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ABSTRACT
Recent advances in the blockchain research have been made in two

important directions. One is refined resilience analysis utilizing

game theory to study the consequences of selfish behavior of users

(miners), and the other is the extension from a linear (chain) struc-

ture to a non-linear (graphical) structure for performance improve-

ments, such as IOTA and Graphcoin. The first question that comes

to mind is what improvements that a blockchain system would see

by leveraging these new advances. In this paper, we consider three

major properties for a blockchain system:𝛼-partial verification, scal-

ability, and finality-duration. We establish a formal framework and

prove that no blockchain system can achieve 𝛼-partial verification

for any fixed constant 𝛼 , high scalability, and low finality-duration

simultaneously. We observe that classical blockchain systems like

Bitcoin achieves full verification (𝛼 = 1) and low finality-duration,

Ethereum 2.0 Sharding achieves low finality-duration and high

scalability. We are interested in whether it is possible to partially

satisfy the three properties.
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1 INTRODUCTION
Blockchain is a decentralized ledger that provides a system for self-

interested parties to carry out transactions without a fully trusted

central system. As such, there is no centralized party who can

compute an optimal solution or a Nash equilibrium in advance and

then tell each user to take certain actions, as this will violate the

foundations of blockchain systems. The basic idea behind this is that,

instead of having trust in a centralized system or any other specific

participant, each participant chooses to trust the majority of the
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participants and accepts the outcome achieved through consensus

among them. [14]

One major reason that hinders the adoption of blockchain is

scalability [30]. For example, Bitcoin network can only process

less than 10 transactions per second on average [9], while typical

payment systems like Visa can process thousands of transactions

per second.

Recently, a variety of approaches are proposed to address the

scalability issue. Most of them follow the general framework of

divide and conquer, e.g., Zilliqa [27], Harmony [26], and Ethereum

2.0 [25], and use a sharding scheme that allows transactions to

be processed by a subgroup of nodes (a sharding committee). A

sharding scheme usually has a critical issue in terms of resilience,

as the correctness of each transaction now solely depends on a

subgroup of voters. Consequently, if common consensus protocols

like Proof-of-Work (PoW) or Byzantine Fault Tolerance (BFT) is

used within subgroups, then the fraction of malicious nodes within

every subgroup cannot exceed 1/2 or 1/3, which is a significantly

stronger assumption than that of a standard blockchain system. A

typical blockchain system only requires that the fraction of mali-

cious nodes do not exceed 1/2 or 1/3 of all nodes. We remark that

both Harmony and Ethereum 2.0 claim that if subgroups are gener-

ated in a perfect randomized way, then the percentage of honest

nodes within each subgroup is almost the same as their percentage

in the whole group of nodes; however, this requires a perfect dis-

tributed random number generation as a separate procedure, which

brings an additional assumption on the security of this additional

procedure.

To guarantee that every transaction is correctly executed by

only relying on the standard assumption that the majority of the

nodes are honest, we must require every transaction to be verified

by all the nodes. Consequently, it is a straightforward question

of whether scalability is achievable at all, as it appears that any

divide and conquer based solution would inevitably reduce the

total number of verifications received by a transaction. A "non-

linear" blockchain structure recently introduced by IOTA [16] and

Graphcoin [4], can neglect such limitations. The basic idea is to

allow blocks to be connected as a directed acyclic graph (DAG)

instead of a chain. Such a non-linear structure implements a divide

and conquer approach implicitly by allowing multiple blocks to

be appended simultaneously, as a general graph can be extended



in multiple directions. Meanwhile, if we treat different growing

directions as soft forks or branches, then it is possible (depending

on system parameters) that they can “merge" again in the future

(see the following figure 2, where the sequences of blocks that

follow block 𝐴 and 𝐵 meet at block 𝐶). Therefore, a node that tries

to append a new block is required to verify a few previous blocks.

So, there is a possibility that a block may still be verified by all the

nodes, albeit the delay of such verification.

On a high level, there are three crucial properties involved in

a general blockchain system: verification, scalability, and finality-

duration. In a nutshell, 𝛼-partial verification requires every trans-

action to be verified by at least 𝛼 fraction of all the nodes (which

thus ensures resilience under the standard assumption that the

majority of the nodes follow the protocol); scalability means the

system throughput, or the total number of transactions executed

per unit of time, is proportional to the total number of participating

nodes; and finality-duration means the delay in reaching consensus

on the correctness of the execution of each transaction. We give a

precise definition in Section 3.

Classical blockchain systems like Bitcoin achieves full verifica-

tion and low finality-duration, but not scalability. This is because

Bitcoin requires every block, and hence the transactions within a

block, to be verified by all the nodes; meanwhile, it has a constant

finality-duration because every block is finalized after a constant

number of blocks are appended afterward. However, it does not

scale, as the increase in the number of nodes does not allow the

system to handle more transactions per unit of time, which has

been pointed out in many prior papers [14, 21, 22, 28].On the other

hand, blockchain systems like Harmony [26] and Ethereum 2.0 [25]

achieve constant finality-duration and scalability, but not full veri-

fication. For example, the sharding scheme used in Ethereum 2.0

allows a block to be verified within a shard (which is a subset of

nodes).

In this paper, we provide a view on the relationships between

full verification (or more precisely, 𝛼-partial verification for any

constant 𝛼), low finality-duration, and scalability. More precisely:

Our contributions.We show that it is impossible to achieve full

verification, low finality-duration and scalability simultaneously.

Given the fact that: (i) Bitcoin achieves full verification and low

(asymptotically constant) finality-duration, but not scalability; and

(ii) Ethereum 2.0 achieves low (constant) finality-duration and scala-

bility, but not full verification, it is natural to explore to what extent

a blockchain system can be designed considering the different trade-

off scenarios. In particular, does there exist a blockchain system

that satisfies both full verification and scalability/finality-duration?

Is it possible to have a system that partially satisfies all of the three

properties? We give an affirmative answer in this paper. In particu-

lar, we prove that by adopting a non-linear blockchain system and

employing a game-theoretical analysis, we can construct a system

which achieves full verification and a trade-off between scalability

and finality-duration. Informally speaking, the following properties

hold simultaneously for the constructed blockchain system:

(i) 𝑂 (𝑠) new blocks are generated per unit of time on average;

(ii) after𝑂 (𝑠 log 𝑠) units of time, with a very high probability, each

block will be verified by all users in the systems.

Here 𝑠 is a system parameter that can be set suitably at the genesis

block. When 𝑠 = 1, the non-linear system degenerates to a linear

system with a fixed block generation rate that is independent of

the nodes in the system, while the delay which is an indication of

finality duration, is a constant. This coincides with the classical

Bitcoin system. Conversely, 𝑠 can be as high as 𝑂 (𝑚) where 𝑚
is the number of nodes. In this case, the system is fully scalable,

albeit that only a sufficiently long delay (𝑂 (𝑠 log 𝑠)) can ensure full

verification. However, if we set 𝑠 to be 𝑂 (𝑚) to enforce scalability

and meanwhile enforce the delay to be some constant instead of

𝑂 (𝑠 log 𝑠), then full verification cannot be guaranteed.

We remark that the big-𝑂 notation in our statements hides a

constant which is roughly the average time for a block to be gener-

ated, that is, we measure the delay in terms of the number of blocks;

therefore, Bitcoin is considered as low (asymptotically constant)

finality-duration as the delay is constant blocks. Our result does

not conflict with prior researches that complain about the “high”

finality-duration of Bitcoin because of the long time it takes to

generate a single block [4, 16]. The research that tries to decrease

such a block generation time is parallel to this paper. For example, if

a lighter version of PoW can be used in the existing Bitcoin system,

then it can also be used directly in our non-linear blockchain sys-

tem, while our impossibility result, as well as the trade-off between

finality-duration and scalability, remain the same.

2 RELATEDWORK
The study of e-cash systems dates back to 1983 [5, 20]. However,

all such systems require a centrally or quasi-centrally controlling

authority. A well-known exception, Bitcoin, was introduced by

Nakamoto [14] in 2008, which uses a public ledger known as a

blockchain to record transactions carried out between users. Fol-

lowing this line of research, various alternative blockchain-based

transaction systems are proposed [13, 21, 22, 28], further improving

the performance and security of Bitcoin as well as extending the

system to deal with applications beyond transactions (e.g., smart

contracts). In [23], Sompolinsky and Zohar have introduced an

alternative to the longest chain that allows more transactions to

take place at a lower cost. Recently, Sompolinsky et al. [24] have

shown faster block generation by generalizing blockchain to a di-

rect acyclic graph of blocks. Blockchain-based consensus protocols

Fantômette and Avalanche that rely on blockDAG were proposed

in [2, 18]. We refer the readers to several surveys on blockchain

systems [1, 3, 7, 10–12, 19, 29, 32]. In particular, [29] provides a

comprehensive introduction to the bitcoin network,[3, 10] focus

on the systematized study of the blockchain consensus protocols,

[7, 11, 19] focus on the security and privacy results on blockchain,

[1] focuses on the applications of blockchain. The most relevant

survey to this paper is [12], which summarizes recent results on

game-theoretical studies of blockchain. However, most of the exist-

ing game theoretical research primarily focuses on the traditional

linear blockchain system, only a very recent paper by Popov et

al. [17] gives the first game-theoretical analysis of IOTA. Their

result, however, does not establish the trade-off between scalability

and finality-duration.



2.1 Classical and Non-linear Blockchain
Chain-structured blockchain. Most of the existing blockchain

systems, e.g., Bitcoin, Ethereum, Hyperledger, follow the classical

structure where blocks form a chain as illustrated by Fig 1.

Figure 1: Chain-structured blockchain. The chain grows
from left to right. White squares form the main chain, and
gray squares form the side chains that are discarded eventu-
ally.

Non-linear (graph-structured) blockchain. Popov introduced

the concept of tangle [16] which allows a blockchain to adopt a

directed acyclic graph (DAG) architecture. We summarize the ab-

stract model of a non-linear blockchain in Section 3. We briefly

review IOTA, which is the most well-known non-linear blockchain

system so far. On a high level, IOTA allows each transaction be an

individual node linked in the distributed ledger. We may interpret

a transaction as a block in such a system. In the tangle, each user

needs to select one transaction from the pool as well as two pre-

vious blocks (transactions) in the system. The user verifies these

two transactions and mines a new block referring to them. Then

this new block (transaction) is broadcasted to the tangle network.

Figure 2 gives a simple example of a non-linear blockchain.

Figure 2: A non-linear blockchain. White squares are veri-
fied transactions/blocks.

3 THE ABSTRACT MODEL
We describe an abstract model of a non-linear blockchain which

is general enough to incorporate existing well-known non-linear

blockchain systems like IOTA and Graphcoin.

A non-linear blockchain NLB is defined by a quadruple

NLB : (A, C,R, E),where

• A defines the rules of building and adding a new block to the

blockchain. Since we are considering non-linear blockchain,

A allows multiple blocks to be added simultaneously.

• C defines the way to check a block, including validity verifi-

cation, such as whether the block has the correct format and

whether transactions included in the block are valid, and

whether the block is finalized.

• R defines the way how the award is assigned to a user who

adds a new block to the DAG. A NLB needs to encourage

users to participate in the construction of the blockchain by

giving rewards to those who add new blocks.

• E defines the rules to eliminate conflicting blocks. Similar

to a linear blockchain, it is possible that multiple partici-

pants have different local copies of the blockchain, and E
determines which version should be kept.

Next, we provide formal definitions of the three metrics of a

blockchain system that we mentioned earlier.

Definition 1 (Partial verification). For any fixed 𝛼 ∈ (0, 1],
a blockchain system satisfies the property of 𝛼-partial verification if
every block is verified by at least 𝛼 fraction of the total nodes in the
system before it is finalized.

In particular, if 𝛼 = 1, then each block is verified by all the nodes

and we call it full verification. If a blockchain system satisfies full

verification, then resilience follows directly from standard assump-

tions on the percentage of honest nodes among all nodes, e.g., if

the blockchain uses PoW or BFT as the consensus protocol, then it

is resilient, once the majority or 2/3 of nodes follow the protocol.

This is also true for 𝛼-partial verification if the 𝛼-fraction of the

nodes are randomly selected from all nodes. Indeed, many recently

developed blockchain systems that claim to achieve scalability, e.g.,

Ethereum 2.0 [25] implements such an idea by letting a subset of

nodes (i.e., a Shard) compute and verify a smart contract. The size

of such a subset divided by the total number of nodes gives the

percentage 𝛼 .

Definition 2 (Scalability). The throughput of a blockchain
system is the number of blocks 𝑛𝑏 that can be added to the system in
a fixed time. A blockchain system scales with the number of nodes𝑚
in the system if 𝑛𝑏 → ∞ when𝑚 → ∞. Particularly, a blockchain
system fully scales with the number of nodes𝑚 if 𝑛𝑏 = Ω(𝑚).

It should be clear that the definition of scalability or full scala-

bility does not depend on the length of the time period chosen for

throughput. It captures the possibility of speeding up blockchain

generation with more participating nodes; consequently, classical

blockchain systems like Bitcoin does not scale.

Definition 3 (Finality-duration). The finality-duration of a
blockchain system is the time difference between the time point when
a block is appended and the time point when a block receives full
verification.

We say the finality-duration of a blockchain system is low (or

constant) if the finality-duration is independent of the nodes in the

system; consequently, classical blockchain systems like Bitcoin has

a low (asymptotically constant) finality-duration because after a

fixed number of blocks are appended, all the nodes start following

the main chain, thus blocks on the main chain will receive full

verification.



4 IMPOSSIBILITY RESULT
Theorem 1. There does not exist a blockchain system that si-

multaneously satisfies (i) scalability; (ii) low finality-duration; and
(iii) 𝛼-partial verification for an arbitrary constant 𝛼 ∈ (0, 1].

The proof follows from a counting argument on the total number

of verifications.

Proof. Suppose, on the contrary, that there exists such a block-

chain. Then by definition, every block or transaction will receive

verifications from at least 𝛼 fraction of the nodes within a constant

delay. Let 𝑐0 be the constant delay. Consider an arbitrary node 𝑥

and let 𝜏𝑥 be the fixed time it takes for node 𝑥 to perform one

verification. Let the throughput of the blockchain be 𝑛𝑏 , then by

definition of scalability, 𝑛𝑏 = 𝑛𝑏 (𝑚) → ∞ when𝑚 →∞. Note that
all the 𝑛𝑏 blocks generated shall be verified by at least 𝛼 fraction

of nodes within the delay of 𝑐0, which means on average, every

node should perform 𝛼𝑛𝑏 verifications within 𝑐0. However, node

𝑥 can only perform 𝑐0/𝜏𝑥 verifications, which is a constant. Since

𝑛𝑏 → ∞, when𝑚 is sufficiently large, 𝛼𝑛𝑏 > 𝑐0/𝜏𝑥 for any fixed

𝛼 . Therefore, it is impossible for an arbitrary node 𝑥 to complete

all the verifications. Hence, the three properties, scalability, low

finality-duration and 𝛼-partial verifications, cannot be satisfied

simultaneously. □

Remark. If 𝛼 is not a constant, e.g., 𝛼 = 10/𝑁 where 𝑁 is the total

number of nodes, then 𝛼 → 0 and it is indeed possible to guarantee

scalability and low finality-duration simultaneously.

5 SATISFYING IMPOSSIBILITY-TRIANGLE IN
A LIQUID WAY

As we have mentioned before, Bitcoin achieves full verification

and low finality-duration at the cost of scalability, Ethereum 2.0

achieves scalability and low finality-duration, but cannot guarantee

a constant 𝛼 for partial verification. These systems obey our impos-

sibility triangle by conforming to two properties and disregarding

the third one. But what if we want all of them in partial? More

precisely, can we have a more fine-grained system that can can

smoothly transform from one extreme to another by controlling a

simple system parameter? In this section, we construct a non-linear

blockchain system, which builds upon the basic structure of IOTA,

and show that it achieves full verification, and meanwhile has a

trade-off between scalability and finality-duration. In particular, a

larger scalability implies longer finality-duration, and this can be

controlled through a single system parameter Δ as we will define

later.

5.1 Non-linear Blockchain (NLB) Construction
We first propose a concrete construction of NLB that achieves both

security and scalability under the agent model (Based on the agent

model, every participant is an agent who tries to maximise his/her

profit). Without loss of generality, we assume that each block only

includes one transaction. In the following, we broaden the terms

and use them interchangeably. We first define some concepts.

Definition 4 (Block distance, descendant, and ancestor).

Given two blocks 𝐴 and 𝐵, we define the distance between the two
blocks as the length of the shortest directed path from 𝐴 to 𝐵, which

is denoted as 𝑑 (𝐴, 𝐵). If there is no such a directed path, we define
𝑑 (𝐴, 𝐵) = ∞. If 0 < 𝑑 (𝐴, 𝐵) < ∞, we say 𝐵 is a descendant of 𝐴,
and 𝐴 is an ancestor of 𝐵. For a block 𝐵 and each 1 ≤ 𝑘 ≤ ℓ , let
Anc(𝐵, 𝑘) = {𝑋 |𝑑 (𝑋, 𝐵) = 𝑘} and Des(𝐵, 𝑘) = {𝑑 (𝐵,𝑋 ) = 𝑘}, where
ℓ is a given parameter.

The new NLB is constructed as follows:

• A. The new NLB assumes that there is a pool of new trans-

actions from which a user can select one to construct a

new block, which refers to two previous blocks
1
. The user

then does lightweight mining to fix this information in the

newly constructed block. Lightweight mining is a common

approach used in blockchain systems supporting lightweight

users (see, e.g. [31]). It means that the user needs shorter

computation time, compared with the standard mining pro-

cess, to find a value for the block that makes it a valid block.

This is usually done by a loose requirement on the hash

result of the block together with the mined value. Suppose

that the newly built block is 𝐵, the user also verifies blocks

in Anc(𝐵, 𝑘), 1 ≤ 𝑘 ≤ ℓ , where ℓ is a pre-defined system

parameter that determines how many previous blocks the

producer of a new block should verify.

• C. To check a block 𝐵, the algorithm first checks whether

the block format is correct, including the verification of the

mining outcome. The algorithm also checks whether 𝐵 is

finalized or not, which is determined by

numAnc ← | ∪ℓ𝑘=1 Anc(𝐵, 𝑘) |.

If numAnc is larger than the system pre-defined threshold, 𝐵

is finalized.

• R. Each block has a reward value and the system imposes

an upper bound on the maximal reward offered by a trans-

action, so that the largest and smallest reward among trans-

actions (and blocks) can differ by a factor at most Δ. The
producer of the new block also receives rewards from pre-

vious blocks. Specifically, each block is associated with a

uniform verification cost vrf, which is divided into ℓ parts

such that vrf
1
< vrf

2
< · · · < vrfℓ and

∑ℓ
𝑘=1

vrf𝑘 = vrf.
For each 1 ≤ 𝑘 ≤ ℓ , the producer of block 𝐵 gets reward

vrf𝑘/|Des(𝑋, 𝑘) | for each𝑋 ∈ Anc(𝐵, 𝑘). This means that the

verification reward of vrf𝑘 from block𝑋 is evenly distributed

among all descendants in Des(𝐵, 𝑘). Note that the reward is

not uniformly divided and it will be only collected when the

new block is finalized.

• E. The constructed NLB adopts the largest-weighted descen-

dants principle (LWD) to eliminate disagreement, i.e., when

there are blocks containing conflicting transactions, the one

whose descendants have a largest total weight will be se-

lected. Note that this will not prevent multiple non-conflict

blocks from being added in parallel. Formally, for each block

𝐵, letDes(𝐵) = ∪ℎ≥1{𝑋 |𝑑 (𝐵,𝑋 )}. If there are two conflicting
blocks 𝐵, 𝐵′ and |Des(𝐵) | > |Des(𝐵′) |, then 𝐵 prevails, that

is, users will abandon 𝐵′ together with all its descendants

1
Our analysis in this paper also works if a new block refers to any fixed constant

(greater than or equal to 2) number of blocks. For ease of presentation, we take this

number to be 2 throughout this paper.



in the sense that a new block will not refer to any of these

blocks.

Note that when considering the private costs for the mining task

of the agents, the only difference is that the profit of each block is

no longer its reward, instead, the new profit of each agent should be

the reward of each task subtracting the (agent-dependent) cost. All

results in our paper still hold if the largest profit and smallest profit

differ by at most Δ times for all agents. In our paper, the blockchain

system is designed such that the largest and smallest reward can

differ by at most Δ times. Incorporating costs of agents, however,

this cannot be ensured by system design. Specifically, if an agent

has an excessive private cost then the ratio can be unbounded. But

in practice, it is plausible to assume that the private cost is usually

small compared with the reward of blocks.

5.2 Scalability and Finality-duration Analysis
We first give a high-level summary of the workflow of the proposed

NLB system. Transactions are generated over time and form a pool.

Each transaction is associated with a distinct transaction reward

and a fixed verification reward vrf. Each time, a miner will select

one transaction from the pool and append a block, which refers to

two previous blocks. Here the miner needs to decide two things:

(i) which transaction to include, and (ii) which two previous blocks

to refer to. As we assume that miners are rational players, they will

strategically make their decisions to maximize their profits, and

this section is devoted to analyze the scalability and security of the

system under an arbitrary Nash equilibrium.

We formalize the problem as follows. Let the pool consist of

𝑛 transactions, with the transaction reward being 𝑝1, 𝑝2, · · · , 𝑝𝑛 .
Let𝑚 be the number of miners, with computational powers being

𝑢1, 𝑢2, · · · , 𝑢𝑚 . As we mentioned, each miner will mine a new block

by including one transaction from the pool. If multiple miners say,

miners in the subset of 𝑆 , all choose the same transaction, then they

compete, and only one of them will succeed, and the probability

that some miner 𝑖 ∈ 𝑆 succeeds is
𝑢𝑖∑

ℎ∈𝑆 𝑢ℎ
. If, however, all miners

choose different transactions, then each of them can append a new

block. In the following section, we will analyze the scalability and

finality-duration of the constructed NLB separately.

5.2.1 Scalability. For scalability, we are interested in how many

different transactions from the pool can be selected by the min-

ers simultaneously. Note that the more different transactions are

chosen, the higher scalability is. When miners choose transactions

simultaneously, we are considering the worst-case because if min-

ers are selecting transactions at different times, later ones may be

able to avoid conflicts with earlier ones. Let 𝑛 be the number of

available transactions and𝑚 be the number of miners, the following

Theorem 2 implies that the system is scalable even in the worst

case such that when there are sufficiently many transactions, the

throughput will be 𝑂 (𝑚/Δ) where Δ is a system parameter part of

R. By controlling Δ, we can control the scalability of the system.

In particular, when we set Δ to be a constant, the system becomes

fully scalable with the number of nodes. In the remainder of this

section is devoted to proving Theorem 2.

Theorem 2. With probability at least 1 −max{𝑒−Θ(𝑚) , 𝑒−Θ(𝑛) },
the number of blocks mined by𝑚 miners in an arbitrary Nash equilib-
rium is at least min{𝑐1𝑚/Δ, 𝑐2𝑛} for some universal constants 𝑐1, 𝑐2.

Notice that a Nash equilibrium always exists by allowing mixed

strategies [15]. Towards the proof, we introduce some notations.

For simplicity, let all the transaction rewards be 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑛 .

By the design of our system we require that 𝑝1/𝑝𝑛 ≤ Δ. Note that
the strategy of a miner is to select one transaction. We consider

the general mixed strategy of a miner where he/she can specify a

probability for each transaction.

Consider an arbitrary Nash equilibrium and let 𝜋 (𝑖) = (𝜋 (𝑖)
1

,

𝜋
(𝑖)
2

, · · · , 𝜋 (𝑖)𝑛 ) be the strategy of miner 𝑖 in the equilibrium, where

𝜋
(𝑖)
𝑗

is the probability that he chooses transaction 𝑗 . It is obvious

that

∑𝑛
𝑗=1 𝜋

(𝑖)
𝑗

= 1 for any 1 ≤ 𝑖 ≤ 𝑚. Let 𝑋
(𝑖)
𝑗

be the 0-1 random

variable that indicates whether miner 𝑖 chooses transaction 𝑗 . Then

𝑋
(𝑖)
𝑗

= 1with probability 𝜋
(𝑖)
𝑗

and𝑋
(𝑖)
𝑗

= 0with probability 1−𝜋 (𝑖)
𝑗

.

Consider the above Nash equilibrium. Intuitively, if only a small

number of transactions are selected, then miners must have devoted

their probabilities to a few transactions. Therefore, to show that a

sufficient number of distinct transactions are selected in expectation,

by miners, we need to show that the miners are distributing their

probabilities in a fair way among transactions, as is implied by the

following lemma.

Lemma 1. If there exists some transaction 𝑗1 such that
∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗1
≥

12Δ, then for every transaction 𝑗 , it holds that
∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗
≥ 1/2.

Proof. Suppose, on the contrary, the lemma is not true, that

is, there exists some transactions 𝑗1 and 𝑗2 such that

∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗1
≥

12Δ and

∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗2

< 1/2. Consider the set of miners that choose

transaction 𝑗1 with positive probability. For simplicity, let these

miners be miner 1, 2, · · · , 𝑘 such that 𝑢1 ≥ 𝑢2 ≥ · · · ≥ 𝑢𝑘 . We

show in the following that miner 𝑘 can change his strategy to

get a strictly higher profit, contradicting the fact that this is a

Nash equilibrium, and consequently, the lemma is proved. More

precisely, we argue that player 𝑘 can get strictly larger profit (in

expectation) by increasing his probability of choosing transaction

𝑗2 and meanwhile decreasing his probability of choosing 𝑗1.

The expected profit that miner 𝑘 can get from transaction 𝑗1 and

𝑗2 using his current strategy is equal to

𝑝 𝑗1E[Γ1] + 𝑝 𝑗2E[Γ2],
where for ℎ = 1, 2, we have

Γℎ =


0, if

∑𝑛
𝑖=1 𝑢𝑖𝑋

(𝑖)
𝑗ℎ

= 0

𝑢𝑘𝑋
(𝑘 )
𝑗ℎ∑𝑚

𝑖=1 𝑢𝑖𝑋
(𝑖 )
𝑗ℎ

, Otherwise.

If 𝑘 changes his strategy by choosing 𝑗1 with the probability

of 0 and choosing 𝑗2 with the probability of 𝜋
(𝑘)
𝑗1
+ 𝜋 (𝑘)

𝑗2
, then the

expected profit he can get from 𝑗1 and 𝑗2 is equal to 𝑝 𝑗2E[Γ̃2],where

Γ̃2 =


0, if

∑
𝑖≠𝑘 𝑢𝑖𝑋

(𝑖)
𝑗2
+ 𝑢𝑘�̃�

(𝑘)
𝑗2

= 0

𝑢𝑘�̃�
(𝑘 )
𝑗
2∑

𝑖≠𝑘 𝑢𝑖𝑋
(𝑖 )
𝑗
2

+𝑢𝑘�̃� (𝑘 )𝑗
2

, Otherwise.



and �̃�
(𝑘)
𝑗2

is the 0-1 random variable that takes the value 1 with the

probability of 𝜋
(𝑘)
𝑗1
+ 𝜋 (𝑘)

𝑗2
. In the following we show that

𝑝 𝑗2E[Γ̃2 − Γ2] > 𝑝 𝑗1E[Γ1],
which implies the correctness of the lemma. We prove the following

two claims.

Claim 1. E[Γ1] <
𝜋
(𝑘 )
𝑗
1

2Δ .

Proof. Let 𝑋 =
∑
𝑖≠𝑘 𝑋

(𝑖)
𝑗1

and 𝜇 = E[𝑋 ] ≥ 5Δ/𝜃 − E[𝑋 (𝑘)
𝑗1
] =

6Δ/𝜃 − 𝜋 (𝑘)
𝑗1

. For any 𝛿 ∈ (0, 1), we have

E[Γ1] = E[Γ1 |𝑋 > (1 − 𝛿)𝜇] Pr(𝑋 > (1 − 𝛿)𝜇)
+E[Γ1 |𝑋 ≤ (1 − 𝛿)𝜇] Pr(𝑋 ≤ (1 − 𝛿)𝜇)

Given that Γ1 ≤ 1, we know that

E[Γ1 |𝑋 ≤ (1 − 𝛿)𝜇]
= E[Γ1 |𝑋 ≤ (1 − 𝛿)𝜇, 𝑋 (𝑘)𝑗1

= 1] Pr(𝑋 (𝑘)
𝑗1

= 1)

+E[Γ1 |𝑋 ≤ (1 − 𝛿)𝜇, 𝑋 (𝑘)𝑗1
= 0] Pr(𝑋 (𝑘)

𝑗1
= 0)

= 𝜋
(𝑘)
𝑗1
· E[Γ1 |𝑋 ≤ (1 − 𝛿)𝜇, 𝑋 (𝑘)𝑗1

= 1] ≤ 𝜋
(𝑘)
𝑗1

.

Meanwhile, by 𝑢1 ≥ 𝑢2 ≥ · · · ≥ 𝑢𝑘 , we have

Γ1 ≤
𝑋
(𝑘)
𝑗1∑𝑘

𝑖=1 𝑋
(𝑖)
𝑗1

.

According to Chernoff bound, we know that

Pr(𝑋 ≤ (1 − 𝛿)𝜇) ≤ 𝑒
−𝛿2𝜇
2 .

Therefore,

E[Γ1] = E[Γ1 |𝑋 > (1 − 𝛿)𝜇] Pr(𝑋 > (1 − 𝛿)𝜇)
+E[Γ1 |𝑋 ≤ (1 − 𝛿)𝜇] Pr(𝑋 ≤ (1 − 𝛿)𝜇)

≤ E[
𝑋
(𝑘)
𝑗1

(1 − 𝛿)𝜇 + 𝑋 (𝑘)
𝑗1

] + 𝑒
−𝛿2𝜇
2 · 𝜋 (𝑘)

𝑗1

Consider the function 𝜑 (𝑥) = 𝑥
(1−𝛿)𝜇+𝑥 , it is easy to verify that

−𝜑 (𝑥) is convex in 𝑥 ∈ (0, +∞), therefore, by Jensen’s inequality

E[𝑋 (𝑘)
𝑗1
]

(1 − 𝛿)𝜇 + E[𝑋 (𝑘)
𝑗1
]
= 𝜑 (E[𝑋 (𝑘)

𝑗1
]) ≥ E[𝜑 (𝑋 )]

= E[
𝑋
(𝑘)
𝑗1

(1 − 𝛿)𝜇 + 𝑋 (𝑘)
𝑗1

] .

Now consider the function 𝑥𝑒−𝑥 . It is easy to verify that the function
decreases when 𝑥 ≥ 1, therefore 𝑒−𝑥 ≤ 1

𝑒𝑥 for 𝑥 ≥ 1, hence, for

𝛿2𝜇
2
≥ 1, we have

E[Γ1] ≤
E[𝑋 (𝑘)

𝑗1
]

(1 − 𝛿)𝜇 + E[𝑋 (𝑘)
𝑗1
]
+ 𝑒

−𝛿2𝜇
2 · 𝜋 (𝑘)

𝑗1

≤
𝜋
(𝑘)
𝑗1

(1 − 𝛿)𝜇 + 𝜋 (𝑘)
𝑗1

+ 2

𝑒𝛿2𝜇
· 𝜋 (𝑘)

𝑗1
.

Using 𝜇 ≥ 12Δ − 𝜋 (𝑘)
𝑗1
≥ 11Δ and taking 𝛿 = 1/2, we have

E[Γ1] ≤
𝜋
(𝑘)
𝑗1

6Δ
+

2𝜋
(𝑘)
𝑗1

𝑒 · 1/4 · 11Δ <
𝜋
(𝑘)
𝑗1

2Δ
. □

Claim 2. E[Γ̃2 − Γ2] ≥ 𝜋
(𝑘)
𝑗1
/2.

Proof. Let 𝑌 =
∑
𝑖≠𝑘 𝑋

(𝑖)
𝑗2

. Then

Pr(𝑌 = 0) = Pr(𝑋 (𝑖)
𝑗2

= 0,∀𝑖 ≠ 𝑘) =
∏
𝑖≠𝑘

(1 − 𝜋𝑖𝑗2 )

≥ 1 −
∑
𝑖≠𝑘

𝜋
(𝑖)
𝑗2

≥ 1 − (1/2 − 𝜋 (𝑘)
𝑗2
)

= 1/2 + 𝜋 (𝑘)
𝑗2

.

Note that𝑋
(𝑘)
𝑗2

and𝑌 are independent, hence we have the following,

E[Γ̃2 − Γ2]
≥ E[Γ̃2 − Γ2 |𝑌 = 0, �̃�

(𝑘)
𝑗2

> 0] Pr(𝑌 = 0, �̃�
(𝑘)
𝑗2

> 0)

≥ (𝜋 (𝑘)
𝑗1
+ 𝜋 (𝑘)

𝑗2
) (1/2 + 𝜋 (𝑘)

𝑗2
) · E[Γ̃2 − Γ2 |𝑌 = 0, �̃�

(𝑘)
𝑗2

> 0] .

Further notice that �̃�
(𝑘)
𝑗2

and 𝑋
(𝑘)
𝑗2

are independent, thus

E[Γ̃2 − Γ2 |𝑌 = 0, �̃�
(𝑘)
𝑗2

> 0]

= E[Γ̃2 − Γ2 |𝑌 = 0, �̃�
(𝑘)
𝑗2

> 0, 𝑋
(𝑘)
𝑗2

= 0]

· Pr(𝑋 (𝑘)
𝑗2

= 0|𝑌 = 0, �̃�
(𝑘)
𝑗2

> 0)

+E[Γ̃2 − Γ2 |𝑌 = 0, �̃�
(𝑘)
𝑗2

> 0, 𝑋
(𝑘)
𝑗2

> 0]

· Pr(𝑋 (𝑘)
𝑗2

> 0|𝑌 = 0, �̃�
(𝑘)
𝑗2

> 0)

= E[
𝑢𝑘�̃�

(𝑘)
𝑗2

𝑌 + 𝑢𝑘�̃�
(𝑘)
𝑗2

|𝑌 = 0, �̃�
(𝑘)
𝑗2

> 0, 𝑋
(𝑘)
𝑗2

= 0] · Pr(𝑋 (𝑘)
𝑗2

= 0)

+E[
𝑢𝑘�̃�

(𝑘)
𝑗2

𝑌 + 𝑢𝑘�̃�
(𝑘)
𝑗2

−
𝑢𝑘𝑋

(𝑘)
𝑗2

𝑌 + 𝑢𝑘𝑋
(𝑘)
𝑗2

|𝑌 = 0, �̃�
(𝑘)
𝑗2

> 0, 𝑋
(𝑘)
𝑗2

> 0]

· Pr(𝑋 (𝑘)
𝑗2

> 0)

= 1 − 𝜋 (𝑘)
𝑗2

Now we have

E[Γ̃2 − Γ2] ≥ (𝜋 (𝑘)𝑗1
+ 𝜋 (𝑘)

𝑗2
) (1/2 + 𝜋 (𝑘)

𝑗2
) (1 − 𝜋 (𝑘)

𝑗2
)

For simplicity, let 𝜏 = 𝜋
(𝑘)
𝑗1
+ 𝜋 (𝑘)

𝑗2
∈ [0, 1] and 𝑥 = 𝜋

(𝑘)
𝑗2

, we have

𝑓 (𝑥) = E[Γ̃2 − Γ2] − 1/2 · 𝜋 (𝑘)𝑗1
= 𝜏 (1/2 + 𝑥) (1 − 𝑥) − 1/2 · (𝜏 − 𝑥) .

Notice that 𝑓 is a quadratic function in 𝑥 whose quadratic term has

negative coefficient, therefore if 𝑓 (0) ≥ 0 and 𝑓 (1) ≥ 0, then for

any 𝑥 ∈ [0, 1] we have 𝑓 (𝑥) ≥ 0. It is easy to see that 𝑓 (0) = 0, and

𝑓 (1) = 1/2 · (1 − 𝜏) ≥ 0, hence, the claim is proved. □

Given the two claims and the fact that 𝑝 𝑗2 ≤ Δ𝑝 𝑗1 , 𝑝 𝑗2E[Γ̃2−Γ2] >
𝑝 𝑗1E[Γ1] follows and the lemma is proved. The proof of the two

claims is quite involved. □



Lemma 1 shows that: Either no transaction has received a total

amount of probability that is larger than 12Δ, or every transaction

receives a total amount of probability at least 1/2. Note that the
two cases are not mutually exclusive. Nevertheless, we show in the

following that in both cases, miners will select sufficiently many

transactions with very high probability. The proofs of the following

lemmas are mathematically involved.

Lemma 2. If
∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗

< 12Δ holds for every transaction 𝑗 , and
Δ ≤ 𝑚/12, then the probability that only 𝑘 ≤ 𝑚

12𝑒Δ = Θ(𝑚/Δ)
different transactions are selected by𝑚 miners is at most (1/𝑒)Θ(𝑚) .

Towards the proof of Lemma 2, we need the following Lemma 3.

Lemma 3. Let𝑘, 1/𝛿 ∈ N+ such that𝑘𝛿 = 𝜁 ∈ (0, 1). Let𝑎1, 𝑎2, · · · , 𝑎𝑛
be 𝑛 numbers such that 𝑎𝑖 ∈ [0, 𝛿],

∑𝑛
𝑖=1 𝑎𝑖 = 1. Let A = {𝑆 |𝑆 ⊆

{1, 2, · · · , 𝑛}, |𝑆 | = 𝑘}. Then we have∑
𝑆 ∈A
(
∑
𝑗 ∈𝑆

𝑎 𝑗 )𝑚 ≤ 𝑒𝑘𝜁𝑚−𝑘 .

See Chen et al. [6] for the full proof of Lemma 3.

Now we come to the proof of Lemma 2.

Proof. Consider the event that at most 𝑘 different transactions

are chosen by 𝑚 miners. Let A = {𝑆 |𝑆 ⊆ {1, 2, · · · , 𝑛}|, |𝑆 | = 𝑘}
be the superset of all subsets of cardinality 𝑘 . For any 𝑆 ∈ A, let

𝜎𝑆 be any mapping that maps {1, 2, · · · ,𝑚} to 𝑆 , and Ω𝑆 be the

set of all such mappings. Consider the event that miner 𝑖 selects

transaction 𝜎𝑆 (𝑖), we know that the event happens with the prob-

ability Pr(𝜎𝑆 ) =
∏𝑚

𝑖=1 𝜋
(𝑖)
𝜎𝑆 (𝑖) . Taking summation over all possible

mappings, the event that only transactions in 𝑆 are selected is at

most ∑
𝜎𝑆 ∈Ω𝑆

Pr(𝜎𝑆 ) =
∑

𝜎𝑆 ∈Ω𝑆

𝑚∏
𝑖=1

𝜋
(𝑖)
𝜎𝑆 (𝑖) =

𝑚∏
𝑖=1

∑
𝑗 ∈𝑆

𝜋
(𝑖)
𝑗

.

The last equality follows as when we expand

∏𝑚
𝑖=1

∑
𝑗 ∈𝑆 𝜋

(𝑖)
𝑗

, any

summand corresponds to

∏𝑚
𝑖=1 𝜋

(𝑖)
𝜎 (𝑖) for some mapping 𝜎 . Using

the the inequality of arithmetic and geometric means, we have∑
𝜎𝑆 ∈Ω𝑆

Pr(𝜎𝑆 ) =
𝑚∏
𝑖=1

∑
𝑗 ∈𝑆

𝜋
(𝑖)
𝑗
≤ (

∑𝑚
𝑖=1

∑
𝑗 ∈𝑆 𝜋

(𝑖)
𝑗

𝑚
)𝑚 = (

∑
𝑗 ∈𝑆

∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗

𝑚
)𝑚 .

Taking summation over all possible 𝑆 ∈ A, the event that at most

𝑘 transactions are selected is at most∑
𝑆 ∈A

∑
𝜎𝑆 ∈Ω𝑆

Pr(𝜎𝑆 ) ≤
∑
𝑆 ∈A
(
∑
𝑗 ∈𝑆

∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗

𝑚
)𝑚 .

Now let 𝑎 𝑗 =

∑𝑚
𝑖=1 𝜋

(𝑖 )
𝑗

𝑚 . It is easy to see that

∑𝑛
𝑗=1 𝑎 𝑗 = 1. Fur-

thermore, since

∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗

< 12Δ, we have 𝑎 𝑗 ≤ 12Δ/𝑚. We apply

Lemma 3 by taking 𝛿 = 1

⌈𝑚/(12Δ) ⌉ ≤ 12Δ/(𝑚 + 12Δ), 𝜁 = 𝑘𝛿 ≤ 𝑒−1,
we know that∑

𝑆 ∈A

∑
𝜎𝑆 ∈Ω𝑆

Pr(𝜎𝑆 ) ≤ 𝑒𝑘𝜁𝑚−𝑘 ≤ 𝑒−𝑚/2 .

Hence, the lemma is proved. □

Note that if Δ > 𝑚/12, 𝑚
12𝑒Δ < 1. As miners complete at least 1

transaction, the lemma is trivially true.Now we consider the other

case and have the following.

Lemma 4. If
∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗
≥ 1/2 holds for every transaction 𝑗 , then

the probability that no more than 𝑛/𝑒2 transactions are selected is at
most (1/𝑒)Θ(𝑛) .

Proof. Consider the event that at most 𝜃𝑛 transactions are se-

lected by 𝑚 miners for some 𝜃 ∈ (0, 1). Note that in this case

𝑚 =
∑𝑛

𝑗=1

∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗
≥ 𝑛/2, hence 𝑛 ≤ 2𝑚. Again we define

A = {𝑆 |𝑆 ⊆ {1, 2, · · · , 𝑛}|, |𝑆 | = (1 − 𝜃 )𝑛} as the superset of all

the subsets of cardinality (1−𝜃𝑛). The probability that miner 𝑖 does

not select any transaction in some 𝑆 ∈ A is 1 −∑𝑗 ∈𝑆 𝜋
(𝑖)
𝑗

. Given

that miners select transactions independently, the probability that

all miners do not select transactions in 𝑆 is

𝑚∏
𝑖=1

(1 −
∑
𝑗 ∈𝑆

𝑝
(𝑖)
𝑗
) ≤ (

𝑚 −∑𝑗 ∈𝑆
∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗

𝑚
)𝑚

≤ (
𝑚 − (1−𝜃 )𝑛

2

𝑚
)𝑚 ≤ 𝑒−

(1−𝜃 )𝑛
2 ,

where the first inequality follows by inequality of arithmetic and

geometric means, the second inequality follows by the fact that∑𝑚
𝑖=1 𝜋

(𝑖)
𝑗
≥ 1/2, and the third inequality follows by (1 − 1/𝑥)𝑥 ≤

𝑒−1 for 𝑥 ≥ 1. Taking the summation over all possible 𝑆 ∈ A, the

probability that at most 𝜃𝑛 transactions are selected is at most∑
𝑆 ∈A

𝑚∏
𝑖=1

(1 −
∑
𝑗 ∈𝑆

𝑝
(𝑖)
𝑗
) ≤

(
𝑛

𝜃𝑛

)
𝑒−
(1−𝜃 )𝑛

2

≤ 𝑛𝜃𝑛

(𝜃𝑛)! · 𝑒
− (1−𝜃 )𝑛

2

≤ ( 𝑒
𝜃
)𝜃𝑛 · 𝑒−

(1−𝜃 )𝑛
2 .

Taking 𝜃 = 𝑒−2, simple calculation shows that the right side of the

inequality above is 𝑒𝑐𝑛 for 𝑐 ≤ −0.02, and the lemma is proved. □

Given Lemma 2 and Lemma 4, Theorem 2 follows directly.

5.2.2 Finality-duration. For ease of presentation, we let 𝑠 = min{𝑐1𝑚/Δ, 𝑐2𝑛}
(recall Theorem 2). We will characterize finality-duration in terms

of 𝑠 . Recall that a miner needs to make two decisions: (i) which

transaction to include in the new block, and (ii) which two previ-

ous blocks to refer to. The two decisions are independent. In the

previous subsection we have discussed (i), and in this subsection

we focus on (ii), as this affects how the DAG grows.

It should be clear that since the verification reward of a trans-

action (block) is evenly distributed among miners who append a

block of the same distance to it, a miner always prefers a block with

no descendants. At any particular time 𝑡 , we call a block without

descendants as a leaf at 𝑡 , and denote by 𝐿𝑡 the set of leaves. We are

interested in the size of 𝐿𝑡 . Notice that in the classical blockchain

system, |𝐿𝑡 | is 1 since it is a chain. However, in a non-linear model,

|𝐿𝑡 | is not necessarily 1. Principally, |𝐿𝑡 | could grow arbitrarily

large, but what we will show in this section is that, |𝐿𝑡 | is always
bounded when miners are using their equilibrium strategies. In this

case, although we are considering a non-linear model, it is “almost



linear", as implied by Theorem 3. Based on this result, we further

leverage the techniques from random walk to prove that, for every

block, after a delay of 𝑂 (𝑠 log 𝑠) units of time, all blocks will be its

descendant (Theorem 4), consequently, if we set ℓ = Θ(𝑠 log 𝑠) in
our design, every block will be verified by all users, and security

follows.

As we mentioned before, each new block will refer to two leaves

in 𝐿𝑡 . As every block offers the same total amount of verification

reward, every leaf appears the same to the miners (unless they are

in conflict with previous blocks and then miners will be biased

based on the LWD rule). Therefore, a new block will randomly

select two leaves to refer to. Assuming leaves are not conflicting

with previous blocks, we show that |𝐿𝑡 | will be 𝑂 (𝑠) in the long

run with an extremely high probability. First, it is easy to see that

if |𝐿𝑡 | ≤ 𝑠 , then 𝐿𝑡+1 ≥ 𝑠 as the 𝑠 new blocks will be leaves at 𝑡 + 1.
The following lemma shows that if |𝐿𝑡 | is sufficiently large, then

with very high probability it will reduce to 𝑂 (𝑠) after enough time.

Lemma 5. Let 𝜖 be an arbitary small constant. If |𝐿𝑡 | ≥ 1/𝜖3 and
|𝐿𝑡 | ≥ 4𝑠 , then with sufficiently high probability (at least 1 −𝑂 (𝜖)),
|𝐿𝑡+1 | = |𝐿𝑡 | − 𝑋 + 𝑠 ≤ |𝐿𝑡 | − (1−3𝜖)𝑠

2
, i.e., 𝐿𝑡 decreases by at least

Ω(𝑠).

See Chen et al. [6] for the full proof of Lemma 5.

The above lemma shows that if |𝐿𝑡 | is large, then with high

probability |𝐿𝑡 | shall decrease, however, what we are interested in

is the probability that |𝐿𝑡 | ≤ 𝑂 (𝑠) for all 𝑡 ≥ 0. Towards this, we

need to cast the problem as a random walk. Lemma 5 shows that

with the probability of (1 −𝑂 (𝜖))3 = 1 −𝑂 (𝜖), |𝐿𝑡 | can decrease

by
3(1−3𝜖)𝑠

2
≥ 𝑠 , while with probability of at most 𝑂 (𝜖), |𝐿𝑡 | can

increase by at most 𝑠 . This can be interpreted as a random walk

which walks right (increase) by 𝑠 steps with the probability of

1 −𝑂 (𝜖), and walks left (decrease) by 𝑠 steps with the probability

of𝑂 (𝜖). The following lemma is proved for a general random walk.

Lemma 6 ([8], pp.272). Consider a random walk starting at 𝑅𝑊0 =

0, Pr(𝑅𝑊𝑖+1 − 𝑅𝑊𝑖 = 𝑠) = 𝑝 , Pr(𝑅𝑊𝑖+1 − 𝑅𝑊𝑖 = −𝑠) = 𝑞 where
𝑝 + 𝑞 = 1 and 𝑠 ∈ Z>0. If 𝑝 > 𝑞, then

lim

𝑛→∞
Pr(𝑅𝑊𝑖 ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑛) = 𝑝 − 𝑞

𝑝
.

If 𝑝 < 𝑞, the above limit is 0.

Now we are ready to prove the following theorem.

Theorem 3. Let 𝜖 be a small constant such that 𝑠 > 1/𝜖3. With
very high probability (at least 1 −𝑂 (𝜖)), |𝐿𝑡 | ≤ 5𝑠 for all 𝑡 ≥ 0.

Proof. Recall that |𝐿0 | = 0. Let 𝑡∗ be the smallest time where

|𝐿𝑡∗ | ≥ 4𝑠 , then |𝐿𝑡∗ | ≤ 5𝑠 . Now we take 𝑡∗ as a starting time, |𝐿𝑡∗ |
as a starting point and take the random walk interpretation. Using

Lemma 6, we have that

lim

𝑛→∞
Pr( |𝐿𝑡 | ≤ |𝐿𝑡∗ |,∀1 ≤ 𝑡 ≤ 𝑛) ≤ 1 −𝑂 (𝜖) −𝑂 (𝜖)

1 −𝑂 (𝜖)
= 1 −𝑂 (𝜖).

Therefore, the probability that |𝐿𝑡 | is bounded by 5𝑠 for all 𝑡 ≥ 0 is

at least 1 −𝑂 (𝜖). □

Lemma 7. Let 𝜖 be a small constant such that 𝑠 > 1/𝜖3. For any
transaction at 𝑡 that is not in conflict with prior transactions, with

sufficiently high probability (at least 1 −𝑂 (𝜖)) every block appended
at or after 𝑡 +𝑂 (𝑠 log 𝑠) will be its descendant.

Proof. According to Theorem 3, we focus on the event that

|𝐿𝑡 | ≤ 5𝑠 for all 𝑡 ≥ 0, which happens with 1 −𝑂 (𝜖) probability.
For ℎ ≥ 𝑡 , let Ψℎ be the subset of blocks in 𝐿ℎ which has a

directed path from some fixed block 𝜏0 ∈ 𝐿𝑡 , which is a random

subset. Let 𝜓ℎ = E( |Ψℎ |). Consider 𝐿ℎ+1. For any block 𝜏𝑖 ∈ 𝐿ℎ+1,
let 𝑋𝑖 be a binary random variable indicating whether 𝜏𝑖 refers to

some block in Ψℎ , and hence admits a directed path from 𝜏0. Then

we know

Pr(𝑋𝑖 = 1) =

( |Ψℎ |
2

)
+ |Ψℎ | ( |𝐿ℎ | − |Ψℎ |)( |𝐿ℎ |

2

)
=
|Ψℎ | (2|𝐿ℎ | − |Ψℎ | − 1)
|𝐿ℎ | ( |𝐿ℎ | − 1)

.

We consider |Ψℎ+1 |. It is obvious that if |Ψℎ | = |𝐿ℎ |, then every

block in 𝐿ℎ+1 refers to some block in Ψℎ and thus admits a directed

path from 𝜏0, hence, |𝐿ℎ+1 | = |Ψℎ+1 |, and similarly we have |𝐿ℎ+𝑗 | =
|Ψℎ+𝑗 | for all 𝑗 ≥ 1. Otherwise, we assume 1 ≤ |Ψℎ | ≤ |𝐿ℎ | − 1.

Then 2|𝐿ℎ | − |Ψℎ | − 1 ≥ |𝐿ℎ |, and we have

E(𝑋𝑖 ) = E
(
|Ψℎ | (2|𝐿ℎ | − |Ψℎ | − 1)
|𝐿ℎ | ( |𝐿ℎ | − 1)

)
≥ 𝜓ℎ

|𝐿ℎ | − 1
.

Note that |Ψℎ+1 | =
∑
𝑖 𝑋𝑖 . It is easy to calculate that

𝜓ℎ+1 = E( |Ψℎ+1 |) ≥ 𝜓ℎ
(
1 + 1

|𝐿ℎ | − 1

)
.

This means, starting from 𝜓𝑡 = 1, for each 𝜓ℎ where ℎ ≥ 𝑡 ,

either 𝜓ℎ = |𝐿ℎ | and thus 𝜓ℎ′ = |𝐿ℎ′ | for all ℎ′ ≥ ℎ, or 𝜓ℎ+1 ≥(
1 + 1

|𝐿ℎ |−1

)
𝜓ℎ . Since |𝐿ℎ | ≤ 5𝑠 , 𝜓ℎ increases sufficiently close to

|𝐿ℎ | ≤ 5𝑠 when ℎ ≥ 𝑡 +𝑂 (𝑠 log 𝑠), and the theorem is proved. □

Given the above lemma, if we set ℓ , the verification depth to

be ℓ ≥ 𝑂 (𝑠 log 𝑠), then any transaction at 𝑡 will be verified by all

the users after 𝑂 (𝑠 log 𝑠) units of time with high probability. The

following theorem is thus true.

Theorem 4. If 𝑠 > 1/𝜖3 and ℓ ≥ 𝑂 (𝑠 log 𝑠), then with probability
of at least 1 −𝑂 (𝜖), any transaction at 𝑡 will be verified by all the
users after 𝑂 (𝑠 log 𝑠) units of time.

Remark. Recall that the scalability of the system increases as Δ in-

creases, while 𝑠 = min{𝑐1𝑚/Δ, 𝑐2𝑛}, and hence the finality-duration
𝑂 (𝑠 log 𝑠) decreases as Δ increases. Theorem 4 shows trade-off be-

tween the scalability and finality-duration.

6 CONCLUSION
We provide the first systematic analysis on blockchain systems

with respect to three major parameters, verification, scalability, and

finality-duration. We establish an impossibility result showing no

blockchain system can simultaneously achieve the three properties.

We complement the existing blockchain systems by establishing

the first NLB that achieves both full verification and scalability. We

also reveal, for the first time, the trade-off between scalability and

finality-duration in NLB. It is not clear whether a better trade-off

exists or not.
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