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Abstract: Delaunay surfaces are investigated by using a moving frame approach. These surfaces correspond
to surfaces of revolution in the Euclidean three-space. A set of basic one-forms is defined.Moving frame equa-
tions can be formulated and studied. Related differential equationswhich depend on variables relevant to the
surface are obtained. For the case ofminimal and constantmean curvature surfaces, the coordinate functions
can be calculated in closed form. In the case in which the mean curvature is constant, these functions can be
expressed in terms of Jacobi elliptic functions.
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1 Introduction
Delaunay surfaces constitute a basic class of constant mean curvature surface in the Euclidean three-space.
Although Delaunay surfaces have been investigated before, it is intended here to give a complete formulation
of the subject in terms of Cartan’s idea of amoving frame. It will be shown that by defining a few fundamental
differential forms, themoving frame approach provides a general framework for studying such surfaces. New
types of differential equations also result from this type of approach and can be solved in closed form when
the surface mean curvature is zero or constant. It is possible to derive the coordinates explicitly for these
cases of surfaces of revolution of constantmean curvature. Some examples are found inwhich the coordinate
functions are expressed in terms of Jacobi elliptic functions.

To begin with, let us introduce the two main topics which will be discussed, that of Delaunay surfaces
and the method of moving frames [1–3, 14]. The method of moving frames is used to show that the first fun-
damental form and the second fundamental form constitute a complete invariant system on hypersurfaces
in ℝm+1. From the involution surface condition, a basic system of one-forms can be defined. These are sub-
stituted back into the Cartan structure equations. Consequences with regard to surfaces can be developed by
doing so, such as determination of the curvatures.

1.1 Delaunay surfaces

Classically, a parametrized surface is locally the image of an immersion

(u, v) → r(u, v) = (x(u, v), y(u, v), z(u, v)), (1.1)

defined on an open set D ⊂ ℝ2. In these coordinates the pullback of the Riemannian metric on the surface
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can be expressed as
I = E du2 + 2F du dv + G dv2,

which is known as themetric or first fundamental form. The coefficients in I are given by E = ru ⋅ ru, F = ru ⋅ rv
and G = rv ⋅ rv. One would like to find the most appropriate coordinates in which E, F and G are as simple as
possible. If the set of coordinates is such that F = 0, so the first fundamental form is diagonal, the system of
coordinates is called orthogonal. If, in addition, E = G = ξ(u, v), the coordinate system is called conformal.
The angle between any two directions on the surface is equal to the angle of their pre-images in the Euclidean
plane D. Orthogonal coordinates can always be found. Conformal coordinates always exist, but it is a much
harder problem to find them in explicit form.

Surfaces of Delaunay were defined originally [4] as surfaces obtained by revolving profile curves which
themselves arise from rolling conics on a line [5–9]. Such surfaces are called roulettes of conics. Sturm char-
acterizes Delaunay surfaces from the variational perspective as those surfaces of revolution having aminimal
lateral area at a fixed volume. This lets us understand why these surfaces appear in the discussion of soap
bubbles and liquid drops. The complete list of Delaunay surfaces is given by: planes, spheres, catenoids,
cylinders, nodoids and unduloids. The main subject of the paper is the rotational surface

r(u, v) = (eσ(u) cos(v), eσ(u) sin(v),
u

∫
0

eσ(t) sin(Ω(t)) dt). (1.2)

In this coordinate chart, the first fundamental form has components

E = e2σ(u), F = 0, G = e2σ(u). (1.3)

1.2 Differential forms and moving frames

Over a two-dimensional submanifold Σ ⊂ ℝ3, there exists a system of orthogonal frames {p, e1, e2, e3}which
is well defined at each point p ∈ Σ. The unit normal vector at p is e3 and e1, e2 are located along principal
directions tangent to Σ. The orientation of the frame is the same as a chosen orientation of ℝ3, and the first
two vectors determine the orientation of Σ. Suppose the forms ωi and ωij are the corresponding components
for the frame field so that

dp = ω1e1 + ω2e2, ω3 = 0. (1.4)

The set of vectors ei of the frame satisfy the following system of equations:

de1 = ω12e2 + ω13e3, de2 = ω21e1 + ω23e3, de3 = ω21e1 + ω23e2, (1.5)

where the ωij satisfy
ωij + ωji = 0.

Thus, r : Σ → ℝ3 represents a smooth surface or manifold in ℝ3. A system of local coordinates u, v can be
chosen in a coordinate neighborhood U of Σ so the surface can be expressed in the form

xi = xi(u, v), i = 1, 2, 3. (1.6)

The ωi and ωij are differential one-forms which depend on coordinates (u, v), once they have been specified.
These equations satisfy the following system of structure equations for the manifold:

dω1 = ω2 ∧ ω21, dω2 = ω1 ∧ ω12, (1.7)
dω12 = ω13 ∧ ω32, dω13 = ω12 ∧ ω23, dω23 = ω21 ∧ ω13, (1.8)
ω1 ∧ ω13 + ω2 ∧ ω23 = 0. (1.9)

Cartan’s Lemma and (1.9) imply that the forms ω13 and ω23 can be written as the linear combinations

ω13 = aω1 + bω2, ω23 = bω1 + cω2.
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Once this set of differential forms has been explicitly defined, it is then possible to write down the fundamen-
tal forms for Σ in terms of them, which are defined by

I = ω1 ⊗ ω1 + ω2 ⊗ ω2, (1.10)
II = ω1 ⊗ ω13 + ω2 ⊗ ω23 = aω1 ⊗ ω1 + 2bω1 ⊗ ω2 + cω2 ⊗ ω2.
III = ω13 ⊗ ω13 + ω23 ⊗ ω23. (1.11)

2 One-forms and curvatures
To study this type of manifold, the one-forms for the moving frame need to be defined. The most appropriate
coordinates are sought in order to ensure the coefficients of the fundamental forms are as simple as possible.
Themetric has to be diagonal and these diagonal components are equal to each other and positive. Themetric
is then called conformal. The angle between any two directions on the surface is equal to the angle of their
pre-images in the Euclidean (u, v)-plane.

The results in (1.2), (1.3) can be used to start the process of defining the forms. The forms ω1 and ω2 are
defined to be

ω1 = eσ(u) du, ω2 = eσ(u) dv. (2.1)

Using (1.7) with u, v as subscripts denoting partial differentiation, we obtain

ω12 = σu dv.
Combining (1.10) with (2.1), the first fundamental form is given by

I = e2σ(u) (du2 + dv2). (2.2)

Let Ω(u) be at least a C2 function of u. Then in terms of Ω(u), the differential forms ω13 and ω23 are

ω13 = −Ωu(u) du, ω23 = − sin(Ω(u)) dv. (2.3)

Guided by (1.1) again, the components of the second fundamental form are given by

a = −e−σ(u)Ωu(u), b = 0, c = −e−σ(u) sin(Ω(u)).
The second fundamental form is diagonal in this case and can be written

II = −e−σ(u)Ωu(u)ω1 ⊗ ω1 − e−σ(u) sin(Ω(u))ω2 ⊗ ω2.

Finally, by (1.11), the form III is given by

III = (Ωu(u))2 du ⊗ du + sin2(Ω(u)) dv ⊗ dv.
These can now be substituted into the structure equations to see what results. The second pair of equations
in (1.8) is clearly satisfied since

dω13 = 0 = ω12 ∧ ω23, dω23 = −(sin(Ω(u))u du ∧ dv) = ω21 ∧ ω13.

An expression for the Gaussian curvature K of Σ follows from (1.8) since

dω12 = σuu(u) du ∧ dv = σuu(u)e−2σ(u)ω1 ∧ ω2 = −Kω1 ∧ ω2. (2.4)

The Gaussian curvature of Σ implied by (2.4) is given by

K = −σuu(u)e−2σ(u). (2.5)
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If FI and FII are the matrix representations of the fundamental forms I and II, then the shape operator, or
Weingarten map, is defined to be

W = F−1I FII .
The two most important characteristics of Σ, the Gaussian curvature K and the mean curvature H, follow
directly as the invariants ofW:

K = det(W), H = 12 Tr(W). (2.6)

It follows from the expressions for the fundamental forms I and II that

F−1I FII = (−e−σ(u)Ωu(u) 0
0 −e−σ(u) sin(Ω(u))) .

The Gauss and mean curvatures can also be calculated by means of (2.6):

K = e−2σ(u) sin(Ω(u))Ωu(u), H = −12 e−σ(u)(Ωu(u) + sin(Ω(u))). (2.7)

This has provided a second way to evaluate K, and so by equating equations (2.5) and (2.7), the following
equation results:

σuu(u) = − sin(Ω(u))Ωu(u) = cos(Ω(u))u . (2.8)
One way of looking at (2.8) is to regard it as an integrability condition. Integrating it once yields

σu(u) = cos(Ω(u)). (2.9)

All the one-forms needed to define the problem have now been specified explicitly. Equations (1.5) corre-
sponding to this case can now be written down. They consist of the following three equations:

{{{{{{{

de1 = σu(u) dve2 − Ωu(u) due3,
de2 = −σu(u) dve1 − sin(Ω(u)) dve3,
de3 = Ωu(u) due1 − sin(Ω(u)) dve2.

(2.10)

It can be verified by differentiation that the following set constitutes a three-dimensional representation of
the set {ei} which satisfy (2.10):

{{{{{{{

e1 = (cos(Ω(u)) cos(v), cos(Ω(u)) sin(v), sin(Ω(u))),
e2 = (− sin(v), cos(v), 0),
e3 = (sin(Ω(u)) cos(v), sin(Ω(u)) sin(v), − cos(Ω(u))).

(2.11)

The set of vectors ei satisfies the orthogonality relation ei ⋅ ej = δij with i, j ∈ {1, 2, 3} under the usual inner
product. Given the representation (2.11), functions (1.6) can be obtained in explicit formby integrating (1.4).
Since

ω1e1 + ω2e2 = (eσ(u) cos(Ω(u)) cos(v) du − eσu) sin(v) dv, eσ(u) cos(Ω(u)) sin(v) du + eσ(u) cos(v) dv,
eσ(u) sin(Ω(u)) du),

the components can be matched up. Doing so, the following system of equations results:

{{{{{{{

x1u du + x1v dv = (eσ(u))u cos(v) du + eσ(u)(cos(v))v dv,
x2u du + x2v dv = (eσ(u))u sin(v) du + eσ(u)(sin(v))v dv,

x3u du = eσ(u) sin(Ω(u)) du.
(2.12)

This system can be integrated by equating the coefficients of du and dv on both sides. A parametrized coor-
dinate system for Σ is locally found to be the image of the immersion defined by

r(u, v) = (eσ(u) cos(v), eσ(u) sin(v),
u

∫
0

eσ(t) sin(Ω(t)) dt). (2.13)

This agrees with what is expected for this class of surface (1.2). Moreover, (2.12) implies that Ω(u) denotes
the polar angle of the unit normal vector to the surface Σ. Let us now apply what has been developed to some
special cases.
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3 Minimal surfaces
Minimal surfaces are those for which H = 0 (see [7–9]). These are investigated by substituting H = 0 in the
equation for the mean curvature

Ωu(u) = − sin(Ω(u)).
This equation is separable and may be integrated in closed form by means of the substitution

cos(Ω(u)) = (1 − t21 + t2 ).
It is found that

cos(Ω(u)) = tanh(u), sin(Ω(u)) = (1 − tanh2(u))1/2 = sech(u).
The function σ(u) can be calculated by integrating (2.9):

σ(u) = ∫ cos(Ω(u)) du = ∫ tanh(u) du = log(cosh(u)).
The constant of integration is omitted since it contributes only a scale factor upon exponentiation, so

eσ(u) = cosh(u).
Substituting eσ(u) and cos(Ω(u)) into the third component of (2.13), one obtains x3(u, v) = u.

4 Constant mean curvature surfaces
The case in which H = β/2, where β is a nonzero constant, is also studied [1, 2]. The second equation of (2.7)
is given by

(Ωu(u) + sin(Ω(u)))e−σ(u) = −β. (4.1)

Differentiating both sides of (4.1) with respect to u, we obtain

(cos(Ω(u))Ωu(u) + Ωuu(u))e−σ(u) − (Ωu(u) + sin(Ω(u)))σu(u)e−σ(u) = 0.
This simplifies to the second-order equation

Ωuu(u) = sin(Ω(u)) ⋅ cos(Ω(u)). (4.2)

To integrate this, multiply both sides first by Ωu(u). A nonlinear first-order equation results:

(Ωu(u))2 = sin2(Ω(u)) + α. (4.3)

The characteristics of the solution spaces to this equation are greatly altered by the sign of the integration
constant α. Each of the separate cases α = −a2, 0, a2 are examined in turn.

(i) The first case to be considered is

(Ω(u))2 = sin2(Ω(u)) − a2. (4.4)

Into (4.4) introduce the variable τ = sin(Ω(u)) so that τu = cos(Ω(u)) ⋅ Ωu(u), and hence τ satisfies
τu(u) = −√(1 − τ2)(τ2 − a2).

This first-order equation is integrated by means of Jacobi’s elliptic function dn(u, k), where the elliptic mod-
ulus k is related to the constant a by means of identification of a with the complementary elliptic modulus
a = k̃ so we have (see [5])

τ = dn(u, k), k2 = 1 − a2 = 1 − k̃2.
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This implies that Ω(u) given by
Ω(u) = π − arcsin(dn(u, k)) (4.5)

and satisfies (4.2). Constraint (2.9) requires that

σu(u) = cos(Ω(u)) = ksn(u, k).
The integral of sn(u, k) is evaluated by using successive substitutions. First set sn(u, k) = ξ and then ξ2 = t
so we obtain that

∫ sn(u, k) du = 12 ∫
dt

√(1 − t2)(1 − kt2) =
1
k log(√1 − k2t + k√1 − t).

Since t = sn2(u, k), the following form for σ(u) is obtained:
σ(u) = log(dn(u, k) + kcn(u, k)) (4.6)

Exponentiating (4.6) gives the result

eσ(u) = dn(u, k) + kcn(u, k). (4.7)

To obtain the third component of (2.13), we integrate the equation

x3u(u, v) = eσ(u) sin(Ω(u)) = (dn(u, k) + kcn(u, k)) ⋅ dn(u, k).
The result of doing this is

x3(u, v) = E(am(u, k), k) + ksn(u, k). (4.8)

In (4.8), E(η, k) is the incomplete elliptic integral of the second kind and am(u, k) is the Jacobi amplitude
function.

(ii) The second case concerns α = 0. Hence (4.3) is
Ωu(u) = sin(Ω(u)).

This is separable, and so by integrating we find that

cos(Ω(u)) = − tanh(u), sin(Ω(u)) = sech(u), Ω(u) = π − arcsin(sech(u)).
The function σ(u) is given by

σ(u) = −∫ tanh(u) du = − log(cosh(u)), eσ(u) = sech(u).
The third component of (2.13) is obtained by integration of

x3u(u, v) = sech2(u), x3(u, v) = tanh(u).
Therefore, the resulting surface is simply a sphere in this case.

(iii) The last case is the one with α = a2. Then (4.3) takes the form
(Ωu(u))2 = sin2(Ω(u)) + a2. (4.9)

The substitution τ = sin(Ω(u)) transforms (4.9) into a separable equation

τu = √(1 − τ2)(τ2 + a2).
Therefore, τ(u) is an elliptic function, namely

τ(u) = cn(uk , k), k2 = 1
1 + a2 , k̃2 = a2

1 + a2 .
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From these we deduce that
Ω(u) = π − arcsin(cn(uk , k)).

The function σu(u) satisfies the equation
σu(u) = cos(Ω(u)) = sn(uk , k).

Upon integration, it yields

σ(u) = log(dn(uk , k) + kcn(
u
k , k)), eσ(u) = dn(uk , k) + kcn(

u
k , k).

The third coordinate of (2.13) is obtained by integrating

(x3)u = eσ(u) sin(Ω(u)) = (dn(uk , k) + kcn(
u
k , k)) ⋅ cn(

u
k , k),

and therefore
x3(u, v) = ksn(uk , k) + E(am(

u
k , k), k) −

1 − k2
k u,

This completes the study of all three cases.

5 Dual surfaces
The classical conformal immersions have another important property which is the phenomenon of dual sur-
faces. It is said that two immersions x and y are dual to each other if they share the same tangent plane at
corresponding points.

This definition follows from the observation that if the first fundamental form which is induced by r is
given by (2.2), then the one form

ω = e−2σ(u,v)(xu du − xv dv)
is closed. It can locally be considered a differential of the immersion y given by

dy = e−2σ(u,v)(xu du − xv dv).
For surfaces of revolution, it is simpler as in this case there exists an explicit expression for their dual immer-
sions. If such a surface is parametrized in terms of isothermal coordinates (u, v) in the form

x(u, v) = (r(u) cos(v), r(u)σ(u) sin(v), z(u)),
then the dual is given by

ỹ(u, v) = (−cos(v)r(u) , −
sin(v)
r(u) , z̃(u)). (5.1)

The function in the third entry z̃(u) satisfies the following separable ordinary differential equation:
dz̃
du =

1
r2

dz(u)
du .

Provided that we have
1
r2

dz
du = e−σ(u) sin(Ω(u)),

the last component of the dual in (5.1) is

z̃(u) =
u

∫
0

e−σ(t) sin(Ω(t)) dt.
Therefore, the dual surface is determined by means of the representation

y(u, v) = (−e−σ(u) cos(v), −e−σ(u) sin(v),
u

∫
0

e−σ(t) sin(Ω(t)) dt).
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This result serves to determine the dual surface in explicit form.As an example, by using (4.5), (4.7) and (4.8),
for the unduloids we obtain

z̃ =
u

∫
0

dn(t, k)
dn(t, k) + kcn(t, k) dt =

1
k̃2
⋅ [E(am(u, k), k) − ksn(u, k)].

6 Summary
It has been seen that themoving frame is extremely effective inproviding a framework for calculating all of the
relevant functions for the class of surface defined by the forms (2.1) and (2.3). In terms of σ(u) and Ω(u), the
Gaussian andmean curvatures are given by formulas (2.7). The function forH in (2.7) can be integrated in the
cases ofminimal and constantmean curvature. The functions σ(u) and Ω(u) can be used in the equation for K
to give the Gaussian curvature. The coordinate functions for these cases can be calculated so that a graphical
representation may be developed. Numerous practical applications of this work exist as well [6].

It is of interest to say that the differential equations might be solved for other choices of the function H.
For example, if H is an arbitrary function of u such that

H = −12 e−σ(u)g(sin(Ω(u))),
then (2.7) can be expressed in the form of a quadrature to give Ω(u) implicitly:

u =
Ω(u)

∫
c

dt
g(sin(t)) − sin(t) . (6.1)

Using the Ω(u) given in (6.1), the function σ(u) is given by (2.9); see [10–13].
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