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formation, showed up in the center of the powder bed. However, 

the HCP crystal structure was dominant over the FCC and BCC 

structures. A potential resolution to form more FCC structure is 

to apply higher laser energy, slower laser scanning speed, and a 

more controlled cooling rate, therefore the mobility of atoms in 

the melt pool can be increased by allowing for more thorough 

diffusion, assuming the effects of segregation during cooling 

stage is negligible. 

4. CONCLUSION

In this study, MD study was performed to simulate the in-

situ alloying using elemental powders, in order to obtain a good 

understanding of the effect of diffusion on the formation of 

Cantor HEA. The framework developed in this work can be used 

to explore the effect of diffusion on the thermomechanical 

properties of HEAs, and to design other HEA systems by 

considering the most appropriate manufacturing process 

parameters. The major findings of this study are summarized as 

follows: 

1) All the elements experience different MSDs during the laser

scanning process. Not only was diffusion rate different

among various elements, but the active time of diffusing

also differed. However, the diffusion process may be largely

influenced by the configuration of the powder bed;

2) All powders experienced the same tendency in terms of

MSD despite different laser scanning speeds introduced to

the powder bed system;

3) Cr and Fe both exhibited minimal diffusion compared to

other constituent elements (Mn, Ni, and Co), resulting in

areas where 3 or 4 elements were present in near equiatomic

compositions;

4) The study of single laser track shows more FCC structures

than the double laser track, therefore it is expected that more

Cantor HEA was formed during the process, therefore it

needs more investigation to explore the relationship

between the formation of HEA and the input laser energy,

as well as other related parameters.
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NOMENCLATURE 

AM  Additive Manufacturing 

Co  Cobalt 

Cr  Chromium 

EAM Embedded Atom Method 

Fe  Iron 

HEA High Entropy Alloy 

MD  Molecular Dynamics 

MEAM Modified Embedded Atom Method 

Mn Manganese 

Ni Nickel 

p* Laser Power 

SLM Selective Laser Melting 

SLA Selective Laser Alloying 

LAA Laser Additive Alloying 

vs laser scanning speed (nm/s) 
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