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Abstract 

The alignment, or rigid registration, of three-dimensional (3D) point clouds plays an important role in many applications, such as robotics and 
computer vision. Recently, with the improvement in high precision and automated 3D scanners, the registration algorithm has become critical in 
a manufacturing setting for tolerance analysis, quality inspection, or reverse engineering purposes. Most of the currently developed registration 
algorithms focus on aligning the point clouds by minimizing the average squared deviations. However, in manufacturing practices, especially 
those involving the assembly of multiple parts, an envelope principle is widely used, which is based on minimax criteria. Our present work models 
the registration as a minimization problem of the maximum deviation between two point clouds, which can be recast as a second-order cone 
program. Variants for both pairwise and multiple point clouds registrations are discussed. We compared the performance of the proposed 
algorithm with other well-known registration algorithms, such as iterative closest point and partial Procrustes registration, on a variety of 
simulation studies and scanned data. Case studies in both additive manufacturing and reverse engineering applications are presented to 
demonstrate the usage of the proposed method. 
 
© 2022 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME. 
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1. Introduction 

The point cloud is a type of data format that is generally 
created by coordinate measuring machines (CMM) or three-
dimensional (3D) scanners to describe the geometric 
information of a physical object or an environment in the digital 
world [1]. With the improvement in automation, precision, and 
speed of the 3D scanner during the past decades, it has attracted 
more interest in manufacturing and engineering applications [2-
4]. On the one hand, the point clouds surveyed by scanners can 
be utilized for quality inspection purposes, where the point 
cloud of each produced part is compared with the nominal 
model and the tolerancing design to determine whether the 
corresponding part is qualified [5, 6]. On the other hand, reverse 
engineering (RE) techniques collect the point cloud from a 
physical object to (re-)construct its digital model for 
reengineering or redesign purposes [7, 8]. The point clouds 

surveyed by 3D scanners are recently utilized to bridge the gap 
between design and manufacturing, known as the digital twin, 
to build more realistic virtual models for better design and 
production [9, 10]. 

The raw point clouds collected by CMM or 3D scanners also 
incorporate some nuisance factors, other than the geometric 
information of the physical parts, such as the noises in the 
scanning process and the posture or position of the scanned 
parts [11]. These factors prevent the direct alignments between 
the point clouds and the nominal design or among point clouds. 
Registration plays an important role in aligning the point clouds 
with respect to predetermined criteria [12]. To avoid confusion, 
in this paper, we define the registration as its one major subset, 
the rigid registration, for manufacturing applications. Rigid 
registration is an algorithm that removes the translational and 
rotational factors in the point clouds in order to align them to a 
target [13]. Therefore, registration algorithms are important for 
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many applications involving point clouds, such as robotics [12] 
and computer vision [14]. 

 
Nomenclature 

3D three-dimension 
RE reverse engineering 
AM additive manufacturing 
CMM coordinate measuring machine 
ICP iterative closest point 
PPA partial Procrustes analysis 
CAD computer-aided design 
GD&T geometric dimensioning and tolerancing 

 point cloud  
 the th row (the coordinates of point ) in point cloud 

 
 rotation matrix 
 translation vector 

GPA generalized Procrustes analysis 
OPR ordinary Procrustes registration 
i.i.d. independent and identically distributed 

 
Due to the noisy nature of the point clouds, the registration 

algorithms are designed for aligning point clouds to optimize 
certain criteria. The two most popular examples are partial 
Procrustes analysis (PPA) [15], which is generally used in 
statistical shape analysis, and iterative closest point (ICP) [16], 
which is widely implemented in computer vision and robotics 
communities. PPA is defined to be a minimization problem that 
finds the optimal rotation matrices and translation vectors to 
minimize the Procrustes distance between one point cloud and 
another, or the point clouds and their mean configuration, if 
more than two point clouds are of interest. ICP, on the other 
hand, minimizes the distance between point clouds by 
alternating the correspondence estimates and their 
corresponding transformation factors. 

 

Figure 1. Tolerancing design for shaft and burr design: (a) original tolerance 
design; (b) one small out-of-tolerance burr on the shaft, while the overall 

average radius of the shaft is in-tolerance 

One potential issue of applying these algorithms in a 
manufacturing setting is their registration criteria. Both 
methods minimize the averaged squared distance among all the 
points in the point clouds (even though we can register the point 
clouds according to a subset of corresponding pairs in ICP). 
However, the envelope principle, or the Taylor principle, is the 
golden standard adopted by geometric dimensioning and 
tolerance (GD&T) standards, including ASME Y14.5 and ISO 
tolerancing standards, to define the tolerance regions [17] for 
manufacturing and production system design and analysis [18]. 
The tolerance region, or acceptance region in quality 
inspection, is defined as the area around the nominal design 
covered by a pair of upper and lower boundaries. In other 
words, the qualified parts, defined by the tolerance design, are 
the ones whose maximum deviation from the nominal design 
should be within the tolerance region. This principle also has 
real practical insights in assembly analysis. For example, in the 
classic shaft and hole design (Figure 1), if a small burr exists on 
the shaft part, which makes this spot out of the tolerance region, 
these two parts cannot be assembled. However, when analyzing 
the surveyed point cloud for quality inspection, PPA or ICP 
algorithms, which register the point clouds by minimizing the 
average squared deviations, could underestimate such an effect. 
Another important application involving point cloud processing 
is RE, whose objective is to build a computer-aided design 
(CAD) model based on multiple views or multiple scans for 
accurate model construction. One important component of the 
CAD model is tolerance design, which is also missing in RE 
applications. Recently, Geng and Bidanda [17] proposed a 
tolerance estimation procedure for tolerance inference from the 
point clouds of multiple parts with the same design. In their 
paper, even though multiple scans for each part are performed 
to get the mean scan model to reduce the effect of the scanner, 
PPA is utilized for registration of multiple scans, which could 
potentially overestimate the original tolerance designs. 

In this paper, we propose a new registration procedure for 
manufacturing applications. The alignment of the point clouds 
is based on minimizing the area between the upper and lower 
envelopes, which cover all the registered points in between. In 
other words, the rotation matrices and the translation vectors of 
the rigid registration are sought by minimizing the maximum 
deviations among point clouds, or a minimax problem. Pairwise 
registration, which aligns one point cloud to another, is firstly 
modeled and, later, recast as a second-order cone program for 
fast optimization. Next, the alignment of multiple point clouds 
is proposed by increasing the constraints of the pairwise 
version.  

The remainder of this paper is organized as follows. Section 
2 briefly surveys the two most important rigid registration 
techniques, which are ICP and PPA. Algorithms and their major 
usages are presented. Next, minimax registration models and 
algorithms are proposed in Section 3 for both the pairwise case 
and the case involving multiple point clouds. Simulation studies 
are designed in Section 4 to validate the performance of the 
proposed algorithm. Comparison results among the three 
registration algorithms are presented. Case studies regarding 
reverse engineering and quality inspection for additive 
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manufacturing are presented and discussed in Section 5. 
Finally, concluding remarks and directions for future research 
that are motivated by our new algorithm are in Section 6. 

2. Registration Algorithms 

In this section, we first introduce the basic concepts in rigid 
registration. The point cloud aligning problem is generalized as 
an optimization model. Two widely adopted algorithms, ICP 
and PPA, are briefly summarized. Major steps of both methods 
are presented, together with their primary applications. 

2.1. Basics of Rigid Registration 

Let  are   matrices representing one 
point cloud containing the coordinates of  rows, whose row, 

, contains -, -, and -coordinates of the th point in th 
point cloud, , . 

Rigid registration is a way to align two point clouds without 
changing their size or shape by minimizing a metric measuring 
the distance between the point clouds through changing the 
rational and translational factors. There are three major 
components in the rigid registration: rotation matrix, 
translation vector, and a target point cloud.  

A rotation matrix is a matrix defined as 
 

  (1) 

where the elements , , are determined by three 
rotation angles about the -, -, and -axes, respectively. By 
multiplying the rotation matrix to a point cloud , the new 
matrix  represents the point cloud with the same size and 
shape but has a different orientation. 

Translation vector, on the other hand, is a -dimensional 
vector, defined as  

  (2) 

where the elements , , represent the length of 
translation along -, -, and -directions, respectively. 

Rigid registration, or a registration in general, is an 
algorithm that aligns the points clouds by removing the effects 
caused by the above two factors for purposes such as statistical 
modeling and inference, quality inspection. To achieve this 
goal, one point cloud is kept fixed as a reference or a target, and 
other point clouds are transformed to align, or best match, this 
target. The target can be the nominal point cloud from the 

original design in quality inspection applications or an arbitrary 
point cloud in RE projects. 

2.2.  Iterative Closest Point Algorithm 

Iterative closest point (ICP), also named as iterative 
corresponding point, introduced by Besl and McKay [16], is an 
algorithm that repetitively updates the rotation matrix and 
translation vector to minimize a deviation metric between the 
target and the other point clouds. The deviation metric is 
generally a measurement of the distance between two point 
clouds, such as the sum of squared differences between the 
corresponding points. ICP is one of the most widely utilized 
registration algorithms in computer vision and robotics. 

Essentially, the ICP algorithm can be performed iteratively 
via the following steps: 

• Step 1: Match each point in the point cloud with the closed 
point in the target point cloud; 

• Step 2: Estimate the combination of the rotation matrix and 
translation vector based on deviation metric, which aligns 
each point to the corresponding target point; 

• Step 3: Transform the points using the estimated 
transformation coefficients; 

• Step 4: Repeat the above procedures until convergence (
). 

Variants of the ICP algorithm can be applied to register 
different types of geometric data, including general point 
clouds, line segment sets, implicit or parametric curves and 
surfaces, and faceted surfaces [16]. Furthermore, the point-
wise correspondence relationship can also be explored via this 
algorithm, which makes it a widely used registration method in 
different applications, including multi-view registration, 
computer vision, and medical imaging. However, the ICP 
algorithm is generally limited to one-to-one registration that 
one point cloud, also called source, is aligned to the target. It 
becomes an issue when applying ICP to make inferences in 
statistical shape analysis, where multiple point clouds are 
available, and the mean is unknown in RE applications. 

2.3. Partial Procrustes Analysis 

Partial Procrustes analysis (PPA), or generalized Procrustes 
analysis (GPA) in general, is a set of registration algorithms 
developed by the statistical shape analysis (SSA) community 
to study the statistical behavior regarding shapes. PPA is a 
specialized version of GPA that remains the size factor in the 
point clouds during registration. It maps the point cloud 𝑋 to a 
new space, called size-and-shape space, where statistical 
properties have been studied in [19]. 

We are considering the general case where  point 
clouds are available, which are . The point clouds are 
random samples from a population with a mean , which is 
unknown. Our objective is to estimate the mean by averaging 
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the sample configurations while removing the other variational 
factors, including translation and rotation.  To achieve this 
objective, we can formulate a least-squares model to find an 
estimate of . Therefore, we minimize 

 , (3) 

where  is a 3-D rotation matrix,  is a vector of  ones, and 
 is the location parameter, for . 
PPA is a particular case of GPA, developed by Gower and 

Ten Berge [79], which includes a scaling factor in the above 
minimization model. Therefore, we can adopt the GPA 
procedure by removing the steps regarding the size. The PPA 
algorithm proceeds as follow to solve the above least squares 
problem: 

• Step 1: Center the point clouds to remove the location. The 
centering process can be done by multiplying each 
configuration matrix with a Helmert submatrix , defining 

  (4) 

The Helmert submatrix is defined to be the  
matrix whose th row is 

 , (5) 

and the th row consists of  repeated  times, one , 
and  zeros. 

• Step 2: For the th configuration matrix, let 

  (6) 

• Step 3: Do ordinary Procrustes registration (OPR), 
involving only rotation, of ’s onto  to generate new 

 for all . The OPR is a simplified version of PPA that 
only register one configuration, , onto another one, , 
whose locations have been removed, by solving 
  (7) 

This problem is well studied by Jackson  and Horn et al. 
[20]. The minimizer is given by , where  and 
can be obtained through the following singular value 
decomposition problem, 

 . (8) 

 
• Step 4: Repeat Steps 2 and 3 until  converge (

). 

According to the above procedure, it is obvious that PPA 
could register multiple point clouds simultaneously while 
minimizing the total squared distance. The algorithm is 
computationally efficient, which generally converges in 2-5 
steps. 

PPA is widely used in statistical shape analysis when the 
size factor is under consideration since it transforms the point 
clouds from the configuration space to the size-and-shape 
space. In this space, if the point-wise variance is small, each 
row of the configuration approximates an independent 
multivariate Normal random variable [21]. Thus, the 
coordinates, or the three columns of the point clouds, can be 
seen as independently and normally distributed in a 
manufacturing setting, which could simplify future statistical 
and other analytical procedures. 

The primary issue with the PPA algorithm is overlooking 
the local deviation. Because of the sum of squares loss as the 
objective function, the total deviations among points are evenly 
distributed among the point cloud. For example, a small 
surveyed outlier could shift the alignment between two point 
clouds, potentially degrading the following quality inspection 
and analysis. 

Many other rigid registration algorithms exist, such as 
coherent point drift [22], kernel correlation [23], Gaussian 
mixture models [24], which have the potential to perform pose 
and correspondence registration simultaneously. However, due 
to indirect registration, these methods tend to provide a 
relatively higher point-wise deviation among point clouds. 

3. Formulation of Minimax Registration 

Classic rigid registration algorithms, such as ICP or PPA 
presented in the previous section, align the point clouds mostly 
based on a least-square criterion. The analyses are usually 
straightforward and simple. However, the least-square method 
is to minimize the average deviations between/among point 
clouds. This may not be appropriate when significant local 
deviations exist or when constructing a tolerance region in a 
manufacturing setting. We propose to register the point clouds 
to achieve the smallest deviation band, which is the minimum 
area covering all the deviated points of the surveyed point 
cloud, for geometric quality inspection, tolerance specification, 
and nominal RE-model inference. This smallest deviation band 
is in line with the geometric dimensioning and tolerancing 
(GD&T) standards, especially ASME Y14.5, which is based on 
the minimum envelope principle, also known as the Taylor 
principle, which represents the maximum (or minimum) 
allowable size for a part must be within the same range as the 
maximum size (or minimum size). 

In this study, we focus on aligning a pair of point clouds. 
This case can be widely used for quality inspection, whose 
objective is to align the point cloud surveyed from an additively 
manufactured part to the nominal design model. After 
alignment, the maximum deviation can be compared with the 
tolerance design to determine whether it is intolerance. 



876 Z. Geng et al. /Manufacturing Letters 33 (2022) 872–879 

 

3.1. Model for Pair Registration 

The minimum envelope criteria can be modeled as a 
minimax problem. The envelope is a pair of boundaries 
covering all the points within them. In other words, it can be 
mathematically defined as the maximum deviation between 
each pair of corresponding points of two or more point clouds. 
Here, without loss of generality, we define this envelope to be 
symmetric in that the distances between the center line and the 
upper or lower envelope boundaries are the same. In this case, 
the width of the envelope is the absolute maximum distance 
between the corresponding points. Therefore, to construct a 
minimum envelope is to find the registration algorithm that 
minimizes the maximum deviation. 

Let  and  be a pair of point clouds, each of which has 
 points. We want to seek the rotation matrix , presented in 

Equation 1, and a translation vector  as Equation 2 by solving 
the following minimax model, 

 , (9) 

where  is the  norm of a row vector, and  is the th 
row of the point cloud , . The objective function is a 
minimax problem, which is nonconvex.  

To solve this problem, we can reformate the model as 

 . (10) 

This model is a second-order cone programming problem with 
 second-order cone constraints[25, 26]. With this equivalence 

form, the minimax model becomes a convex optimization 
problem. Algorithms, such as primal-dual interior point 
methods [27] or the product-form Cholesky factorization 
approach [28], can be utilized to solve the second-order cone 
programming problem. Convex optimization servers, including 
CVXPY [29] in Python, can be utilized. 

3.2. Model for Multiple Registration 

Multiple registrations exist in many applications, including 
RE or 3D scanning applications, where multiple parts or scans 
are available ( ). 

Similar to Equation 10, we formulate this multiple 
registration problem as 

 . (11) 

Mimicking the previous procedures, we can have the below 
equivalent reformulation, 

  (12) 

This formulation has second-order cone constraints. 

4. Simulation Study 

We now illustrate and validate the minimax registration 
algorithm with a simulated hemispherical design (Figure 2). 
We simulate the point clouds collected from a AM-printed 
parts, whose deviational behavior is modeled in [30]. 
Configurations are simulated from a design with a 
hemispherical shape, whose radius is 20 millimeters (mm). 
Assume the standard deviation for each of the points collected 
by the simulated production process is 0.5 mm. Then, 

independent and identically distributed (i.i.d.) errors 
in the unit of mm are added to each coordinate of the points to 
emulate the random error in the production process. There are 
100 layers in total, while fifty landmarks are simulated on each 
layer. A point cloud with an ideal hemispherical design is also 
generated as the nominal design for quality inspection. Thirty 
simulated point clouds are generated, and each is compared 
with the nominal model. The proposed minimax registration 
algorithm is compared with the classic ICP and PPA algorithms 
with the least square distance. The results are presented as a 
box plot and pairwise comparison in Figure 3. 

 

 

Fig. 2. Geometric design of the simulated hemispherical design. 

Fig. 3. Comparison results of the simulation experiment among the proposed 
minimax registration, ICP, and PPA algorithms: (a) box plot; (b) line plot of 
pairwise comparison. The red line represents the maximum deviation from 
the proposed minimax registration algorithm; the blue line represents the 

maximum deviation from the PPA algorithm; the green line represents the 
maximum deviation from the ICP algorithm. 
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It can be easily seen that the proposed minimax registration 
algorithm outperforms ICP or PPA algorithm regarding the 
maximum deviation, showing that it provides the envelope with 
the smallest distance covering all the points. 

5. Case Studies 

5.1. A Reverse Engineering Application 

An arbitrary unique freeform object, shown in Figure 4, is 
printed by the LulzBot TAZ 3-D printer, a fused deposition 
modeling (FDM) machine, using gold metallic 2.85 mm 
polymer. The part is unique in the sense that the part created by 
the printer is of high variability, which causes the part to 
deviate from the initial design and the true dimensions are 
unknown. The point cloud samples are collected through 30 
independent sequential scans covering the full body of the 
target part using FARO Platinum 8’ Arm Laser Scanner. 
Pairwise registration is performed, which could be later utilized 
for estimation of the nominal design or construction of the 
tolerance region for reproduction. 

 
Fig. 4. The design and the physical part of the freeform object.: (a) original 

STL file; (b) photo of the physical part printed by FDM. 

Each pair of surveyed point clouds are registered via the 
above all three registration algorithms, i.e., ICP, PPA, and 
minimax registration. The results of maximum deviations for 
300 pairwise registrations are presented in Figure 5. The 
observation is close to the simulation result that the minimax 
registration provides the smallest envelope among all pairs, 
which is in consistent with the ASME standards. Also, it can 
be noticed that, with the same objective, the performances of 
ICP and PPA are similar with much smaller difference. One of 
the major observations is that, for each scan, the proposed 
minimax registration algorithm outperforms ICP and PPA 
algorithms. However, the differences among the three 
algorithms of interest depend on the true deviation between the 
scan and the nominal model. 

 
Fig. 5. Comparison results among the proposed minimax registration, ICP, 

and PPA algorithms for 300 pairwise registration of 30 surveyed point cloud 
collected from an object printed by LulzBot FDM printed: (a) box plot; (b) 

line plot of pairwise comparison. The red line represents the maximum 
deviation from the proposed minimax registration algorithm; the blue line 
represents the maximum deviation from the PPA algorithm; the green line 

represents the maximum deviation from the ICP algorithm. 

5.2. Quality Inspection in Additive Manufacturing 

AM processes produce parts by adding material layer-by-
layer, making it distinct from traditional manufacturing 
processes. They decompose the 3D design into many thin 
layers and fabricate each layer sequentially along with the build 
orientation [31]. In this way, most of the features are 
“byproducts” of this process, in which the part surfaces are the 
layers’ surrounding profiles[32]. Therefore, conventional 
geometric inspections based on parametric features are not 
reliable. 3D scanning could provide a detailed geometric 
description of the printed objects, which is more appropriate for 
quality inspection. 

A half ball-shaped design is selected for the experiment. The 
LulzBot TAZ FDM printer is utilized to perform the 
experiment using a 2.85 mm gold metallic polymer filament, 
which is presented in Figure 6. The layer thicknesses, 0.18 mm 
and 0.38 mm, are selected for comparative study, which is 
similar to the work in [32]. The maximum deviations between 
the objects printed with these two settings and the nominal 
design are reported in Figures 7 and 8 with the three registration 
algorithms presented in this study. The results are similar to the 
conclusion in [32] that the larger layer thickness  
provides a smaller maximum deviation. However, it can also 
be observed that the variance of the maximum deviation of the 
objects printed with layer thickness  is greater when 
compared to the ones printed with layer thickness . 
Even though fewer layers are printed with larger layer 
thickness, which causes less deviation in the printed parts, the 
uncertainty of the actual printed layer thickness is greater due 
to the thicker layer. 

 

 

Fig. 6. Photo of the physical half ball-shaped object printed by LulzBot TAZ 
FDM printer. 
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Fig. 7. Comparison results among the proposed minimax registration, ICP, 
and PPA algorithms for the point clouds collected from 20 objects printed by 

LulzBot FDM printed with layer thickness : (a) box plot; (b) line 
plot. The red line represents the maximum deviation from the proposed 
minimax registration algorithm; the blue line represents the maximum 

deviation from the PPA algorithm; the green line represents the maximum 
deviation from the ICP algorithm. 

 

 

Fig. 8. Comparison results among the proposed minimax registration, ICP, 
and PPA algorithms for the point clouds collected from 20 objects printed by 

LulzBot FDM printed with layer thickness : (a) box plot; (b) line 
plot. The red line represents the maximum deviation from the proposed 
minimax registration algorithm; the blue line represents the maximum 

deviation from the PPA algorithm; the green line represents the maximum 
deviation from the ICP algorithm. 

 

6. Concluding Remarks and Future Work 

This paper introduces a novel registration algorithm that is 
in line with the GD&T standards and provides the smallest 
envelope covering the point clouds. This registration algorithm 
can be utilized for various applications, such as quality 
inspection, reverse engineering, process analysis for additive 
manufacturing, and computer vision. The original minimax 
registration formulation is recast and solved by an equivalent 
second-order cone programming problem. Both pairwise 
registration and multiple procedures are presented. A 
simulation experiment and case studies in RE and AM 
applications are utilized to validate the performance of the 
proposed algorithm. The experiments have shown the proposed 
minimax registration procedure outperforms the conventional 
rigid registration algorithms, such as ICP and PPA, and 
provides the smallest envelope.  

Even though a multiple registration model has been 
introduced in this study, the number of second-order cone 

constraints can increase quadratically with respect to the 
number of scans. Since the number of points in a point cloud  
is generally large, it can be computationally intensive to solve 
a multiple registration problem. Our future work lies in 
developing new algorithms to increase the computational speed 
of the proposed problem based on the methods in discrete and 
computational geometry. 

New directions of research can also be developed for online 
registration. In applications such as computer vision and 
reverse engineering, point clouds are generally collected 
sequentially. Therefore, the registration procedure needs to 
perform multiple times as the number of point clouds increases. 
Since the second-order cone programming can be time-
consuming, it can be inefficient to perform the registration 
multiple times. As the number of the constraints increases 
quadratically with respect to the number of point clouds, the 
computational time also increases significantly if the point 
clouds are registered in a sequential fashion. Even though we 
could set one point cloud, say the first surveyed one, as fixed, 
and then register the later ones to the fixed point cloud, the 
generated envelope, or minimax deviation, is suboptimal. 
Therefore, an “online” minimax registration can be more 
efficient for these applications. 
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