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ABSTRACT

To predict rare extreme events using deep neural networks, one encounters the so-called small data problem because even long-term
observations often contain few extreme events. Here, we investigate a model-assisted framework where the training data are obtained from
numerical simulations, as opposed to observations, with adequate samples from extreme events. However, to ensure the trained networks
are applicable in practice, the training is not performed on the full simulation data; instead, we only use a small subset of observable quanti-
ties, which can be measured in practice. We investigate the feasibility of this model-assisted framework on three different dynamical systems
(Rössler attractor, FitzHugh–Nagumo model, and a turbulent fluid flow) and three different deep neural network architectures (feedforward,
long short-term memory, and reservoir computing). In each case, we study the prediction accuracy, robustness to noise, reproducibility under
repeated training, and sensitivity to the type of input data. In particular, we find long short-term memory networks to be most robust to noise
and to yield relatively accurate predictions, while requiring minimal fine-tuning of the hyperparameters.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0077646

Deep learning has proven largely effective in predicting chaotic
dynamical systems. However, to predict rare extreme events, one
is confronted with the so-called small data problem: even long-
term observations lack sufficient extreme events for training
purposes. We introduce a model-assisted framework where the
deep neural network is trained using long-term simulations with
adequate sampling from the extreme event regime. However, to
ensure the trained network can be used with observational data,
input variables only contain partial information comprising the
quantities that can be measured in experiments. We examine the
feasibility of this model-assisted framework on three neural net-
work architectures, each trained with partial observations from
three different dynamical systems.

I. INTRODUCTION

Extreme events such as rogue waves, earthquakes,
epileptic seizures, and stock market crashes are rare but have

devastating humanitarian, environmental, and financial conse-
quences. Real-time prediction of these events is essential for opti-
mal response management and mitigation of their most adverse
consequences.1–3

Although deep learning has proven largely effective in predict-
ing chaotic systems, to predict extreme events, one is confronted
with the small data problem: even long-term observations contain
relatively few extreme events. As a result, the available observational
data lack enough samples from the extreme event regime for training
purposes. In addition, the full state of the system is often inaccessi-
ble in practice. This is especially the case for spatiotemporal systems
where the state can only be measured at sparse sensor locations.4–6

Therefore, the training must be carried out using a limited set of
system observables.

Here, we consider a model-assisted framework that addresses
these sampling and partial observation issues. As depicted in Fig. 1,
the proposed framework has two components:

1. Off-line: A computationally expensive component, which is
carried out off-line and only once. This step involves
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long-term numerical simulations and training a deep neural
network.

2. Real-time: A computationally inexpensive component that uses
observational data as input for the pre-trained neural network
to make real-time predictions.

In the off-line step, we use a mathematical model of the system
to generate long-term simulations, which contain enough extreme
event samples to train a deep neural network. Although the simula-
tion results contain the full state of the system x(t), we do not use
this complete information for training the neural network. Instead,
we use this information to generate time series of the observ-
ables pi(t), i.e., a set of quantities that can be actually measured in
practice. The observable time series are then used to train a deep
neural network. The trained network uses the observations pi(t) as
input to predict the future values of a quantity of interest q(t + τ),
where τ denotes the prediction time. The quantity of interest (QoI)
refers to a scalar quantity, which is relevant to extreme events. For
instance, in the case of ocean rogue waves, QoI is the maximum sur-
face height,7 or in climatology, QoI may refer to the mean surface
temperature.8

Once trained, the deep neural network is used in the real-
time component to make predictions using the available observa-
tions pi(t). This component only relies on observational data and
is quite fast since it uses a pre-trained network. We emphasize
that the off-line component is designed to address the practical
issues faced in predicting extreme events; mainly that in practice
not all degrees of freedom can be measured (incomplete observa-
tions). Furthermore, the long-term numerical simulations provide
enough sampling from extreme events to overcome the small data
problem. Although we do not do so here, one can use rare event
sampling techniques to reduce the amount of numerical simulations
required.9–11

We examine the feasibility of this framework (see Fig. 1) for
predicting extreme events by considering three different dynamical
systems and three different neural network architectures: feedfor-
ward (FF), long short-term memory (LSTM), and reservoir com-
puting (RC). For different architectures, we study their accuracy,
robustness to noise, sensitivity to hyperparameters, reproducibility
under repeated training, and dependence on the input data.

A. Related work

As applications of machine learning have proliferated, they
have been extensively used in predicting, analyzing, and discover-
ing chaotic dynamical systems. We refer to Refs. 12–16 for recent
reviews of applications of machine learning methods in dynamical
systems. Here, we only review studies that use machine learning in
the context of extreme events.

Ding et al.17 design a hybrid recurrent neural network struc-
ture for extreme event prediction that addresses the scarcity of
extreme events by introducing a specialized loss function inspired
by extreme value theory. Qi and Majda18 use a relative entropy
loss function together with a convolutional neural network to pre-
dict extreme events in a truncated Korteweg–de Vries equation (see
also Rudy and Sapsis19). Senthilvelan and co-workers20 use standard
deep learning methods to predict extreme events in a parametrically
driven mechanical system (see also Refs. 21–23).

The above studies rely on the complete system state for their
prediction tasks. However, such complete information is often
unavailable in practice. One remedy is to use reduced-order mod-
els that only rely on a subset of the state variables. For instance,
Wan et al.24 demonstrate that incorporating physical principles
and reduced-order modeling in the neural network architecture
can improve predictive accuracy and interpretability. Although
reduced-order methods involve less information than the full sys-
tem state, they still require solving a model which is not ideal for
fast, real-time predictions.

There are relatively few studies that examine the capacity of
deep learning for predicting extreme events based only on obser-
vational data. Chattopadhyay et al.25 make model-free prediction
of extreme-causing weather patterns using large-scale circulation
data and surface temperature to train a capsule neural network
(CapsNet). They find that supplementing the circulation data with
surface temperature significantly enhances the prediction accuracy.
Rudy and Sapsis26 use an LSTM network to predict intermittent
aerodynamic fluctuations from discrete pressure measurements on
an airfoil. Chattopadhyay et al.27 quantify the statics of a Lorenz 96
model using only the slow variables of the system as input data. They
find that LSTM and RC networks predict the heavy-tailed statistics
(i.e., rare events) reasonably well, while FF networks fail to capture
the tail. Pyragas and Pyragas28 use RC networks to predict and mit-
igate extreme events in a FitzHugh–Nagumo system from a single
quantity containing global information.

Here, to mimic real applications, we also assume that only a
small number of observable time series are available as network
inputs. Unlike previous studies that often consider one dynamical
system or one network architecture, we conduct a comprehensive
study by applying three different neural network architectures to
three different dynamical systems that exhibit extreme events. In
particular, we seek to address the following questions: (1) Accu-
racy: Is one neural network architecture more skillful in predicting
extreme events across different dynamical systems? (2) Sensitiv-
ity to noise: Is a particular architecture more robust to observa-
tional noise? Furthermore, does training on clean simulation data
outperform training on noisy data. (3) Sensitivity to hyperparame-
ters: Which network requires less hyperparameter fine-tuning. (4)
Reproducibility: Are the results reproducible under retraining? (5)
Sensitivity to input data: Do the networks perform equally well when
trained on different types of input data?

B. Outline of the paper

This paper is organized in the following manner. In Sec. II, we
introduce the setup and notation and outline the dynamical systems
studied here. Section III details the three deep learning structures we
use. In Sec. IV, we present our numerical results. Section V contains
our concluding remarks.

II. PRELIMINARIES AND SETUP

In this section, we introduce the dynamical systems setup for
extreme events. In particular, we discuss three systems that are used
later in this paper to demonstrate our results.
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FIG. 1. Schematic diagram of the program followed in this paper. We use a two-phase procedure to make predictions. In the off-line phase, numerical simulations of a model
are used to train a neural network. The trained neural network is then used in real-time to predict extreme events from observations.

A. Dynamical systems setup

We consider autonomous dynamical systems defined by a set
of ordinary differential equations (ODEs),

ẋ = F (x), x(0) = x0, (1)

where the state x(t) = (x1(t), x2(t), . . . , xn(t)) belongs to R
n for all

t ≥ 0. The vector field F : R
n → R

n is a potentially nonlinear map.
ODE (1) may model a finite-dimensional system or arise from a
finite-dimensional approximation of a partial differential equation
(PDE), as is common in numerical discretization of PDEs. We
denote the solution map of the system by St : R

n → R
n, which maps

an initial condition x0 to its time-t state x(t).
We consider a scalar quantity of interest q : R

n → R whose
evolution is related to extreme events. This quantity is problem
dependent; for instance, for rogue waves, the quantity of interest is
the maximum wave height7 while, in turbulence, it may be energy
dissipation.29,30 Evaluated along a trajectory x(t) of the system, the
quantity of interest generates the time series q(t) := q(x(t)). An
extreme event refers to an episode where the quantity of interest is
unusually large. More specifically, we say an extreme event has taken
place if the quantity of interest q(t) exceeds a prescribed threshold
qe. The case where extreme events correspond to unusually small
values of QoI can be handled similarly by redefining the quantity as
q 7→ −q.

We seek to predict extreme events before they take place. For a
prediction time τ , we use the available information up to the present
time t to predict the future value of the QoI q(t + τ). Of course, if the
full state x(t) is accessible, the ODE can be integrated numerically to
estimate q(t + τ) = q (Sτ (x(t))).

However, in practice, we often lack complete information
about the full system state x(t). Instead, we assume that only partial

observations p = (p1, p2, . . . , pr) ∈ R
r, containing r unique measure-

ments, are available where r � n. The ith component of the observa-
tions is given by the map pi : R

n → R, and we write pi(t) = pi(x(t))
for notational simplicity. We emphasize that although the full state
x(t) is not available, we assume the observables pi are measurable
quantities. These observations may contain certain coordinates of
the system state x or, more generally, may be linear or nonlinear
functions of the state.

The partial observations U := {p(s) : s ≤ t} up to time t are
used to predict the QoI q(t + τ) at the future time t + τ . To this
end, we seek to learn a map N : U → R that predicts the QoI in the
future,

q̂(t + τ) = N
[
p(s), s ≤ t

]
. (2)

We denote the predicted QoI by q̂. In Sec. III, we detail the machine
learning methods used to learn the map N.

In practice, we realize a solution to Eq. (1) as a discrete
time series obtained by numerical integration or experimental
measurements. For some small time step 1t, the discrete time
series for the state x(t) is denoted by {x(0), x(1), . . . , x(k), . . .}, where
x(k) = x(k1t). Similarly, for the observations p and the quantity of
interest q, we have the discrete time series {p(0), p(1), . . . , p(k), . . .}
and {q(0), q(1), . . . , q(k), . . .}, where p(k) = p(x(k)) and q(k) = q(x(k)).

B. Assumptions and limitations

The proposed framework uses simulation data to pre-train a
neural network, which is subsequently used for prediction from
observational data (see Fig. 1). Some consistency assumptions have
to be made in order to ensure that the pre-trained network is trans-
ferable to observational data. For instance, if the distribution of the
simulation data is different from the observations, the trained net-
work may fail to accurately predict the out-of-sample events in the
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observations. To ensure consistency between the simulation data
and the observational data, we require the following conditions: (i)
Statistical stationarity: We assume that the system’s attractor is sta-
tistically stationary so that the distribution of the simulation data
and the observations are in agreement. (ii) Constant sampling rate:
We assume that the time series {p(s) : s ≤ t} are sampled at regular
intervals 1t and that the observational data can be measured with
the same frequency.

Assumption (i) ensures that the dynamics has reached a sta-
tionary distribution, which is common between the simulation data
and the observations. Note that here we assume that the dynamical
system (1) accurately models the system; therefore, the only discrep-
ancy between the simulation and observation distributions can arise
from observational noise, which does not significantly alter the dis-
tribution. As a result of assumption (i), the proposed framework is
not applicable to non-autonomous systems where the vector field F
depends explicitly on time. We note that the system does not neces-
sarily need to be ergodic; we only require that the components of the
system attractor are adequately sampled.

Assumption (ii) ensures that the learned map N, which maps
the input time series U = {p(s) : s ≤ t} to the QoI q(t + τ), is appli-
cable to observations. The map N depends implicitly on the sam-
pling time step 1t. In other words, a network N that maps input
time series sampled at 1t intervals is different from the network N′

that maps samples which are 1t′ ( 6=1t) apart. Therefore, if the sim-
ulation data are sampled at a different rate than the observational
data, the pre-trained network cannot be applied to make predictions
from observations. As a result of assumption (ii), when setting up
the training data from simulations, one should ensure that the sam-
pling rate 1t matches the frequency of available observations. We
emphasize that the prediction time τ does not need to be equal to
the sampling time step 1t.

Finally, we note that statistical stationarity is an inherent prop-
erty of the dynamical system whereas constant sampling rate is
related to the manner in which the system is observed.

C. Three systems studied

We consider three dynamical systems of increasing complexity:
the Rössler system, the FitzHugh–Nagumo (FHN) system, and the
Kolmogorov flow (KF). Figure 2 shows these systems, their observ-
ables, and the quantities of interest. Here, we briefly review each
system and its significance; a detailed description of each system is
provided in Appendix A.

1. Rössler: The Rössler system is a three-dimensional ODE rou-
tinely used as a prototypical model for extreme events. Denoting
the state variable with x = (x1, x2, x3), the extreme events in this
system appear as intermittent chaotic bursts in its x3 component
(see Fig. 2). Here, we consider this system with x1 and x2 compo-
nents of the state as our observables, and q = x3 as the quantity
of interest.

2. FitzHugh–Nagumo: The FitzHugh–Nagumo equations model
excitable systems such as neural and cardiac activity. Here, we
consider a discrete version of the FHN model consisting of
n = 101 diffusively coupled units.31 Each unit i consists of
two variables (vi, wi) leading to a 202 dimensional system. We

assume only the variables of the first unit (v1, w1) are observable.
The QoI is the mean voltage q = (

∑
i vi)/n.

3. Kolmogorov flow: The Kolmogorov flow refers to the
Navier–Stokes equations with periodic boundary conditions
and a sinusoidal shear forcing. At high enough Reynolds num-
bers, the system exhibits extreme events in the form of chaotic
bursts of the energy dissipation rate.32 Here, we consider two
sets of observables; one is a particular Fourier mode which was
recently discovered to play a major role in the formation of
extreme events.33 The second set of observables is the vortic-
ity field measured at a few discrete points. We investigate the
performance of deep learning methods for each set of observ-
ables (i.e., network inputs). In both cases, the QoI is the energy
dissipation rate.

III. MACHINE LEARNING ARCHITECTURES

We use artificial neural networks to predict upcoming extreme
events given the available information about the system. More
specifically, we train each neural network to learn the predictor N,
which takes partial observations U = {p(s), s ≤ t} from the system
as input and returns, as output, the predicted value of the quantity
of interest, τ time units into the future, i.e., q̂(t + τ).

We compare the performance of three deep neural network
structures: feedforward (FF), long short-term memory (LSTM),
and reservoir computing (RC) networks. Each neural network
depends on many hyperparameters, which have to be prescribed
before training the network. It is well-known that the choice of
the hyperparameters can drastically alter the network performance.
Here, we choose these hyperparameters after an extensive trial-
and-error search in the hyperparameter space as listed in Table I.
The optimal set of hyperparameters depends on the system (Rössler,
FitzHugh–Nagumo, or Kolmogorov flow) as detailed in Appendix B.
Here, “optimal” refers to the best combination of hyperparameters
among those we tested and not optimal over all possible hyperpa-
rameters. In the following, we briefly review each neural network
architecture and its hyperparameters.

A. Feedforward neural networks

We use a fully connected feedforward neural network as shown
in Fig. 3. Each node in the neural network takes the outputs from
the previous layer and transforms them with a nonlinear mapping.
Within a particular layer, the jth node takes the outputs of the pre-

vious layer (xi, for 1 ≤ i ≤ l) and returns σ(
∑l

i=1 wi,jxi + bj), where
σ : R → R is a sigmoidal activation function. The weights wi,j and
bias bj are trained using backpropogation and stochastic gradient
descent. This nonlinear composition continues until the network
reaches the final (or output) layer. The output layer has its own bias
bo and activation function σo.

We use the feedforwardnet function from MATLAB’s
Deep Learning Toolbox to implement our FF neural networks for
time-series prediction. We train our networks for 1000 epochs
using the Levenberg–Marquardt algorithm, a variation of gradi-
ent descent, to minimize the loss.34 The loss function is the mean
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FIG. 2. The three dynamical systems studied. The complexity of the systems increases from left to right.

TABLE I. The list of fine-tuned hyperparameters for each neural network.

Feedforward LSTM Reservoir computing

Hyperparameters Number of layers Hidden units Number of nodes
Number of nodes Number of layers Spectral radius

Activation functions Leaking rate
Number of delays Input density

Delay time Reservoir density
Regularization weight

Chaos 32, 043112 (2022); doi: 10.1063/5.0077646 32, 043112-5
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FIG. 3. The FF network architecture with a single output and input data of size n. There are m layers and l nodes per layer.

squared error,

MSE =
1

K

K∑

i=1

(q(tk + τ) − q̂(tk + τ))
2
. (3)

where q (respectively, q̂) denotes the true value of the quantity of
interest (respectively, the predicted value of the quantity of interest).
Here, K is the number of predictions made. We choose 15% of the
original training data as validation data and terminate training after
validation error increases over six consecutive epochs.

To determine the optimal hyperparameters, we consider
between 2 and 6 layers with 4–64 nodes per layer. In addition, we
consider log-sigmoidal, tanh-sigmoidal, and linear activation func-
tions. Two additional hyperparameters correspond to time delays in
our input data, as discussed in Sec. III A 1. The optimal combination
of these hyperparameters for each dynamical system is discussed in
Appendix B.

1. Time delay embedding

For FF networks, predicting the QoI q̂(t + τ) from the instanta-
neous observations p(t) does not return accurate results. Motivated
by Takens’ embedding theorem,35 we introduce time delays to take
into account the history of the observations. The time delay embed-
ding collects several previous observations from the time series
{p(s), s ≤ t}. More precisely, for a prescribed number of delays m ∈
N and a delay time s > 0, the time delay embedding ρ ∈ R

r·m is
defined as

ρ(t; m, s) = [p(t), p(t − s), . . . , p(t − (m − 1)s)]. (4)

The special case m = 1 corresponds to instantaneous observations,
ρ(t; m, s) = p(t). The function learned using the FF neural network
is, therefore, a map N : R

r·m → R from past observations up to the
current time t to the predicted quantity of interest q̂(t + τ).

The values for m and s are chosen differently for each sys-
tem as detailed in Appendix B. The number of delays m depends

on the dimension of the system attractor whereas the delay time s
depends on the decorrelation time of the system. Arbitrarily increas-
ing m is unfeasible due to training time constraints and s must be
chosen carefully so that there is little redundancy between delayed
observations.

LSTM and RC are recurrent neural networks, which implicitly
take the history into account. As a result, time delay embedding
is unnecessary for training LSTM and RC networks and is only
used for training the FF neural network. In fact, we have observed
that including the time delays in the input data explicitly tends to
deteriorate the performance of the LSTM and RC networks.

B. Long short-term memory neural networks

Long short-term memory (LSTM) networks are a particular
type of recurrent neural network (RNN), which use gates to con-
trol the effect of past history on the current state. This construc-
tion allows them to capture long-term dependencies in the time
series.36,37

Figure 4 illustrates our LSTM architecture consisting of LSTM
layers followed by a fully connected network. The networks use an
input layer of dimension n, followed by m LSTM layers, followed
by a fully connected layer ending in an output layer of dimension
one. The fully connected and output layers in Fig. 4 are identical to
their FF neural network counterparts; the new LSTM layers enable
the network to “remember” past history.

Each LSTM layer takes a time series and, after iterating through
each time step, returns a reconstructed time series composed of sig-
nificant details of the network remembered through training. At
each time step t, the cell combines the time step information with the
remembered information. The previous cell determines the remem-
bered information and the modifications to make, known as the
cell state ct−1 and the hidden state ht−1, respectively. The number
of modifications made, known as hidden units, is a hyperparameter.

Each LSTM node uses three gates to decide which infor-
mation should be retained or discarded in producing the output
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FIG. 4. (a) LSTM architecture with m layers followed by a fully connected network. (b) An LSTM cell.

[see Fig. 4(b)]. The forget gate f determines which information the
LSTM block removes from the layer’s memory. The input gate and
cell candidate, denoted by tanh and g, determine what information
from the input data xt the LSTM block incorporates to update the
cell state in the LSTM node. The output gate o determines how the
cell state ct−1 contributes to the output relative to ht−1 and xt.

Each gate in the LSTM node has two weight matrices and a bias.
One weight matrix is associated with the input xi while the other
weight matrix is associated with the hidden state ht−1. In the training
process, the weights and biases of both the LSTM network and the
fully connected network are trained by backpropagation.

We implement LSTM networks for sequence-to-sequence
regression using MATLAB’s Deep Learning Toolbox. The two
hyperparameters for LSTM networks we adjust are the number of
layers and the number of hidden units per layer. We explore hyper-
parameter values between 1 and 3 layers and 8–200 hidden units per
layer. Each network trains for 250 epochs using the Adam algorithm
to minimize the loss function (3).

C. Reservoir computing

Reservoir computing networks are the second RNN we con-
sider here. The key structure is a reservoir of nodes with prescribed
connections capturing complex temporal dynamics.38 Our RC net-
work takes an input of dimension n and outputs a scalar.

As shown in Fig. 5, the reservoir architecture consists of two
couplers and a high dimensional dynamical system. The input-to-
reservoir (I/R) coupler maps the input data to the reservoir, while
the reservoir-to-output (R/O) coupler maps the reservoir state to an
output. Here, both couplers are chosen to be linear mappings. The
I/R coupler uses Win ∈ R

m×n, whose entries are sampled from a uni-
form distribution U(−a, a) for some a > 0, to map the observations
p(t) into the reservoir,

u(t) = Winp(t), (5)

where u(t) is used to update the reservoir state r(t).

The entry rj(t) of the reservoir state r(t) ∈ R
m corresponds

to the jth reservoir node. The reservoir is a directed Erdös–Rényi
network with m × m adjacency matrix A describing connections
between nodes. We denote the spectral radius of A by ρ ∈ R. The
reservoir density is the percentage of nonzero entries in A. The ini-
tial reservoir state r(0) is chosen at random. Within the reservoir, the
reservoir state is updated by r(t + 1t) = tanh(Ar(t) + u(t)). The
reservoir then passes the updated reservoir state r(t + 1t) through
the R/O coupler via q̂(t + τ) = Woutr(t) ∈ R, where Wout ∈ R

1×m

denotes the output weights. The vector Wout is optimized during
training to minimize the least squares error, with an L2 regulariza-
tion term.

We create RC networks using easyesn library in Python.40

As in the case of the LSTM network, our inputs do not include
time delay embedding since the recurrent nature of the RC network
implicitly accounts for the history.

RC has several hyperparameters. We vary the input density or
the portion of nonzero entries in Win between 0.1 and 1. Within
the reservoir, we vary the number of nodes from 100 to 5000 and
the spectral radius ρ of the adjacency matrix A from 0.1 to 1. The
penalization weight associated with the L2 regularization is a hyper-
parameter, varied from 10−5 to 1. Finally, a reservoir computer’s
leaking rate ` determines how frequently the reservoir updates dur-
ing training: `−1 times per time instance t. We also vary the leaking
rate from 0.1 to 1. The optimal value of the hyperparameters for each
dynamical system is discussed in Appendix B.

IV. RESULTS AND DISCUSSION

In this section, we use deep learning to predict extreme events
in three dynamical systems: Rössler (Sec. IV B), FitzHugh–Nagumo
(Sec. IV C), and Kolmogorov flow (Sec. IV D). For each system,
we generate a long-term numerical simulation, which returns the
full state x(t). However, to mimic applications where the full state
is not available, we do not use x(t) directly for training the neural
networks. Instead, we use the full state information x(t) to generate
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FIG. 5. Reservoir computing network with n inputs and 1 output.

the corresponding time series of the observables p(t), as depicted in
Fig. 1.

The first 75% of the observable time series is used for train-
ing the neural network and the remaining 25% is used to test the
trained network. For each system, we quantify the error between
each system’s QoI q and the corresponding neural network pre-
diction q̂ using two measures of accuracy described in Sec. IV A.
For each network structure outlined in Sec. III, we optimize the
hyperparameters for each dynamical system separately. We present
the optimal hyperparameter combinations that we use to train each
neural network structure in Appendix B.

The produced observable time series p(t) only contain round-
off and numerical discretization errors that are negligible. In prac-
tice, however, observations are always polluted with noise. To mimic
the observational noise, we artificially add noise to our synthetic test
data. Noise is added proportionally to each component of the obser-
vation p(t) at four intensities: 0%, 5%, 10%, and 20%. More precisely,
let σi denotes the standard deviation of the time series of the ith
observation pi(t). Then, the corresponding noisy data p̃i(x(t)) are
given by

p̃i(x(t)) = pi(x(t)) + αξi(t), ξi(t) ∼ N (0, σi), (6)

where ξi(t) is a realization of N (0, σi), the normal distribu-
tion with mean 0 and standard deviation σi. The parameter α ∈
{0, 0.05, 0.10, 0.20} controls the noise intensity with α = 0 corre-
sponding to the clean data obtained from numerical simulations.

Figures 6–10 contain our main results. All reported results cor-
respond to the test data. Figure 6 displays samples of the predicted
times series vs their true values. Figure 7 illustrates the predictive
power of the deep learning architectures for each dynamical system.
Figure 9 shows the effect of varying the prediction time τ , and Fig. 10
displays how noise affects prediction accuracy. In Secs. IV B–IV D,
we describe these results in detail for each dynamical system. But

first, in Sec. IV A, we describe two quantities used to measure the
prediction accuracy of the trained neural networks.

A. Quantifying prediction accuracy

In order to quantify the accuracy of our extreme event predic-
tions, we use two measures: normalized root-mean square error and
area under the precision–recall curve. The former simply quanti-
fies the accuracy of time series predictions, while the latter is more
suitable for quantifying the accuracy of extreme event predictions.

We define the normalized root-mean-squared error (NRMSE),

NRMSE =

[
1
K

∑K
k=1 (q(tk + τ) − q̂(tk + τ))

2
]1/2

σq

, (7)

where σq is the standard deviation of the true QoI, {q(tk + τ)}K
k=1.

Note that NRMSE is the ratio of the square root of loss function (3)
and the standard deviation σq. The normalization by σq allows us to
make base comparisons across different dynamical systems.

NRMSE measures the deviation in our predictions from the
true value with no consideration given to extreme events. As
reviewed in Ref. 41, there are measures of accuracy which are better
suited for extreme event prediction. Here, we quantify the accuracy
of extreme event prediction using area under the precision–recall
curve, or area under curve (AUC) for short. Recall that an extreme
event is registered if q > qe, where qe is the extreme event threshold.
As a result, the predicted QoI q̂ may not coincide with q, but as long
as q̂ > q̂e, the extreme event is correctly predicted. Here, q̂e is the
extreme event threshold according to the predicted QoI; in practice,
q̂e is close to the true extreme event threshold qe, but the two do not
necessarily coincide.
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FIG. 6. Close-up views of the time series for each system’s quantity of interest q(t). The blue curves show the true value q(t), while the dashed lines mark the best
prediction q̂(t).

Each prediction q̂ is classified into one of the four ways: 1. True
positive (TP): A true positive corresponds to a successful predic-
tion of a true extreme event, i.e., q > qe and simultaneously q̂ > q̂e.
2. True negative (TN): A true negative corresponds to a correct
prediction that no extreme event will take place, i.e., q < qe and
simultaneously q̂ < q̂e. 3. False positive (FP): A false positive corre-
sponds to the case where an extreme event was predicted but did not
actually occur, i.e., q < qe but q̂ > q̂e. 4. False negative (FN): A false
negative corresponds to the case where an extreme event occurred
but the neural network failed to predict it, i.e., q > qe but q̂ < q̂e.

Precision and recall quantify extreme event prediction accuracy
with regard to these four classifications. These quantities are defined
by

precision(q̂e) =
TP(q̂e)

TP(q̂e) + FP(q̂e)
, (8a)

recall(q̂e) =
TP(q̂e)

TP(q̂e) + FN(q̂e)
. (8b)

For a given prediction threshold q̂e, precision measures the
ratio of successfully predicted extreme events to the total number
of predicted extreme events whereas recall measures the ratio of
successfully predicted extreme events to the total number of true
extreme events. Since extreme events are rare, precision and recall
more accurately capture the prediction skill than TP and TN rates
alone.41–43 In the best case scenario, where no false predictions are
made, both precision and recall are 1.

We combine both these quantities to create the precision–recall
curves, parameterized by the threshold q̂e. Varying the threshold
q̂e allows us to examine how precision and recall change under a
moving goalpost. Note that, if q̂e is very small, most extreme events
will be correctly predicted leading to a large number of TPs, but
at the same time there will be a large number of FPs resulting in
low precision. Conversely, if q̂e is too large, then the number of FN
predictions will be large resulting in low recall. A reliable predic-
tor must have precision and recall close to 1 for a wide range of
prediction thresholds q̂e. One way to quantify this range is to com-
pute the area under the precision–recall curve, or AUC for short.
The AUC is the area the precision–recall curve encompasses in the

Chaos 32, 043112 (2022); doi: 10.1063/5.0077646 32, 043112-9

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 7. Summary of neural network performance for each system with noiseless data. The precision–recall curves (first row) quantify the prediction skill of each network.
The NRMSE plots (second row) quantify the fit of the predicted QoI, with error bars describing the maximum and minimum NRMSE for repeated training of the networks.
The true vs predicted plots (third row) correspond to the best network architecture for each system.

unit square ranging between 0 and 1, with more skillful predictors
having an AUC closer to 1. The first row of Fig. 7 provides examples
of precision–recall curves.

B. Rössler system

The Rössler system is the least challenging system dis-
cussed here due to its lower dimensionality and relatively sim-
pler dynamics. This system consists of three state variables
x = (x1, x2, x3), where the coordinate x3 exhibits chaotic bursts
(see Fig. 6). Therefore, we take q = x3 as the quantity of interest
with the extreme event threshold qe = 10. The other two coordi-
nates are used as observables, p1 = x1 and p2 = x2. We refer to

Subsection 1 of Appendix A for a detailed description of the
Rössler system. In Subsection 1 of Appendix B, we discuss optimal
hyperparameters used for each network when trained with Rössler
data.

To generate training and testing data, we integrate the sys-
tem for 500 time units with the results recorded every 1t = 0.05.
Increasing the sampling time to 1t = 0.5 does not significantly alter
the reported results, indicating robustness to moderate changes to
the sampling rate. However, increasing the sampling rate further will
eventually reduce the prediction skill of the networks across all three
dynamical systems. In Rössler, for instance, increasing the sampling
time beyond 1t = 2 led to a significant drop in the corresponding
AUC.
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FIG. 8. AUC for the Rössler system as the number of extreme events in the
training data increases.

The amount of required training data is not a priori known.
However, Fig. 8 gives an indication as to when enough training
data from simulations are obtained. As the number of extreme
events in the training data increases, the AUC initially increases
rapidly. After the training data are long enough to contain about
100 extreme events, the AUC plateaus near 1, indicating that enough
training data have been gathered, and therefore, we stop the numer-
ical simulations. We also observed a similar plateauing behavior for
the FitzHugh–Nagumo system and the Komogorov flow, although
the required number of extreme events before reaching the plateau
depends on the system.

We first discuss the neural network predictions in the absence
of observational noise. As shown in the first column of Fig. 7, all
three networks generate nearly exact predictions on testing data
in the absence of noise, each with an AUC above 0.98. The RC

network performs slightly worse at an AUC of 0.98 whereas the AUC
for Feedforward and LSTM networks is nearly equal to 1.00.

Training the network weights is not generally a convex opti-
mization problem. Therefore, retraining the network may lead to
different results. In order to quantify the reproducibility of the
results, we retrain each network 10 times with different initial net-
work weights. The error bars in the NRMSE plot within Fig. 7
correspond to the minimum and maximum value over 10 repeated
training of each network. The error bars are relatively small across all
systems and all networks, demonstrating robustness under retrain-
ing. For Rössler, the feedforward network has the best average
NRMSE at 0.003 ± 0.0002. LSTM networks perform slightly worse
with an NMRSE within 0.098 ± 0.0109. Finally, the RC network has
the largest NRMSE within the range 0.248 ± 0.040.

We also quantify the prediction skill as a function of the pre-
diction time τ . Because of sensitivity to initial conditions, the pre-
dictability horizon of a chaotic system is always limited and often
scales inversely with the leading Lyapunov exponent of the system.
This limitation also applies to extreme event predictions.29 How-
ever, as we explained in Sec. IV A, prediction of extreme events is
a more forgiving task as compared to time series prediction. For the
Rössler system, increasing the prediction time τ shows an expected
decrease in accuracy for all networks, as shown in Fig. 9. Feedfor-
ward networks maintain the AUC at nearly 1 until τ = 20, while the
LSTM network maintains the AUC at nearly 1 until τ = 12. The RC
networks perform worse than FF and LSTM networks as τ increases.

Next, we examine the effect of observational noise on the pre-
dictions. Note that, although observations are always polluted with
noise, the training data in our framework are gathered off-line
using numerical simulations with no significant noise (see Fig. 1).
Nonetheless, noise can be artificially added to the simulation data
to mimic the observational noise. One may argue that the networks
should be trained on clean simulation data (with no artificial noise)
and hope that the network will perform well under small to moder-
ate amounts of observational noise. In the following, we show that
this approach is ill-advised since adding some artificial noise in the
training phase often improves the network performance.

To this end, we first consider the case where no noise is added
to the training data and only the testing data are polluted with

FIG. 9. AUC as a function of the prediction time τ .
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FIG. 10. Effect of noise on predictions. Each panel shows how the area under the precision–recall curve (AUC) changes as the noise intensity increases. Noise is added
only to the testing data.

noise as described in Eq. (6). As shown in Fig. 10, we see notable
differences in accuracy among the network architectures. LSTM
networks consistently maintain their predictive power with the AUC
decreasing from nearly 1.00 to 0.98 as the noise intensity increases
from 0% to 20%. Feedforward networks perform similarly for 0%
and 5% noise; but as the noise intensity increases to 20%, the AUC
decreases to 0.7. Noise affects the RC network the most, with the
AUC dropping to 0.79 for 10% noise. As the noise intensity reaches
20%, the AUC of RC decreases significantly to 0.24.

The detrimental effect of noise is more pronounced for the
FitzHugh–Nagumo system. We show in Sec. IV C that adding artifi-
cial noise to the training data, as well as the testing data, significantly
improves the prediction results (see Fig. 11).

C. FitzHugh–Nagumo system

The FitzHugh–Nagumo system is a network of chaotic oscil-
lators composed of coupled units. The coordinates of the ith unit
are denoted with (vi, wi). Here, we consider a model with 101 com-
pletely coupled units resulting in a 202 dimensional system of ODEs.
We assume that only the coordinates of the first unit are observ-
able so that p1 = v1 and p2 = w1. The quantity of interest is the
average of the vi coordinates, q =

(∑n
i=1 vi

)
/n. The FHN oscillators

occasionally synchronize so that the vi coordinates align, leading to
intermittent bursts in the average q (see Fig. 6). The extreme event
threshold is qe = 0.3.

We integrate the FHN system for 2 × 105 time units with the
results saved every 1t = 1 time unit. The FHN model is described
in detail in Subsection 2 of Appendix A. The optimal hyperparame-
ters for training the neural networks are detailed in Subsection 2 of
Appendix B.

Examining the second column of Fig. 7, the precision–recall
curves lie in the top right yielding large AUC values. The FF network
performs best with an AUC of 0.99 while the LSTM network had
a comparable AUC of 0.98. The reservoir network has the smallest
AUC of 0.93. The scatterplot lies close to the diagonal line indicat-
ing the predicted quantity of interest closely matches its true value,
although the predictions are not as accurate as the Rössler system.

This is to be expected since FHN is higher dimensional and only
two out of its 202 coordinates are observed.

With multiple network trainings, the FF network performs the
best with NRSME at 0.059 ± 0.014. The LSTM network has the
largest variability in NRMSE which lies in 0.188 ± 0.039. Although
the reservoir network has the largest NRMSE, the results have the
most consistency, with NRMSE within 0.312 ± 0.09. Recall that, for
the Rössler system, the FF and LSTM networks were the most robust
under retraining. In contrast, for the FHN system, the FF and RC
networks are the most robust.

As shown in Fig. 9, the prediction accuracy decreases as predic-
tion time increases. However, there is a significant loss in predictive
power for the LSTM and RC networks, with the AUC declining to
near 0 for the LSTM and RC networks at τ = 25. In contrast, the
FF network maintains accurate predictions, with an AUC of 0.97 for
the prediction time τ = 30.

For the FHN system, an interesting phenomenon takes place
when adding noise to the testing data. As shown in Fig. 10, the
results are extremely sensitive to noise. For instance, for the FF net-
work, the AUC is 0.99 when using noise-free testing data; but even
adding 5% noise to the testing data, the AUC drops to 0.01. While
the LSTM network appears slightly more robust to noise, its predic-
tions on data polluted with 20% noise are still inaccurate, with the
AUC dropping to around 0.25. Contrast this with the LSTM results
on the Rössler system where the AUC remains close to 1 even when
20% noise is added to the testing data.

Recall that the results reported in Fig. 10 correspond to a
network trained on noise-free data and then tested on noisy obser-
vational inputs. Interestingly, if we add artificial noise to the training
data, the prediction accuracy of all networks increases significantly.
Figure 11 demonstrates the effect of training noise on predicting the
quantity of interest q. With 0% training noise, the predicted quantity
of interest q̂(t) deviates drastically from the true value q(t) (the left
panel of Fig. 11). In contrast, after adding 20% noise to the training
data, the predicted quantity of interest closely resembles its true time
series (see the middle panel of Fig. 11). This is also reflected in the
AUC as shown in the right panel of Fig. 11 where AUC stays close
to 1 as the noise intensity in the testing data increases. Contrast this
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FIG. 11. Effect of training noise on predictions for the FitzHugh–Nagumo system. The feedforward network is trained with 0% training noise (the left panel) and 20% training
noise (middle and right panels). The figures show the test data containing 5% noise. The networks trained with noisy data are more robust to noise than networks trained
with noise-less data; contrast the AUC to the corresponding panel of Fig. 10.

with the corresponding Fig. 10 where no artificial noise was added
to the training data.

In summary, adding artificial noise to the training data leads
to more accurate extreme event predictions if the real-time observa-
tional measurements (i.e., testing data) are noisy. We have made a
similar observation for the Rössler system and the Kolmogorov flow
(not shown here for brevity). This is in line with previous studies
which find that adding noise to the data prevents overfitting.44,45

D. Kolmogorov flow

In this section, we finally consider the Kolmogorov flow,
a particular type of turbulent fluid flow with periodic bound-
ary conditions and sinusoidal forcing. Solving the corresponding
Navier–Stokes equations, we generate the full simulation data that
consists of the velocity field u(x, t). The equations are numeri-
cally integrated for 105 time units and the velocity field is saved
on a uniform 128 × 128 spatial grid at equispaced time intervals
1t = 0.2. A detailed description of the Kolmogorov flow is provided
in Subsection 3 of Appendix A.

It is well-known that the energy dissipation rate D(t), i.e.,
the spatial average of the vorticity field, exhibits extreme events in
the form of intermittent bursts32 (see Fig. 6). Therefore, we take the
quantity of interest to be the energy dissipation rate, q = D.

We consider two sets of neural network inputs for the Kol-
mogorov flow. First, we predict extreme events using the Fourier
mode a(1, 0) ∈ C, where a(k) denotes the Fourier mode of the
flow corresponding to the wave number k. Using a variational
method, Farazmand and Sapsis33 discovered that the Fourier mode
a(1, 0) constitutes a precursor to extreme events in the Kolmogorov
flow. More precisely, the magnitude |a(1, 0)| of this mode decreases
shortly before a burst in the energy dissipation D is observed. There-
fore, we expect that using this mode as the observable will enable
accurate prediction of extreme events in this flow. Consequently, we
take the first set of observable to be the real and imaginary parts of
this Fourier mode, i.e., p1 = Re[a(1, 0)] and p2 = Im[a(1, 0)]. The
results with Fourier observables are discussed in Sec. IV D 1.

As a second set of observables, we consider discrete measure-
ments of the vorticity field ω(x, t) = ∇ × u(x, t). More precisely,

we consider the vorticity field evaluated on a uniform 3 × 3 grid
at points xi ∈ { π

3
, π , 5π

3
} × { π

3
, π , 5π

3
}. Then, the observables are

given by pi(t) = ω(xi, t), i = 1, 2, . . . , 9. The results with vorticity
observables are discussed in Sec. IV D 2.

As we show below, the neural networks trained with Fourier
observables vastly outperform those trained with vorticity measure-
ments. This is in spite of the fact that Fourier mode data are of
smaller dimension (two time series) than the vorticity measure-
ments (nine time series), highlighting the importance of the input
data for deep learning of extreme events. The optimal hyperparam-
eters for training the neural networks are detailed in Subsection 3 of
Appendix B.

1. Fourier mode

As shown in Fig. 7, all network structures perform well with
the real and imaginary parts of the Fourier mode a(1, 0) as input.
The performance of the networks is comparable with their AUCs
between 0.986 and 0.988. Nonetheless, the FF neural network
slightly outperforms the LSTM and RC networks.

The FF network also marginally outperforms the other two
networks when performance is measured in terms of NRMSE. The
NRMSE for the FF network is 0.240, while the RC network had an
error of 0.251 and the LSTM network had an error of 0.267. For
all networks, the NRMSE varies insignificantly over repeated train-
ing, with variations of less than 0.01. This implies that the learned
networks are robust with respect to retraining.

Keeping network structures fixed, we show the effect of increas-
ing the prediction time τ in Fig. 9. All network architectures perform
similarly as τ increases, retaining strong predictive power up to
τ = 3, where the AUC is approximately 0.9 for each network. As
τ increases further above 5 time units, the predictive power drops
off significantly, with the AUC reducing to around 0.5.

In Fig. 10, we analyze the effect of noisy input data on network
performance. The LSTM network is remarkably robust to noise,
returning AUC values for 20% noise which are comparable to those
for noise-free data. The performance of RC network deteriorates
slightly as the noise intensity increases. As in the case of Rössler
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and FHN systems, the FF network performs significantly worse with
noisy input data.

In summary, when supplied with the Fourier input data, all
network structures produce accurate predictions for moderate pre-
diction times (τ < 5) and moderate noise intensity (less than 10%).
This should not be surprising since the Fourier mode a(1, 0) is
known to act as a precursor to extreme events in the Kolmogorov
flow.33 In fact, Farazmand and Sapsis33 were able to predict extreme
events in this system by tracking the modulus |a(1, 0)| without using
a deep learning method.

However, measuring the Fourier mode a(1, 0) is not straight-
forward in practice; to compute the Fourier transform, the flow must
be measured on a dense spatial grid. A more realistic set of observ-
ables is velocity or vorticity measurements on a sparse spatial grid.
As we see in Sec. IV D 2, the prediction accuracy deteriorates sig-
nificantly if such realistic input data are used for training the neural
networks.

2. Vorticity samples

Kolmogorov flow with vorticity sampling input data is the most
difficult system-data combination we consider. As a result, our net-
works predict extreme events less accurately as compared to other
systems.

As shown in Fig. 7, when supplied with the vorticity as the
input data, the RC network yields the best predictions in terms of
maximal AUC and minimal NRMSE. Reservoir computing gives
an AUC of 0.787, whereas the LSTM network has an AUC of
0.706. The feedforward network performs the worst with an AUC
of 0.682. Note that this is in contrast with previous systems where
the FF network outperformed RC when tested on noiseless input
data.

Similarly, conclusions are drawn when comparing perfor-
mance based on NRMSE. RC performs best with a mean NRMSE
of 0.552, relative to 0.597 for LSTM networks and 0.607 for FF net-
works. We see that LSTM network exhibits the most variation under
multiple training, differing from the mean NRMSE by 0.040 between
different trainings. NRMSE varies significantly less for FF and RC
networks, on the order of 10−4.

Figure 9 shows the prediction performance, measured by
AUC, as the prediction time τ increases from τ = 0 to τ = 10.
As expected, larger prediction times lead to lower accuracy. The
prediction accuracies decline at a similar rate across networks.

As shown in Fig. 10, when noise is added to the test data,
LSTM and RC networks perform significantly better than the FF
network. As in the previous systems, the LSTM network is quite
robust to noise, with the AUC barely dropping even when the noise
intensity increases to 20%. In the Kolmogorov flow with the vor-
ticity input, the RC network is also equally robust to noise. In
contrast, the AUC drops sharply for the FF network as the noise
intensity increases. We find that adding noise to the training data
slightly improves the performance of the FF network on noisy test
data (not shown here for brevity). Recall that a similar improve-
ment was observed for the FHN system (see Fig. 11); however, the
improvement for the Kolmogorov flow is not as drastic as the FHN
system.

V. SUMMARY AND CONCLUSIONS

Using deep learning to predict extreme events remains chal-
lenging due to the small data problem. Even large amounts of
observational data contain few extreme events to sufficiently train
a neural network. Here, we investigated whether training on numer-
ically generated data, with sufficient samples from extreme events,
can overcome this obstacle. In addition, to mimic the practical sit-
uation where observable quantities are limited, we did not use the
entire simulation data for training and instead used a small subset of
the available time series data as network inputs.

To examine this framework, we conducted a thorough study
on three dynamical systems (Rösller system, FitzHugh–Nagumo
model, and Kolmogorov flow) and three standard machine learning
architectures (Feedforward, long short-term memory, and reservoir
computing networks), resulting in nine total combinations.

As summarized in Table II, there is no universal answer: no
network architecture consistently outperforms others across differ-
ent dynamical systems. Nonetheless, some broad conclusions can
be drawn from our analysis. For instance, LSTM networks are most
robust to observational noise, i.e., they largely maintain their accu-
racy of extreme event prediction when a moderate amount of noise
is added to the observational data even if the training data (obtained
from simulations) have no significant noise. In contrast, FF neural
networks are most sensitive to observational noise, with their predic-
tion accuracy deteriorating rapidly as the noise intensity increases.
Note that although RC works best for the Kolmogorov flow with
vorticity inputs, its performance is not significantly better than the
corresponding LSTM network (see Fig. 10).

Furthermore, LSTM networks performed well with minimal
fine-tuning of hyperparameters. For LSTM networks, we only had
to fine-tune the number of layers and units per layer while for FF
and RC networks several hyperparameters had to be fine-tuned to
achieve comparable prediction accuracy.

We also find that adding artificial noise to the training data
consistently improves the predictions. Recall that our training data
are provided by numerical simulations, which contain no significant
noise (other than round-off and numerical discretization errors).
However, one can add some artificial noise to the simulation data
to mimic the observational noise. Adding noise to the training data
improved the performance of all networks across all systems. This
improvement was specifically significant for the FF neural network
trained on the FHN data. This observation is in line with pre-
vious studies, which find that adding noise to the data prevents
overfitting.44,45

Another important observation is the sensitivity of the results
to the type of observations, i.e., network inputs. This point is clearly

TABLE II. The best performing machine learning architecture as measured by the

area under the precision–recall curve (or AUC). FHN stands for the FitzHugh–Nagumo

model and KF stands for the Kolmogorov flow.

Rössler FHN KF: Fourier KF: Vorticity

Noiseless data FF FF FF, LSTM, RC RC
Noisy data LSTM LSTM LSTM RC
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demonstrated on the Kolmogorov flow where extreme events are
predicted with high accuracy if the input data are obtained from the
Fourier mode a(1, 0). In contrast, a large number of false positive
and false negative predictions are made if the input data consists of
sparse vorticity measurements. Using a variational method, Faraz-
mand and Sapsis33 had previously found the Fourier mode a(1, 0)
to play an important role in the formation of extreme events in the
Kolmogorov flow. Therefore, when possible, it is advised to discover
precursors to extreme events and train the neural networks using
these precursors. Discovering precursors to extreme events is itself
challenging and remains the subject of ongoing research.2

On a related note, assume that a large number of observable
time series of the system are available. To maintain a reasonable
training cost, one needs to select a subset of the observables as input
data. Currently, a concrete method to select the optimal subset of
the observed time series, ensuring maximal extreme event predic-
tion skill, is missing. More theoretical work in this direction is highly
desirable.

The performance of a deep neural network is sensitive to its
hyperparameters, such as the number of layers, nodes, and learn-
ing rate. Here, we determined the hyperparameters manually using
extensive trial-and-error searches. More systematic methods, such
as grid search or random search,46 can be used to determine the
optimal hyperparameters.

Finally, the length of training data was here determined in an
ad hoc manner. Our future theoretical work will focus on deriving a
lower bound on the number of required extreme events in the train-
ing data, which guarantees accurate prediction of upcoming extreme
events in the testing data.
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APPENDIX A: GOVERNING EQUATIONS

1. Rössler system

The Rössler system is defined by the ODEs,

ẋ1 = −x2 − x3,

ẋ2 = x1 + ax2,

ẋ3 = b + x3(x1 − c),

(A1)

with a = 0.2, b = 0.2, and c = 5.7. This system exhibits a chaotic
attractor and intermittent extreme event bursts in the x3 component
(see Fig. 6). Therefore, we consider the quantity of interest,

q(x(t)) = x3(t) (A2)

and the partial observations p1(x(t)) = x1(t), p2(x(t)) = x2(t). The
extreme event threshold is qe = 10.

To generate trajectory data, we perform numerical integra-
tion using the Runge–Kutta method, as implemented in MATLAB’s
ode45. We set the initial condition as (0, 1, 0.1) and integrate the
system for 500 time units. The results are saved every 1t = 0.05 time
units.

2. FitzHugh–Nagumo system

The FitzHugh–Nagumo system consists of n excitable units
(vi, wi), i = 1, . . . , n. These pairs can be interpreted as neurons,
where vi is the voltage and wi is a recovery term. The dynamics are
described by a system of 2n differential equations,

v̇i = vi(ai − vi)(vi − 1) − wi + k

n∑

j=1

Aij(vj − vi),

ẇi = bivi − ciwi.

(A3)

The full state is described by x(t) = [v1(t), w1(t), . . . , vn(t), wn(t)].
Parameters ai, bi, and ci describe the dynamics of each unit inter-
nally, k is the coupling strength among units, and Aij describes
the coupling connections, where Aij = Aji = 1 indicates units i and
j are coupled. We choose the parameters in case B of Ref. 31,
which shows chaotic behavior with extreme events. This system has
n = 101 completely coupled units, meaning Aij = 1, ∀i, j. The
parameters are ai = −0.026 51 and ci = 0.02 for all units while
bi = 0.006 + 0.008(i − 1)/(n − 1). These choices, especially the
coupling strength k = 0.001 28, are further discussed by Feudel and
co-workers.47

The quantity of interest is the average voltage of all the nodes,

q(x(t)) =
1

n

n∑

i=1

vi(t). (A4)

The units of FHN oscillator occasionally synchronize, leading to
intermittent bursts in the average q. We choose an extreme event
threshold qe = 0.3. We use p1(x(t)) = v1(t), p2(x(t)) = w1(t) as
observables, but other units give comparable performance.

We use a Runge–Kutta method in MATLAB’s ode45 to
numerically integrate the FHN system for 2 × 105 time units and
save the results every 1t = 1 time units. We discard the first
100 time units as transient data from the initial condition (vi, wi)

= (0.1, 0.1), i = 1, . . . , 101.

3. Kolmogorov flow

We consider the Navier–Stokes equations for incompressible
fluid flow,

∂tu + u · ∇u = −∇p + ν1u + F,

∇ · u = 0,
(A5)
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where u(x, t) is the velocity field, p(x, t) is the pressure field, ν is the
kinematic viscosity, and F is the external forcing function. We spec-
ify the Kolmogorov flow as a specific two-dimensional realization
of the Navier–Stokes equations. The domain is a doubly-periodic
box of size 2π × 2π . A turbulent regime is chosen by using the
Reynolds number Re = ν−1 = 40. The external forcing function is
the sinusoidal shearing function, F(x, y) = sin(4y)e1, where e1 is
the standard basis vector in the x direction in R

2. We numeri-
cally integrate the Kolmogorov flow using a Fourier pseuedospectral
method in space with 27 modes in each dimension and a fourth-
order Runge–Kutta scheme for time stepping. The flow is evolved
for 105 time units and results are saved every 1t = 0.2 time units.
We start the simulation from a random initial condition and discard
the first 20 time units of data as transients.

Here, the quantity of interest is the energy dissipation rate,

q(u) =
ν

|�|

∫

�

|∇u|2 dx, (A6)

where |�| = (2π)2 is the area of the spatial domain � = [0, 2π]
× [0, 2π]. It is known that the Kolmogorov flow exhibits intermit-
tent bursts where the energy dissipation rate q increases to several
standard deviations above its mean value32 (see Fig. 6). We use the
extreme event threshold qe = 0.194, which coincides with the mean
plus twice the standard deviation of energy dissipation rate.

It has been recently discovered that these extreme events are
instigated by the energy transfer between particular Fourier modes.33

Consider the Fourier series expansion of the velocity field,

u(x, t) =
∑

k∈Z2

a(k, t)

|k|2

(
ky

−kx

)
eîk·x, (A7)

where k = (kx, ky) denotes the wave number and a(k, t) ∈ C denotes
the corresponding Fourier coefficient. Note that the incompressibil-
ity of the velocity field (∇ · u = 0) is used to reduce the Fourier
coefficients to scalars. Since the velocity is real-valued, we have
a(−k, t) = −a(k, t)∗.

Using a variational method, Farazmand and Sapsis33 showed
that the extreme energy dissipation events are preceeded by an
energy transfer from mode a(1, 0, t) to the mode a(0, 4, t). Moti-
vated by this work, we use the real and imaginary parts of a(1, 0, t)
as the first set of observables for the Kolmogorov flow. More pre-
cisely, the Fourier observables are p1(t) = Re[a(1, 0, t)] and p2(t)
= Im[a(1, 0, t)].

A second set of observables are obtained through the vortic-
ity field ω = (∇ × u) · e3, where e3 is the unit vector normal to
the planar fluid domain. We evaluate the vorticity field at nine dis-
tinct spatial locations xi ∈ { π

3
, π , 5π

3
} × { π

3
, π , 5π

3
}, leading to nine

observables pi(t) = ω(xi, t).

APPENDIX B: NETWORK ARCHITECTURES

In this section, we discuss the optimal parameters found for
each of our example systems and the neural networks. The hyperpa-
rameters are found manually by trial-and-error. Therefore, the word
“optimal” is used loosely; it only refers to the optimal combination
of hyperparameters we investigated, not optimal among all possi-
ble combinations. All networks were optimized on noise-free data

before exploring network resilience to noise in training and test-
ing data. All hyperparameters not mentioned here were set to the
default values (Matlab default values for FF and LSTM networks,
and easyesn library for RC).

1. Rössler system

The best performing FF network architecture for the Rössler
system consists of thee layers with six nodes each with a tanh activa-
tion function. The architecture used m = 3 time delays, s = 1 time
unit apart. These time delays improve the AUC and NRMSE of the
network.

The optimal LSTM architecture consists of 2 layers with 55
nodes per layer. The optimal RC network contains 850 nodes in
the reservoir. However, with 5% testing noise, the network AUC
quickly decreased to 0.0359, suggesting that the network is overfit-
ted. Re-optimizing the RC network with noisy data yields a drasti-
cally different optimal network: 50 nodes in the reservoir. Retraining
the network on noiseless data with 50 nodes shows that at 0% testing
noise the AUC is 0.9811, but the predictive power remains reason-
able for higher levels of noise. At 5%, the AUC decreases to 0.9623.
The optimal spectral radius is ρ = 0.3, and the leaking rate is ` = 1.
The optimal input density is 1, the reservoir density is 0.2, and the
regularization weight is 10−4.

2. FitzHugh–Nagumo system

The optimal FF network architecture is three layers with eight
nodes, each with the tanh activation function. The architecture used
m = 2 time delays with s = 2 time unit. However, this architecture
is susceptible to noise in the testing data. We address the overfitting
by adding noise to the training data. When varying the magnitude of
noise in the training data, we find that increasing noise in the train-
ing data notably increases performance with high noise but slightly
decreases performance with low noise. We choose to favor robust-
ness and add relatively high 20% noise to the training data. Other
alterations to neural network training such as reducing the number
of epochs trained and adding a regularization term that penalized
large weights did not produce significant improvements.

The LSTM network architecture of 2 layers with 64 hidden
units each was found to be optimal. The time it takes to train
the LSTM networks is much longer than FF and RC networks, as
expected.

We optimized a wider range of parameters for the RC net-
works due to poor performance with default parameters. The opti-
mal architecture used 500 nodes with spectral radius ρ = 0.9 and
leaking rate ` = 0.3. The input density is 1 with reservoir den-
sity 0.9 and regularization weight 10−4. The spectral radius had the
most significant effect on performance in the parameter ranges we
examined.

3. Kolmogorov flow

a. Fourier mode

The best performing FF network architecture uses three layers,
each with four nodes and the tanh activation function. We augment
input data with m = 8 time delays, taken at time steps of s = 0.2
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time units. The best performing LSTM network has 3 layers, each
with 32 nodes.

The best performing RC network has 600 nodes and a spec-
tral radius of ρ = 0.9 with leaking rate ` = 1. The network also
uses an input density of 1, a reservoir density of ρ = 0.2, and a
regularization weight of 0.1.

b. Vorticity samples

The best performing FF neural network has four layers with
eight nodes per layer, the tanh activation function, and m = 12 time
delays each s = 0.2 time units apart. The optimal FF network tak-
ing in vorticity samples requires more layers and nodes because the
vorticity data are higher dimensional than the Fourier modes.

The LSTM network with 2 layers and 16 nodes per layer per-
formed best. Using more than 16 nodes per layer increases computa-
tional cost without improving the predictions. In fact, networks with
2 LSTM layers of 64 or more nodes per layer exhibit signs of overfit-
ting. We added dropout layers to try to fix this issue, but prediction
accuracy, as measured by NRMSE and AUC, did not improve when
measured on testing data.

The best RC network has 1000 nodes, spectral radius ρ = 0.2,
and leaking rate ` = 0.3. The optimal input density is 0.3 with a
reservoir density of 0.2 and a regularization weight of 10−4.
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