magnetic moment and rotational axis and c is the

speed of light.

The rate of rotational kinetic energy loss, known as the “spin-down luminosity”,

can be described in terms of the recorded rate of rise of the pulse period, Ṗ = dP/dt, by

the subsequent equation,

Ėrot = −
d(IΩ2/2)

dt
= −IΩΩ̇ = 4π2ṖP−3. (2)

where I = kMR2 is the moment of inertia, the inertia constant, k, the pulsar’s mass,

M and the pulsar’s radius R. Usually a value of I = 1038 kg m2 is assumed. This value

corresponse to M = 1.4 M⊙, R = 10 km and k = 0.4, typical values for a pulsar. If it is

assumed that all of the rotational energy loss is due to dipole emission, we can identify

that equations (1) and (2) give the expected evoultion of the rotational frequency,

Ω̇ = −

(

2 | m |2 sinα2

3Ic3

)

Ω3. (3)

Equation (3) is usually written in a more general form in terms of the spin frequency, v

= 1/P,

9



v̇ = −Kvn or Ṗ = −KP 2−n. (4)

where n is known as the braking index, with n = 3 for pure magnetic dipole braking and

K is a constant.

1.5 CHARACTERISTIC AGE

Integration of equation (4) in terms of the spin period gives,

T =
P

(n− 1)Ṗ

(

1−
P

Po

n−1
)

. (5)

where Po is the spin period of the pulsar at its birth. Under the assumption that Po ≪

P and the pulsar has slowed down solely due to magnetic dipole braking, n = 3, the

“characteristic age”, which is a rough estimate of the age of the pulsar, can be defined,

τc =
P

2Ṗ
. (6)

For example, the Crab pulsar holds a characteristic age of 1,240 years, which is compa-

rable to its recorded age of about 950 years.

1.6 MAGNETIC FIELD STRENGTH

The conservation of magnetic flux throughout the stellar collapse gives pulsars

enormous magnetic field strengths, typically around 1012 Gauss. The magnitude of the

magnetic field at the surface of the pulsar can be estimated by assuming the spin down

is due to dipole braking, and using the relation B ∼ |m| / r3. Rearranging equation (3)

10



gives,

Bs =

√

3

8

c3

π2

I

R6sin2α
PṖ . (7)

Assuming α = 90◦ and using the previously defined values for I and R, gives the expres-

sion for the “characteristic magnetic field”:

Bs = 3.2× 1019G
√

PṖ . (8)

1.7 PULSE DISPERSION

The nature of the journey of a pulsar’s signal through the ionized interstellar

medium is dependent upon frequencies that the signal is dispersed out into space. The

pulses emitted at lower frequencies arrive later than their higher frequency counterparts.

The dispersive delay, t, at radio frequency f (MHz) is given by:

t ≃ 4150

(

DM

f 2

)

sec. (9)

where DM is the dispersion measure, the integrated column density of free electrons

along the line of sight,

DM =

∫ d

0

nedl cm
−3 pc. (10)

where d is the distance to the pulsar and ne is the number density of free electrons [27].
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1.8 PULSAR POPULATION

Pulsars are categorized into two types: slow rotating canonical pulsars and fast

rotating millisecond pulsars that coexist in various areas of our galaxy. Eight pulsars

exists in the Large and Small Magellanic clouds [8], and eighty pulsars in Galactic

globular clusters; the remaining of the known pulsars largely populate the disk of our

galaxy. Due to the long wavelength radio waves are easily affected by distances and their

propagations through the interstellar medium. Due to this and the fact that the pulsar’s

radiation beam has to cross the Earth, the current recorded population of pulsars is

only a minuscule look at what could be an actual population of 106 active pulsars in

our galaxy alone. In time, our technology and the spirit of discovery will lead to the

discovery of more pulsars in the future.
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Figure 1: This is the lighthouse model for a rotating neutron star and its magnetosphere.
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CHAPTER 2

PULSAR TIMING

Pulsar timing is the regular recording of the rotation of a neutron star by tracking

the times of arrival of the radio pulses from the beam emitted by the neutron star

as it sweeps over Earth. The high precision tracking of the rotational phase enables

pulsar astronomers to study the physics of neutron stars, make exceptionally accurate

astrometric measurements, and allows the testing of gravitational theories in unique

ways. The Pulsar Timing Array (PTA) is a technique to turn a set of bright, millisecond

pulsars into a galactic instrument that is used in the search for gravitational waves.

Scientists search for distinct patterns of correlation between the elements of the array.

Gravitational waves warp space-time and this distortion effects the time it takes the

pulses to travel from the pulsar to a telescope on Earth. We are searching for these

disturbances caused by gravitational waves by measuring the variations in the times of

arrival of pulses at a telescope, in this sense we are using pulsars as clocks.

We study the arrivals of the pulses from a pulsar that are coming into the radio

telescopes and call them times of arrivals (TOAs). From these TOAs it is possible to

determine the pulsar’s spin period and its derivative. From these two pieces of informa-

tion, it is possible to derive a pulsar’s astronometric parameters. Millisecond pulsars are

the most useful of the two types of pulsars in the more extreme applications, because

their pulse arrival times can be measured more precisely due to their rotation periods.

They are therefore superior clocks for extracting the maximum information from timing



observations.

2.1 MEASURING PULSE ARRIVAL TIMES

The majority of pulsars are weak radio sources, so in order to obtain a significant

detection, the incoming pulses collected by the dish of a radio telescope are amplified

by highly sensitive receivers, before being de-dispersed and then folded to form a mean

pulse profile.

Dispersion is where pulses observed at higher frequencies arrive earlier at the tele-

scope than their lower frequency counterparts,(see Figure 2). Anthony Hewish accurately

explained this spreading, or dispersion, of the pulse is due to the frequency dependence

of the group velocity of radio waves as they propagate through the ionized component

of the interstellar medium. Dispersion was one of the effects first noted in the discovery

of pulsars [19].
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Figure 2: A pulsar’s pulses observed at higher frequencies arrive earlier at the telescope
than their lower frequency counterparts.

A fundamental procedure used in pulsar observations is the synchronous averaging,

or “folding”, of the data at the pulse period. The additional “folding” of many pulses

helps the signal to be amplified above the background noise, an increase that is essential

for studying pulses in detail.

From this folding, the time of arrival (TOA) of the pulse at the telescope can be

determined. The TOA is defined as the arrival time of the nearest pulse to the mid-point

of the observation. As the pulses have a variety of shapes, the TOA must refer to some

reference point on the profile, which is taken to be the center of the peak.

16



Figure 3: Diagram showing the basic concept of a pulsar timing observation.

In order to explain how “folding” works, let us consider an obsolete method of

recording data, which is a long strip of paper that has some data. This paper records

marks that tell us the strength of a signal recorded with a radio telescope; the greater

the marks on the paper, the stronger the signal. Now let us think of creating these

continuous marks while the strip of paper is being pulled along under a pen. The pen

will move as signals are detected and it will tell us how strong the signal is. The paper

we have described will look something similar to Figure 4.
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Figure 4: This figure illustrates the technique of folding. This figure is taken from the
Pulsar Search Collaboratory pulsar searching guide.

Figure 4 shows marks that are characterized as background noise, but within the

background noise is a heartbeat signal from a pulsar is waiting to be discovered. If the

pulsar is known and that it has a period of one second, we make marks on the paper for

every second following the pulsars heartbeat period. We can now fold the paper on top of

itself, so the marks we created line up. Now adding up and averaging the signal in each

second, the pulsar’s heartbeat signal will be distiguishable from the noisy background

that we originally had. However, we usually do not know if there is a pulsar in the data

prior to detecting its heartbeats. We then have to do a blind search in every observation

and fold it at every possible period and hope to find a pulsar.

This tedious and time consuming work is shorten by using a mathematical tool

known as the Fourier transform. The Fourier transform is a set of mathematical oper-
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ations that can find periodic signals. It transforms the data from its original form of a

signal as a function of time to a form of a signal as a function of frequency. The reason

we transform the orignal data into the frequency domain is because it will tell us how

often some signal repeats itself in a given time frame. For example, if some signal is

recorded every second, then its frequency is once per second. When the Fourier trans-

form is working on pulsar data, it searches for the heartbeat signals in the frequency

domain. If it finds something interesting that could possibly be a pulsar signal, we can

look back and fold the data in the time domain to see whether or not it is in fact a pulsar

signal. This is a more efficient technique that will save us time in searching for pulsars.

Now that we have reached a better understanding as to how to search for pulsars,

let us refer back to the pulsar timing aspect. The main idea to remember about pulsar

timing is that it accounts for every single rotation in the neutron star’s life and its future

rotations. This distinct and precise monitoring of the rotational phase of a pulsar allows

us to study them and how they change over time.

One of the first things we measure in pulsar timing is the rotational phase of the

pulsar by recording the pulsar’s pulse times of arrival, containing an interger number

of rotations. Using these TOAs, we now try to mathematically try to figure out the

pulsar’s rotational phase φ(t) by approximating it in a Taylor expansion,

φ(t) = φo + f(t− to) +
1

2
ḟ(t− to)

2 + ..., (1)

where φo and to are arbitrary reference phases and times for each pulsar.

To be accurately measured, φ(t) must undergo many corrections to the recorded
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times of arrivals. We first record the pulses at the radio telescope on Earth in the

topocentric inertial frame, a recorded measurement from a fixed position on Earth’s

surface at time tt. This time can be corrected by a time t into the inertial solar system

center of mass, better known as the barycentric frame, which is typically presumed to

be almost the same time as the frame moving with the pulsar. But, we must consider

that the recorded pulse heartbeats will be shifted from the actual pulse as it was emitted

from the pulsar by an unknown Doppler factor.

t = tt − tto + δclock − δDM + δR⊙
+ δE⊙

+ δS⊙
+ δR + δE + δS. (2)

Here tto is a reference epoch, δclock represents the clock correction that considers the

differences between radio telescope clocks and terrestrial time standards, the δDM is

the dispersion delay caused by the interstellar medium, the δR⊙
is the Roemer delay

in which the light travel time across the Earth’s orbit is taken into account, δR is the

corresponding delay across the orbit of a pulsar in a binary system, the δE, is the Einstein

delay that accounts for the time dilation from the moving pulsar, radio telescope, and

the gravitational redshift caused by the Sun and by planets or by a binary companion,

and the δS, is the Shapiro delay, the additional time for the pulses to travel through

the curved space time containing the Sun, planets, and/or companions. The result of

equation (2) is what is known as the expected time of arrival for any given pulse from

a pulsar. Any errors within these parameters, the original recorded parameters like its

spin frequency and the spin frequency derivative, or the proper motion, can give you

systematic errors in the pulsar timing results. The result that is determined from all
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these parameters can be plotted as TOAs versus its “residuals”, which are in the phase

differences of the recorded times of arrivals from the predicted model of times of arrivals

based on the model parameters you use on that specific pulsar. If the timing model for

a given pulsar is a 100 percent accurate the timing residual will be zero.

Figure 5: Pulsar timing plot examples. In (a) is an example of a good timing solution
with no unmodeled effects. In (b) is an example of an error in the frequency derivative.
In (c) it shows a sinusoidal ripple that tells us there is an error in position. In (d) it
shows that you did not model the pulsar proper motion.

Pulsar astronomers have collaborated in writing software packages designed for the

searching and timing of pulsars using the above techniques. The most popular software

package is the Pulsar Exploration and Search Toolkit better known as PRESTO1. When

searching for pulsars PRESTO takes the Fourier transform of a data set and uses software

scripts to look for pulsar heartbeat signals within the data. When PRESTO has found a

promising candidate, it goes back and folds the data at the hinted period to determine

1http:www.cv.nrao.edu/ sransom/presto/
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whether it is a real pulsar or not. The end results could be a collection of beautiful

pulsar plots as shown in Figure 6.

PRESTO also includes a number of pulsar tools with which you can create your profile

template, make folded plots of your observations done at any major radio telescope, and

find the times of arrivals of the pulsar in the data you accumulate. This thesis project

heavily used this software package from the discovery of the pulsar until the last recorded

times of arrivals of the pulsar. Typically when taking data, the files that are created are

Flexible Image Transport System (FITS), which is an open standard defining a digital

file format useful for processing of scientific data that is read by PRESTO. The FITS files

I used contain data taken from Arecibo Observatory, the world’s largest radio telescope

located in Puerto Rico, when pointing at PSR J0453+1559.

PRESTO has a set collection of scripts designed for the three primary stages of pulsar

search analysis. Those used heavily in this project were:

1. Data Preparation

(a) rfifind searches the raw data in both the time and frequency domains for in-

terference or other problems. Each channel is analyzed for short time intervals

throughout the observation.

(b) prepdata de-disperses a single time series. This command is useful to prepare

the data and is used in accelsearch to search for unknown pulsars period.

2. Searching

(a) accelsearch performs a Fourier domain acceleration search with Fourier in-
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terpolation and harmonic summing on an FFT. The code is written such

that it uses minimal memory. It creates a list of candidates of well detected

periodic signals that could be a pulsar.

3. Candidate Optimization

(a) prepfold folds known pulsars or candidates from accelsearch over a range of

dispersion measures, periods, and period derivative around the best estimated

values and returns the optimized pulse profile.

Typically the files generated from the pulsar backend of the Arecibo radio telescope

are named in this way: puppi MJD PSRname OBS 000*.fits. The puppi is the name

of the pulsar backend system, MJD is the Modified Julian Date, a calendar used by

astronomers, PSRname is the name of the pulsar that was given, OBS is the observation

number the pulsar backend system gives, and last is the number of the FITS file.

Among other pulsar timing software packages is one that determines if the beats

of a pulsar are comparable to those of its model, and whether the tempo of the times

of arrivals of pulsars match the theoretical model. This software program is called

coincidentally, TEMPO 2, and it is used to analyze pulsar timing data. It compares the

pulse times of arrival to the TOAs determined by its timing model by using coded

input files. After the software is fed with the neccessary files it outputs the pulsars

parameter values and uncertainties, residual pulse arrival times by using χ2 statistics

and covariance matrix of the model. The χ2 statisitic is a test of how well a fit the

2http:tempo.sourceforge.net
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model is. The covariance matrix is a measure of how well elements agree with each other

from two sets of data move in the similar direction.

When running TEMPO, you need two files: an ephemeris file that is the model of the

pulsar (ex: 0453+1559.par) and the actual times of arrivals of the real data of a pulsar

(ex: 0453+1559.tim).

The software analyzes and fits for basic parameters of the pulsar, the first param-

eters would be its period and period derivative. After having measured a good period

and period derivative, all the other pulsars parameters will be derived by those two pa-

rameters. If a timing model of a pulsar is already known, using TEMPO it is possible to

create a more accurate timing model.

The output files one attains after running TEMPO are tempo.lis, resid2.tmp,

matrix.tmp, and psrname.par. The tempo.lis is a ASCII format file that lists in-

put parameters, input data (TOAs, frequencies), pre-fit and post-fit residuals, best-fit

parameters and uncertainties, statistics, and a covariance matrix. The resid2.tmp con-

tains the residuals of the pulsars in binary format for the TOAs, and it includes the

TOAs, post-fit residuals, orbital phase, observing frequency, and timing uncertainties.

The matrix.tmp contains the covariance matrix in binary format of the pulsars param-

eters. The psrname.par is in ASCII format and contains the pulsar’s parameters with

final values and a fit flag and error for pulsar parameters.
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Figure 6: A prepfold plot of pulsar J0154+18, a millisecond pulsar discovered in the
Arecibo All-Sky 327 MHz Drift Pulsar Survey.

There are different individual plots in a prepfold plot of a pulsar, see Figure 6.

The plot on the upper left is the pulse profile plot, which is the fingerprint of the pulsar

after the data has been folded over its period. The plot has two pulse shape heartbeats

that have been amplified over the background noise by the folding of the data. The plot

located directly below the pulse profile plot is called the time domain plot. It shows

the strength of the signal over the course of the observation. Each individual pixel tells

us the strength of the signal at that particular time and phase. The signal strength is

indicated by the darkness of the bin; the stronger the signal the darker the bin will be.

25



If the bin is white, it means that there was no signal detected at that time and phase. If

there is a pulsar deteceted in the course of your observation, it will be expected that you

would see its strong signal occuring at a consistent phase over the entire observation.

In most of the plots that a pulsar was discovered in, the position is slightly off, causing

the signal to fade out at the beginning or end of the observation. The time domain

plot allows you to decipher the position of the pulsar, due to the fact that the right

ascension that the telescope was pointing at is located in the center of this plot. This

means if the signal is stronger in the beginning but not at the end of the observation,

the right ascension needs to be decreased, and vice versa if the signal is stronger at the

end. Directly to the right of the time domain plot is the reduced χ2 plot that tells you

how well a signal was measured in the data.

In the very center of the prepfold plot is the frequency versus sub-bands plot.

This plot shows the observing frequencies of the receiver that you choose to use for your

observations. The plot is composed of the phase of the pulsar versus the frequency, again

darker bins mean that a signal was recorded. Typically pulsars are broadband, meaning

that they show up in a good range of different radio frequencies. If there is a detection

at only a narrow range of frequencies, chances are that it is not a pulsar.

The plot underneath the frequency versus sub-band plot is of the dispersion mea-

sure, labeled reduced χ2 versus DM. The dispersion measure gives us a clue of how far

the pulsar signal traveled to get to Earth. Although we are taught to think that space

is empty, it is actually filled with a low-density material. This interstellar material is

mostly made up of electrons that scatter the pulsar’s signal, causing the lower frequen-
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cies to arrive later than higher frequencies. The dispersion measure tells us of how much

material the pulsar’s signal traveled through, the larger the dispersion measure, the more

material it encountered in its journey to Earth and so the pulsar is most likely further

away than a pulsar that has a smaller dispersion measure.

These are the major plots used to determine whether a pulsar is real or not. The

plots produced by prepfold start to tell the story of a pulsar.

2.2 ARECIBO ALL-SKY 327 MHZ DRIFT PULSAR SURVEY

PSR J0453+1559 was discovered using the Arecibo All-Sky 327 MHz Drift Pulsar

Survery (AO327). This survey was started in 2010 and utilized the world’s largest radio

telescope Arecibo Observatory. A drift survey is one where scientists turn the telescope

on and let the Earth’s rotation control the sky that is overhead while taking data. This

is often done when the galaxy is overhead due to the fact that it has a multitude of

pulsars waiting to be found. An advantage of this type of survey is that can run in the

background of other experiments as well, so drift surveys accumulate a lot of data.

The AO327 survey aims to search the entire sky that can be seen by the Arecibo

Observatory. This means that the survey is examining the sky between declinations of

-1 to 38 degrees, and since its a drift survey, a right ascension field of view of 24 hours.

The plan is to do this in two phases. The first phase is to examine the sky between a

declination range of 0 to 28 degrees, exluding the region of 10 degrees that the inner

Galactic plane exists in. The reason for this exclusion is because Pulsar Arecibo L-band

Feed Array Survey (PALFA) already searches this region for pulsars at a frequency of

1.4 GHz. This 1.4 GHz frequency is better suited for pulsar searching in regions where
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there is a lot of scattering occuring and hence the pulsars have high dispersion measures.

The second phase will extend the survey to the declinations of 28 to 38 degrees, which

is the rest of the observable sky by Arecibo Observatory. In order for all degrees of

declination to be covered fully, a total of 2707 hours of observation time is required. So

far 1413 hours have been completed in this survey. This survey gets approximately 400

hours of telescope time per year, which the set up and slewing of the telescope, as well

as the actual data taken, must be completed. This survey is expected to be completed

in 2019.

2.3 INITIAL OBSERVATIONS OF A NEW PULSAR

After a pulsar has been discovered, it must be observed additional times to de-

termine its basic properties. The first measurements of a pulsar following its discovery

are its period, dispersion measure, and position. The period and dispersion measure are

limited to the how well the data was preliminarily folded. Positional uncertainties are

usually restricted by the level of the resolution of the radio telescope beam. By reducing

the uncertainties in these parameters through additional measurements, the observer is

ready for efficient, subsequent observations.

Due to the lack of initial precision in search observations, the pulsar’s period may

be altered between the discovery and confirmation observations. Reasons for this can

be due the discovery of an orbiting companion, or a glitch on the pulsar’s spin period.

Figure 7 demonstrates what a pulse profile will look like when the spin period of a

pulsar is incorrect. It will cause the pulsar’s fingerprint profile to broaden and will give

the signal a lower strength. Now we consider incrimenting the true pulse period by an
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infitesimal time δP so we can determine the rate of change of the period using Ṗ = δP/P.

This value is small due to the fact that pulsars are extremely stable, but it is possible

to detect a rate of change using data that spans a large period of time. This large data

set, tobs, allows you to detect slight variations in the times of arrivals, denoted ∆t. This

can be related to the true period of the pulsar by,

P true = P + δP = P + PṖ = P

(

1 +
∆t

tobs

)

. (3)

Figure 7: (a) Shows a time series for pulsar J0137+1654 folded at an incorrect period.
Notice how the pulse is smeared and has a lower strength detection. (b) The same time
series, but folded at the correct period, giving a sharper pulse signal with a stronger
detection.

For PSR J0453+1559, its discovery plot showed a weak but resonable signal for a

pulsar, see Figure 8. You notice that the pulsar was only displayed in a small fraction
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of the time of the observation at that pointing, between 25 seconds - 50 seconds. After

having discovered this pulsar, a confirmation observation was needed to determine if it

truly is a pulsar. The confirmation observation was done a week after it was discovered.

Since in the discovery plot the pulsar only showed up during a small fraction of the

observation, it indicated that the initial right ascension of the pulsar was slightly off.

This is not expected due to the fact that AO327 is a drift survey. After changing the right

ascension slightly and observing the pulsar for a longer time, we get the confirmation

plot (Figure 9) showing a true strong pulsar.

Something to note about this pulsar was its unique spin period of 45.7 milliseconds.

Many double neutron star systems have pulsars in them with spin periods ranging from

22 milliseconds to 144 milliseconds. This gave good indication towards PSR J0453+1559

being a double neutron star system, but more tests had to be done. Another good

indication of it being a double neutron star system is the fact that its spin period

changed from 45.77940 milliseconds to 45.769056 milliseconds between its discovery and

confirmation. This change in period is a significant one, since isolated pulsars have a very

stable periods. When pulsars are in a binary system the period of the pulsar changes

due to the Doppler shift as it is orbiting around its companion.

After realizing that this pulsar could be in a double neutron star system, the

first thing was to check if there was an optical companion. There are many digital

online surveys that have optically mapped out the sky. A popular one is the NASA

Finder Chart, which is a visulization tool that allows cross-comparision of images from

various surveys of different wavelengths and different epochs. This digital online survey
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has access to imaging data sets from the Two Micron All Sky Survey (2MASS), the

Digitized Sky Surveys (DSS), and the Sloan Digital Sky Survey (SDSS). We were able to

use this in our search for an optical companion. Figure 11 shows that there is no optical

component within 5 arcmin of the pulsar, which is a strong indication that this pulsar

is not orbiting a white dwarf or a main sequence star, but instead a neutron star.

Figure 8: This is the discovery prepfold plot of pulsar J0453+1559, discovered in the
Arecibo All-Sky 327 MHz Drift Pulsar Survey.

We now have all of the initial information of PSR J0453+1559, and can now create

an ephemeris, better known as a .par file. In this file the pulsar’s parameters are placed
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Figure 9: This is the confirmation prepfold plot of pulsar J0453+1559, this strong de-
tection confirmed that PSR J0453+1559 is in fact a real pulsar.

and later are used in solving for more parameters with pulsar software programs like

TEMPO. In this initial ephemeris we input its pulsar name, right ascension, declination,

spin frequecy, and dispersion measure. Later this will include parameters that will be

derived from measuring the pulsar’s spin frequency and its derivative.

Since PSR J0453+1559 seemed to be a promising candidate to follow up on, a pro-

posal was sent into the Arecibo Observatory to follow up on this pulsar for a whole year.

The first months of observing this pulsar were taken in incoherent de-dispersion mode,
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due to the uncertainty of the parameters of this pulsar. PSR J0453+1559 was observed

with the L-band receiver at the Arecibo radio telescope, which has the frequency range

1130 MHz to 1730 MHz. PSR J0453+1559 was observed for approximately 1 hour a

month over a span of 12 months. The data was taken using the Puerto Rico Ultimate

Pulsar Processing Instrument (PUPPI), a clone similar to GUPPI at GreenBank Obser-

vatory 3 as a back-end, which allows simultaneous processing of the whole band provided

by the receiver.

2.4 SOLVING DOUBLE NEUTRON STAR SYSTEM ORBIT

The first sets of data taken on PSR J0453+1559 were from observations that were

conducted in a relatively small time frame so it would be possible to get an initial phase

connection, which can be used to determine the pulsar’s orbital parameters. In order to

build up timing solutions for pulsars, the observations must be spaced closely together

so that you can unambiguously account for every rotation of the pulsar. After the initial

observations, the observation are then conducted on a monthly basis for a full year.

For pulsars in binary systems, the apparent pulse period changes due to time-variable

Doppler shifts. These shifts occur as the pulsar moves about the center of mass of the

binary system. In order to account for this variation, we must have several observations

to determine the pulsars period at each epoch using the period optimisation procedure

as described in section 2.3, since it is not possible to use a constant folding period. The

orbital parameters need to be taken into account when creating an accurate ephemeris file

that can then be used to fold the data. Since the pulsar’s period that these parameters

3http://safe.nrao.edu/wiki/bin/view/CICADA/GUPPISupportGuide

33



are based off is changing drastically over a short time period, it is necessary to attempt

to fit the data multiple times to achieve the best fit possible. For a binary orbit, the

plot of the observed periods, Pobs, versus time can be fitted to the Keplerian model:

P obs = P int

(

1 +
V (t)

c

)

.

Pint is the intrinsic period of the pulsar and V(t) is its projected velocity along the line

of sight as a function of time t.

Using a tool found in PRESTO called fitorb.py, it is possible to fit a curve to a

set of observed periods of a pulsar 4. It is necessary to create a text file that inculdes

the sets of Modified Julian Date (MJD) with the corresponding observed period with its

uncertainties. The MJDs that are included in this text file must be relatively consecutive

and there must be at least five observing dates. To get a true fit you will most likely have

to run fitorb.py on this text file multiple times. The initial orbital period calculated

using this tool has a large uncertainty due to the fact that if the initial data span is only

a week long and the actual orbital period is months long, the run will only be able to fit

for week long orbits. As more data is taken on the pulsar and this tool is run additional

times throughout the year of observations, the better the fit becomes as longer orbital

periods are able to be taken into account.

If the binary system is not a bright one, scientists must use other methods to

determine its parameters. Examples of weak pulsars are the ones in globular clusters,

which are surrounded by many other stars and gasses causing the scintillation of the

4http:www.cv.nrao.edu/ sransom/presto/
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pulsar’s signal and these pulsars are located farther away than the ones within the

galaxy. Due to the weaker signal, these pulsars often do not have sufficient data to

solve for its orbital parameters. In a paper by Paulo Freire and collaborators, [14], it is

demonstrated that for every single observation, it is possible to detect a significant period

derivative due to the orbital motion of the system by plotting the recorded periods in

Ṗ-P space. Then you fit an ellipse model to these points to determine the orbital period

and projected semi-major axis. Without this technique, it could not be possible to solve

for the orbital parameters of weak pulsars.

If the pulsar in a binary system is a strong one, it is possible to use Kepler’s

laws to derive the five timing model parameters: the orbital period Pb, projected semi-

major orbital axis x, orbital eccentricity e, longitude of periastron w and the epoch of

periastron passage T0. The same procedure is used to solve for these parameters using

spectroscopy, the star’s radial velocity curve is used rather than the period of the pulsar

in binary systems.

After fitting the data points in the from your series of observations, you are now

able to decipher the five timing orbital parameters. According to the fit of the PSR

J0453+1559, and it has a orbital period of 4.07 days, an eccentricity of 0.1125, and the

projected semi-major axis is 14.4668 light-seconds. Now having the orbital parameters

you can now get some constraints on the masses of the pulsar and its companion.

2.5 MASS FUNCTION

It is possible to determine the mass of the pulsar and its companion star when

they exists in a binary system together. By using classical Keplerian parameters, it is
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Figure 10: Barycentric period measurements of PSR J0453+1559 vs time. The black
dots denote observations and the red curve shows the expected change in observed period
due to eccentric orbital motion for the best fit orbit.

possible to incorporate constraints on the mass of the companion. Using the projected

semi-major axis and the orbital period, we can work to obtain the mass function of both

stars (the derivation of this is below):

f(mp,mc) =
(mcsini)

3

(mp +mc)2
=

4π2x3

T⊙P 2
b

.

where T⊙ = (GM⊙c
−3) = 4.925490947µs is a constant, i, is the inclination between the

plane of the orbit and the line of sight (which is perpendicular the the observer), x is the

projected semi-major axis, Pb is the orbital period and mp and mc are the pulsar and

comapanion masses respectively. From knowledge of other binary systems, we assume

that mp = 1.4 M⊙, and from this we calculate the constraints on mc using the mass

function and assuming the inclination angle. When i is 90 degrees, the companion mass

will be at its minimum.
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To derive the mass function, we start with Kepler’s third law of planetary motion:

the square of the orbital period of a planet is proportional to the cube of the semi-major

axis of its orbit:

GM =

(

2π

Porb

)2

a3. (4)

If we algebraically change the total mass, M,

M = m1 +m2 = m1

(

1 +
m2

m1

)

= m1(1 + q), (5)

where q = m2 / m1 and knowing the fact that m1a1 = m2a2, the semi-major axis a is

re-arranged:

a3 = (a1 + a2)
3 = a32

(

1 +
a1
a2

)3

= a2

(

1 +
m2

m1

)3

= a32(1 + q)3. (6)

Using these new definitions, we plug them back into Kepler’s third law, equation (4).

Gm1(1 + q) =

(

2π

Porb

)2

a32(1 + q)3. (7)

Now we want to rewrite a2 as something we can measure. We can use the maximum

radial velocity of m2: V2 = v2sini, where v2 is the orbital velocity of m2, to rewrite a2.

Noting that:

Porb =
2π

ω
=

2πa2
v2

=
2πa2sini

V2

(8)

and rearranging the equation above to get the quantity we desire, we get:
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a2 =
PorbV2

2πsini
(9)

Substituting this equation back into Kepler’s law, we get:

Gm1 =

(

2π

Porb

)2 (
PorbV2

2πsini

)3

(1 + q)2. (10)

And, by once again rearranging once again, we get the mass function:

m1sin
3i

(1 + q)2
=

PorbV
2
2

2πG
. (11)

We were able to succesfully determine the five orbital timing model parameters of

PSR J0453+1559. The orbital period was determined to be 4.07 days. This means that

this system is not a very tight system where it would be possible to measure the Einstein

delay and the orbital decay due to the emission of gravitational waves. The eccentricity

is 0.11 and the projected semi-major axis of the orbit is 14.5 light seconds.

Using these parameters and the Keplerian mass function, we get the constraint of

the masses of the system:

f(mp,mc) =
(mcsini)

3

(mp +mc)2
=

4π2x3

T⊙P 2
b

= 0.1959679(2)M⊙, (12)

Given the orbital eccentricity and this constraint, we are able to make the conclu-

sion that both of the objects in this system are neutron stars. If the companion had

instead evolved into a massive white dwarf star, the system would have retained a circu-
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lar orbit, which is characteristic of compact accreting systems. This is consistent with

the non-detection of an optical counterpart of the system, see Figure 11.

Figure 11: This plot was created by the online Digital Sky Survey, NASA Infrared
Science Archive which shows no optical companion near pulsar J0453+1559 within 5
arcminutes.
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2.6 SHAPIRO DELAY

For a binary system, in this case a double neutron star system, it is possible to

determine the general relativistic Shapiro Delay of the system. The Shapiro delay is an

increase in light travel time as it travels past a massive body that is causing space-time

to be warped. From binary pulsar systems that have greatly inclined orbits, it is possible

to detect a delay in the pulse arrival times when the pulsar is at the superior conjunction

with its companion star. Superior conjunction is the time when two astronomical objects

appear close to eclipse with each other. By measuring the Shapiro delay it is possible

to determine an estimate of the mass of the companion and the inclination angle. You

then plug these parameters into the mass function and directly solve for the mass of the

pulsar and its companion.

The Shapiro delay was discovered by Irwin Shapiro in 1966 by bouncing radar

beams off to the surface of Venus and Mercury. Shapiro was measuring the round

trip journey time for light beams when the Earth, Sun, and Venus were aligned. The

experiment showed that the expected time delay, due to the presence of heavy objects,

of the radar signal as it traveled from Earth to Venus was about 200 microseconds [30].

The experiment was done using the MIT Haystack radar antenna. This experiment has

been repeated many times, each time with more precise measurements.

To determine the Shapiro delay of PSR J0453+1559, a special observation session

proposal was submitted to the Arecibo Observatory, due to the fact the Shapiro delay

can only be observed in certain times. It is possible to see the Shapiro delay as a peak

in a TOA residuals versus orbital phase plot. This is due to the fact that the Shapiro

40



delay is an increase in light travel time through the curved space-time near a massive

body, see Figure 12. Calculation of the Shapiro delay experienced by PSR J0453+1559

were done during an observation conducted between Aug 23 through Aug 27, 2014.

This experiment lasted for five consecutive days, starting and ending with a day where

superior conjunction occurs. Each observation lasted about two hours. A well detected

Shapiro delay allows for a precise measurement of the total mass of the system and also

helps constrain the individual masses of the pulsar and the companion neutron star. In

Figure 13 you can see the observed Shapiro delay of this binary system.

Figure 12: Example of a Shapiro Delay for a pulsar orbiting a massive companion, as
the pulses of the pulsar are in line of sight of the companion the TOAs arrive earlier
creating a spike in the plot.5
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Figure 13: This plot shows the timing residuals versus its orbital phase of the binary
system in which pulsar J0453+1559 is in. The top graph shows the detection of the
Shapiro Delay which enables to constrain and measure precise mass measurements of
the total mass and companion mass of the system.
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2.7 POST-KEPLERIAN PARAMETERS AND RELATIVISTIC PARAM-

ETERS

Assuming general relativity is correct, you can derive the five “Post-Keplerian”

parameters [5]. The five parameters are: the rate of change of periastron in degree per

year, ω̇, the orbital decay of the system due to the outpouring of gravitational radiation,

Ṗb, the gravitational redshift of the system coming from general relativity, γ, and two

additional parameters measured from the Shapiro delay, r and s. γ gives information

about the time in which the object’s electromagnetic radiation is in a strong gravitational

field, causing a change in the recorded frequency in a weaker gravitational field. These

parameters were first succesfully measured using the first double neutron star system,

PSR B1913+16 [21] [35].

ω̇ = 3T
2

3

⊙

(

Pb

2π

)
−5

3

(mp +mc)
2

3

1

(1− e2)
(13)

γ = T
2

3

⊙

(

Pb

2π

)
1

3

e
mc(mp + 2mc)

(mp +mc)
4

3

(14)

Ṗb = −
192π

5
T

5

3

⊙

(

Pb

2π

)
−5

3 (1 + 73
24
e2 + 37

96
e4)

(1− e2)
7

2

mpmc

(mp +mc)
−1

3

(15)

r = T⊙mc (16)
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s = T
−1

3

⊙

(

Pb

2π

)
−2

3

x
(mp +mc)

2

3

mc

(17)

For PSR J0453+1559, it was possible to determine three Post-Keplerian parameters.

They were ω̇, r, and s.
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3.1 ABSTRACT

We report the results of a study of PSR J0453+1559, a new binary pulsar discovered

in the Arecibo All-Sky 327 MHz Drift Pulsar Survey. Our timing observations of the

radio pulsar in the system, PSR J0453+1559, span a period of about 300 days, which

allowed precise measurement of its spin period (45.7 ms) and its derivative (1.85 ±

0.13) × 10−19 ss−1; from these we derive a characteristic age of ∼ 3.9 × 106 years and

a magnetic field of ∼ 2.9 × 109 G. These numbers indicate that this pulsar was mildly

recycled by accretion of matter from the progenitor of the companion star. The system

has an eccentric (e = 0.11) 4.07-day orbit. This eccentricity allows a highly significant

measurement of the rate of advance of periastron, ω̇ = 0.0379 ± 0.0005 ◦yr−1, which

implies a total system mass M = 2.73 ± 0.006 M⊙ . We also detect a faint trace of the

Shapiro delay, which allows an estimate of the individual masses: mp = 1.54 ± 0.006

M⊙ and mc = 1.19 ± 0.011 M⊙, respectively. These masses, along with the orbital

eccentricity, suggest that PSR J0453+1559 is a double neutron star system with a large

mass asymmetry. The expected coalescence time due to emission of gravitational waves

is ∼1.4 Tyr, ∼ 102 times larger than the age of the universe.

3.2 INTRODUCTION

Double neutron star (DNS) systems are rare and valuable physical laboratories that

can be used to precisely test gravity theories. The first such system, PSR B1913+16,

provided evidence for orbital decay due to the emission of gravitational waves as pre-

dicted by General Relativity GR, [21] & [35]. Since the discovery of PSR B1913+16,

eight additional DNS systems have been discovered Table 2, including one such system in
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which both neutron stars are detectable as radio pulsars, PSRs J0737-3039A and J0737-

3039B [6]. This system provides one of the best available tests of GR and alternative

theories of gravity in the strong-field regime.

DNS systems begin as two high-mass stars. The higher-mass star will undergo a

supernova explosion resulting in a neutron star and a high-mass companion. Prior to

the supernova of the companion, there is typically a period of mass transfer from the

companion onto the neutron star and the system can be detected as a high-mass X-ray

binary. Eventually, the companion will undergo a supernova explosion, leaving behind

two neutron stars: the older might be detected as a mildly recycled pulsar which was

spun up by accretion from the progenitor of the younger star, the younger might be

detected as a normal pulsar. In the rare case that the system survives both supernovae,

the result is a DNS.

In this letter, we report the initial timing solution for the newly discovered PSR

J0453+1559, which appears to be a new DNS system. PSR J0453+1559 has a spin

period of 45.8 ms and a DM of 30.3 cm−3pc and was discovered in the Arecibo 327 MHz

Drift Pulsar Survey [12], which began in 2010. The survey targets the declination range

accessible to the Arecibo telescope,−1 ◦ - 38 ◦, and has an effective integration time of 1

minute. The survey is sensitive to very tight relativistic binaries even with only moderate

acceleration searches. To date, 44 new radio pulsars have been discovered. In section 2,

we describe the timing procedure and in section 3, we present the timing parameters of

this new system.
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Table 2: Double Neutron Star Systems known in the Universe

Pulsar Period Pb x e MT Mp Mc Reference
(ms) (days) (lt-sec) (M⊙) (M⊙) (M⊙)

J0737-3039A 22.699 0.1022 1.415 0.0877 2.587 1.338 [6]
J0737-3039B 2773.461 1.516 1.249
B1534+12 37.904 0.420 3.729 0.2736 2.678 1.333 1.345 [36]
J1756-2251 28.461 0.3196 2.756 0.1805 2.57 1.312 1.258 [13]
J1906+0746 144.071 0.1659 1.419 0.0853 2.6133 1.323 1.290 [24]
B1913+16 59.031 0.3229 2.341 0.617 2.828 1.439 1.388 [21]
B2127+11C 30.529 0.3353 2.518 0.6814 2.712 1.358 1.354 [2]
J1829+2456 41.009 1.76 7.236 0.1391 2.5 1.38 1.22 [7]
J1518+4904 40.935 8.634 0.2495 2.7183 2.62 [29]
J1811-1736 104.1 18.779 34.782 0.828 2.57 [26]
J0453+1559 45.782 4.072 14.467 0.1125 2.73 1.54 1.19

3.3 OBSERVATIONS AND DATA REDUCTION

PSR J0453+1559 was observed with the L-band receiver of the 305-m Arecibo

radio telescope for ∼1 hour once a month in a span of 10 months, using the Puerto

Rico Ultimate Pulsar Processing Instrument (PUPPI), a clone similar to GUPPI at

GreenBank Observatory 1 as a back-end, which allows simultaneous processing of the

whole band provided by the receiver, from 1130 to 1730 MHz.

The first six months’ observations were taken in search mode, this continued until

we derived an ephemeris that was capable of predicting the pulsar spin phase. Subsequent

observations were taken in coherent dedispersion mode, which coherently dedisperses

and folds the data online, effectively removing the dispersive effects of the interstellar

medium.

In figure 14, we can see clearly the benefits of using this technique: the main pulse

has a sharp feature, which would be undetectable without coherent dedispersion. This

feature contribues to the good precision timing of this pulsar discussed in later in the

1http://safe.nrao.edu/wiki/bin/view/CICADA/GUPPISupportGuide
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text.

Figure 14: Left: Pulse profile of PSR J0453+1559 at 1380 MHz, obtained in a 20 min observa-
tion with the L-wide receiver of Arecibo Observatory. Right: Zooming in on the pulse profile,
we can see more clearly a very sharp feature in the main pulse. This is one of the reasons for
the excellent timing precision of this pulsar.

The dedispersed pulse profiles obtained with 5 minutes of data are then cross-

correlated with a low-noise template to derive 494 topocentric pulse times of arrival

(TOAs), as described in [32] and implemented in the PSRCHIVE software [20] & [34].

We then used tempo to correct the TOAs using the Arecibo Observatory’s clock

corrections and to convert them to the solar system barycentre. To do this, the motion

of the radio telescope relative to the Earth was calculated using the data from the In-

ternational Earth Rotation Service, and to the barycentre using the DE421 solar system

ephemeris 2.

Finally, the difference between the measured TOAs and those predicted by a model

of the spin and the orbit of the pulsar is minimized by tempo, by varying the parameters

in the model. The parameters that best fit the data are presented in Table 3. To model

the orbit, we used the DDGR model described by [9] & [10] , which assumes the

2ftp://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421.iom.v1.pdf
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validity of GR to derive the masses of the components and the system, and the DDH

model described by [16] , which like the DD model allows a fit for the post-Keplerian

parameters, but includes an optimized description of the Shapiro delay.

The residuals (TOA - model prediction) associated with this model are displayed

in figure 15. There are no unmodeled trends in the residuals, either as a function of time

or of orbital phase, which implies that the model in Table 3 described the data well. The

residual root mean square is 2.8 µs, which represents a fraction of 6 × 10−5 of the spin

period.

Table 3: Timing solutions for PSR J0453+1559.

Timing Parameters
Right Ascentsion, α (J2000) 04:53:45.4138(10)
Declination, δ (J2000) +15:59:21.286(57)
Pulsar Period, P (s) 0.04578181616(43)

Period Derivative, Ṗ (s s−1) 1.85(6)E-19
Dispersion Measure, DM (pc cm−3) 30.305(4)
Span of Timing Data (MJD) 56339-56896
Number of TOAs 953
RMS Residual (µs) 2.83

Binary Parameters
Orbital Period, Pb (days) 4.07246858(73)
Projected Semi-major Axis of the pulsar orbit, x (lt-s) 14.46682(16)
Epoch of Periastron, T0 (MJD) 56425.703353911
Orbital Eccentricity, e 0.11251847(80)
Longitude of Periastron, ω (◦) 223.06940(86)
Total Mass, M (M⊙) 2.732(6)
Companion Mass, mc (M⊙) 1.19(1)

Derived Parameters
Galactic Longitude, l 184.1246
Galactic Latitude, b -17.1368
DM Derived Distance, d (kpc) 1.0
Surface Magnetic Field Strength, B0 (109 Gauss) 2.91
Characteristic Age, τc (Myr) 3.9
Pulsar mass, mp (M⊙) 1.54(5)
Orbital inclination, i (◦) ∼ 73

The parameters in Table 3 (the pulsar’s ephemeris) include a precise position in

the sky, which allows for optical follow-up. No optical counterpart to the system is
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Figure 15: The top plot is Residulas vs. MJD and the lower plot is the Residuals vs.
Orbital Phase.

detectable in the online Digital Sky Survey.

The ephemeris also includes the pulsar’s spin period and its derivative (1.87 ±

0.13) × 10−19 ss−1; from these we derive a characteristic age of ∼ 3.9 × 106 years and

a magnetic field of ∼ 2.9 × 109 G. These numbers are similar to what we observe for

other pulsars with massive companions, and they indicate that this pulsar was mildly

recycled by accretion of matter from the progenitor of the current companion star.

The ephemeris also includes very precise orbital parameters. The orbital period of

4.07 days, i.e., this is not a tight system where we might be able to measure the Eisntein
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delay and the orbital decay due to the emission of gravitational waves. The eccentricity

is 0.11 and the projected semi-major axis of the orbit is 14.5 light seconds. From this

we can derive the Keplerian mass function:

f(mp,mc) =
(mcsini)

3

(mp +mc)2
=

4π2x3

T⊙P 2
b

= 0.1959679(2)M⊙, (1)

where T⊙ = (GM⊙c
−3) = 4.925490947µs is a solar mass in time units, i is the

inclination between the plane of the orbit and the line of sight, x is in light seconds, Pb is

in seconds and the pulsar and comapanion masses mp and mc, are in solar masses. If we

assume for the pulsar a mass of 1.4 M⊙ and maximum and median orbital inclinations

(i = 90◦, 60◦) we obtain minimum and median companion masses of 1.05 and 1.30 M⊙,

i.e., the companion is relatively massive. Given the orbital eccentricity, this is likely to

be a neutron star – if the companion had evolved into a massive white dwarf star, there

would be at no instance the sudden mass loss associated with a supernova explosion, and

the system would thus have retained the circular orbit that is characteristic of compact

accreting systems. This is consistent with the non-detection of an optical counterpart of

the system.

We have searched for radio pulsations from this companion in the early observa-

tions, which were taken in search mode. These were dedispersed at the same DM as

PSR J0453+1559 and then searched with the PRESTO pulsar search code3. The compan-

ion was not detected as a radio pulsar.

This orbital eccentricity allows a detection of the the advance of periastron, ω̇. If

3http://www.cv.nrao.edu/ sransom/presto/
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we assume this to be purely relativistic, then it depends only on the total mass of the

system M and Keplerian orbital parameters, which are already known precisely [?]:

ω̇ = 3T
2

3

⊙

(

Pb

2π

)−
5

3 1

1− e2
M

2

3 . (2)

This yields M = 2.732 ± 0.006 M⊙, within the mass range of currently known DNS

systems.

.
ω .

ω

Mass of J0737−3039B

PSR J0453+1559

s
s

Figure 16: Current constraints from timing of PSR J0453+1559. Each triplet of lines corre-
sponds to the nominal and ±1σ uncertainties of the post-Keplerian parameters, which are: the
rate of advance of periastron ω̇ and the “Shape” parameter for the Shapiro delay, s, which in
general relativity is sin i, where i is the orbital inclination. Left: Mc - cos i plane. The gray
region is excluded by the physical constraint Mp > 0. Right: Mc-Mp plane. The gray region is
excluded by the mathematical constraint sin i ≤ 0.

We also detect a trace of the Shapiro delay. In the DDH solution, the orthometric

amplitude h3 is detected to about 3-σ significance, which implies that the orbital incli-
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nation must be relatively high. The individual masses cannot be determined with any

certainty using the Shapiro delay alone. However, in combination with the total mass

constraint, it allows a determination of the component masses, as shown in figure ??.

Using the DDGR model, which uses all these effects in a self-consistent way, we obtain

mp = 1.54 ± 0.05 M⊙, mc = 1.19 ± 0.01 M⊙ and i ∼ 73◦ respectively. This suggests

that there is a large mass asymmetry in the system.

The mass asymmetry observed in this DNS is the second case known if the low

mass for PSR J1518+4904 is confirmed [23], and the first case where we have a precise

mass measurement for the components of such a system, or also for any wide DNS.

Unlike PSR J1518+4904, here it is the mildly recycled pulsar that is most massive and

the second formed NS that is less massive. The accretion episode in these systems is

very short lived and therefore the NS masses are similar to their masses at the instant

of formation.

Until now, most well measured NS masses in DNS systems fell on a narrow range

between 1.23 and 1.44 M⊙ [35] & [13]. This had lead to speculation that all NSs might

be born within this narrow band, and that the large masses observed in some MSPs

like PSR J1903+0327 [15], PSR J1614−2230 [11] and PSR J0348+0432 [3] are due

to accrtion. However, from an analysis of the evolution of PSR J1614−2230, [31] had

already suggested that at least some NSs must be born more massive than 1.44 M⊙. The

result presented here indicates that, as suggested by the latter analysis, the range of NS

birth masses is indeed substantially wider than the 1.23 and 1.44 M⊙.

The mass asymmetry is very important in itself, particularly if the lighter NS has
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a mass smaller than 0.8 of that of the most massive component, as is the case in the

J0453+1559 system. When such a system merges, the lighter (and larger) NS is tidally

disrupted by the smaller, more massive NS. According to recent simulations (references

later), such mergers result in a much larger release of heavy elements to space, possibly

explaining the heavy element abundances in our galaxy. This would also have an impact

for searches of gravitational waves in ground-based GW detectors, since we can no longer

assume that the NSs in NS-NS have similar masses. In such systems dipolar gravitational

wave emission could theoretically become important at the later stages of the merger;

however this possibility is already significantly constrained by the measurement of the

orbital decay of PSR J0348+0432 [3].

However, asymmetric DNSs can only be an explanation for heavy element abun-

dances if they form with an orbital period that is small enough for them to merge well

within a Hubble time. The existence of systems like PSR J1518+4904 and J0453+1559

have very large merger times - in the case of J0453+1559, this is more 1430 Gyr (1.43

Tyr), which is almost exactly 100 times the current age of the universe (and even much

longer for PSR J1518+4904). This implies that similar systems cannot explain the heavy

element abundances in the universe. But given the wide range of NS masses observed

in the wider system, it is possible that similarly asymmetric compact systems might be

found in the future.
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