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ABSTRACT 
 
 

Monrreal, Juan Lorenzo, 3D Reconstruction of Close Range Objects Using Free and Open 

Source Software and Raspberry Pi Technologies. Master of Science (MS), December, 2015, 72 

pp., 2 tables, 37 figures, references, 29 titles. 

Existing 3D rendering open source software along with Raspberry Pi technology can be 

used to create an affordable method and workflow for time efficient, accurate and quality scans 

for 3D printing.  The emergence of technology spurs a technological community working to 

progress in a collaborative effort.  This brings a potential to the possibility of efficient and 

economical solutions to emerging problems, in this case, the ability to render three dimensional 

scans using free and open source software as well as Raspberry Pi technology.  The focus of this 

paper will be divided into three different aspects including the background needed to present the 

role that photogrammetry plays, the development of a software using Python along with open 

source software, and finally its collaboration with Raspberry Pi using networking techniques to 

create the final 3D render.  As with all technology, the possibility for improvement will be 

discussed.
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CHAPTER I 
 
 

INTRODUCTION 
 

 
 The field of 3D printing is quickly growing and with it the methods of scanning objects 

for replication or modification.  Existing 3D scanners are not very efficient because of limitation 

of range and time of scanning. To try and alleviate this problem we may look to the field of 

photogrammetry as an alternative method.  In order understand its possible contribution, we must 

first look at what photogrammetry constitutes. 

  The fundamental principle used by photogrammetry is triangulation. By taking 

photographs from different locations, so-called "lines of sight" can be developed from each 

camera to points on the object. The intersection of the different lines of sight creates points in 

space called a “point cloud” which outlines the three dimensional object. By using this method, 

we are able to cut down on scan time by using a multitude of cameras.  Once the images have 

been acquired from different angles, we are then able to stich them together using previously 

developed software that looks at similarities in the photographs to accurately stitch the 

photographs together.  One of the more popular software currently in existence is 123Catch from 

Autodesk.  This software allows you to upload a number of photos then uses cloud computing to 

generate a three dimensional stich of the photographs.  Due to the fact that it is not open source, 

there is only so much you can do before you run into limitations that restrict the ability for an 

accurate replication (Bartos, Pukanska, Sarova 6).  The same goes for other similar software. It
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is at this point that we look to open source software to give us structure and guidance without 

limitation. 

 Once the point cloud has been acquired, the points must be accurately connected to create 

a mesh that correlates with the original object.  At this point we may use software such as 

MeshLab.  MeshLab is an open source system for the processing and editing of unstructured 3D 

triangular meshes.  The system is aimed at helping the processing of the typical not-so-small 

unstructured models arising in 3D scanning.  It provides a set of tools for editing, cleaning, 

healing, inspecting, rendering and converting these kind of meshes (MeshLab 3).  

 The final aspect of creating the three dimensional object is the texturizing and coloring 

for accurately replication.  Blender will cover this aspect of the workflow.  Blender is a free and 

open source 3D animation suite. It supports the entirety of the 3D pipeline—modeling, rigging, 

animation, simulation, rendering, compositing and motion tracking, even video editing and game 

creation (Beginning Blender). Users who may reach an advanced level of comfort with the 

software use Blender’s API for Python scripting to customize the application and write 

specialized tools. 

 Once the technical aspect of how photogrammetry and open source software will be used 

in conjunction is understood, it may be worthwhile to look at the hardware or physical aspect.  In 

order to reduce the cost of a multi-camera system, Raspberry Pi cameras will be networked to 

simultaneously capture images from different angles of the object.  The idea for Raspberry Pi 

first came around with the motivation of trying to teach computers to students without needing to 

use entire computer systems or traditional settings.  This correlates very much with the 

motivation behind this thesis as the whole point is to find an affordable and efficient method.
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

Vectors and Space 

In order to understand many of the fundamental mathematical concepts which 

encapsulate the field of photogrammetry, it will be necessary to take a step back into more basic 

concepts of linear algebra within the scope of matrices for the most part.  We will later see how 

matrices will play a huge part in developing the code as well. 

Since we will be dealing within the scope of a two dimensional as well as three 

dimensional analysis, it is important to understand the notation that will be used from this point 

on as well.  ��
 will be used to represent the two dimensional real coordinate space.  This refers 

to all the possible real-valued 2-tuple ordered numbers which exist within this space.  Within this 

same context, �� will be used to represent three dimensional space.  To represent vectors within 

these spaces we will be using the notation �� = �	
�� where a,b and c represent some constant used 

to show the magnitude of the vector in the different dimensions.  It will become important later 

to understand different representations of a vector such as with the use of unit vectors.  For 

example the previous vector, x, may also be shown using the representation �� = 	�̂ + 
�̂ + ���. 

The question may become, why so many different representations?  The answer is that it really 

just depends on the application.  For example, within photogrammetry we will be dealing with 
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vector space a lot.  Due to this, we will have to find a way to represent lines within this space 

much more effectively.  This is where line parametrization comes into play.  From earlier or 

more basic math we’ve always known that a line can take the form y=mx + b, but what about 

when dealing with more than two dimensions.  In this case the parametric form allows us to do 

this.  Let us take the next example to show this.     Let’s say that we want to draw the line that 

goes through the points represented by to location vectors where �1������ = �−127 � and �2������ = �034�.  In 

two dimensions this may have been very simple as you would only have x and y coordinates to 

deal with and you would find the difference between the two points to eventually find the slope 

and so on.  Now with three dimensions it is a bit more complicated yet there is a form to do this.  

By using the following form � =  �1������ + !"�1������ − �2������#|! ∈ �& we are saying that the line can be 

found by finding the different between point 1 and two and multiplying by some scalar t and 

adding one of the point vectors, as long as t belongs to the set of real numbers.  This may be 

difficult to see unless we substitute the original vectors into this form.  So if we use the form and 

substitute our points we get � = {�−127 � + ! �−1−13 � |! ∈ �}, already having subtracted P2 form P1.  

This then produces the parametric form of the line x=-1-t, y=2-t, and z=7+3t which allows us to 

find points along this line in three dimensions.   

As we move further towards some of the more specific aspects matrix manipulation and 

characteristics with respect to photogrammetry we must also understand the subject of linear 

subspaces. We may start this discussion by first understanding what a subspace is.  We may look 

for example at how a V may be subspace of �). This is a way of generalizing that V belongs to 

the set of real numbers in n number of dimensions.  There are three basic conditions that must be 

met in order for V to be a subspace of �).  The first is that V must contain a zero vector.  The 



5 
 

second condition says that for any vector in V we should be able to multiply it by some scalar 

and get another vector in V.  This is known as closure under scalar multiplication.  The final 

condition says that the sum of any two vectors in V should be another vector in V.  This is 

known as closure under addition.  These conditions prove that V really is a subset as a subset 

should be bound by certain rules that are true for all values within that set.  This will come into 

play further when we look at finding epipolar lines which are bound by common factors.  It is 

important to note that spans can also be subspaces of the defined space as long as they follow the 

three previously defined rules. 

At this point it may be worth reviewing some of the basic mathematical operations as 

later concepts will depend upon understanding of this.  The first is understanding the dot product 

of two vectors.  We can generalize the definition by stating that the dot product of any two 

vectors will be equal to a scalar.  So we can say that 	� ∙ 
�� = �	1⋮	,� ∙ �
1⋮
,� = 	1
1 + ⋯ + 	,
, 

such that this equals a scalar.  To further understand this and other operations the length of a 

vector can be generalized as .|	�|. = +√	1� + 	2� + ⋯ + 	,�.   

It is important to now take some time to talk about the angle between different vectors as 

this will become important when describing the angle between different line describing the same 

object from different angles.  By doing some vector manipulation along with using some of the 

inequality concepts learned from a previous basis it is found that 	� ∙ 
�� = .|	�|. 0.
��.0 cos 4 such 

that ϴ is the angle between vectors a and b. 

As the program will not only deal with vectors as a means of defining our images but the 

multiple view, it is important to also be able to define planes mathematically.  We can start by 

first referring back to what we have always understood to be the algebraic equation of a plane 
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which is Ax+By+Cz=D where any point (x,y,z) that satisfies the condition lies on the plane.  But 

what if we wanted to define it more generally in terms of vectors and space.  In this case we will 

look at how we can define it in terms of a point and normal vector to the plane. In order to 

understand this it must be understood that for a vector to be normal to the plane, it must be 

orthogonal to all other vectors lying on that plane.  So if we think about this, any vector on the 

plane may be found by using any other two points found on the plane.  So for example if we take 

the point x defined by the position vector (x,y,z) and we subtract the point �5 defined by the 

positional vector (�5, 75, 85) we will define the new vector found on the plane as (� − �5, 7 −
75,8 − 85).  So by definition the dot product of the normal vector with this vector should be equal 

to 0, or in other words ,�� ∙ (� − �5, 7 − 75,8 − 85) = 0.  By then distributing this using normal 

vector we get the final equation of the plane to be ,;(� − �5) + ,�(7 − 75) + ,�(8 − 85) = 0.  
By then using any normal vector and point we can now find the equation of the plane that makes 

those two conditions true.  One thing that may not be obvious right away but can be found is that 

the normal vector can also be found from the plane equation.  So where the plane equation is 

given by Ax+By+Cz=D, the normal vector is equal to =�̂ + >�̂ + ?��. 
It is then important to make sure and review the cross product as compared to the dot 

product of vectors. One of the major differences is that the cross product is only defined in ��.  

This becomes very important as that is the space for the most part that we will be dealing with.  

Also, different from the dot product, is the fact that the cross product produces another vector, 

which is orthogonal to the two vectors in question. For example 	� × 
��, where 	� = �	1	2	3� and   


�� = �
1
2
3�, would take the form of �	2
3 − 	3
2	3
1 − 	1
3	1
2 − 	2
1�.  One thing that might prove interesting by 



7 
 

this definition is that according to our previous definition of the dot product, the dot product of 

	� × 
�� with either 	� or 
�� should be equal to zero since they are orthogonal.   

At this point we’d also like to make sure we understand that there is a relationship 

between the angle between two vectors and their cross product in the case that this is what we 

have to work with.  From proof we find that the result is that 0.	� × 
��.0 = 0.	� × 
��.0 AB,4.  This 

proves to be very interesting as it is very similar to the dot product yet we use sine instead of 

cosine which also makes for a good way to remember them.   

We will now start to connect all the previous relationships to produce some other useful 

aspects to know.  It is important to always keep in mind that this will be projected onto the topic 

of photogrammetry as it applies to three dimensional space.  Let us for example look at the 

distance between any given point and a plane.  Now, it is important to keep in mind that although 

an infinite number of distances exist due to the distance to any part of the plane, for this purpose 

we are talking about the minimum distance.  As previously discussed this would be found by the 

perpendicular vector off the plane connecting to that point.  So we can start by either identifying 

a point by its coordinates as "�5,75, 85# or even by its positional vector as ��̂ + 7�̂ + 8��.  Now if 

we identify another point that is on the plane we may start working towards a formula for the 

solution.  So if we have another point whose coordinates are (�;, 7;, 8;), the vector between 

these two points can be found by subtracting their two vectors as previously discussed.  So this 

new vector may be defined as   C� = (�5 − �;)�̂ + (75 − 7;)�̂ + (85 − 8;)��.  The question then 

becomes how does this factors in? Well if we used this vector in conjunction with the distance 

vector formed by the point in question and the plane this would form a right triangle.  The 

formula for the distance would then become D = .C�.�EA4.  This then points to one more 

question, since we don’t know 4, how do we approach a closer solution.  It is here that we start 
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to tie all previous relationships.  If we think about it, the angle between this new vector and C� is 

the same as the angle between the normal vector.  By doing a little manipulation, as follows 

  D = )��F�GHIJ|)��| , we end up with a very familiar relationship.  The numerator is really just the dot 

product of the normal vector and this new vector, so we can rewrite the formula as = )��∙F�|)��|  .  If we 

then proceed one last step and actually follow through with the dot product and magnitude of 

these vectors we get D = KLMNKLOPQRMNQROPSLMNSRO√KTPQTPST .  Looking closely at the previous formula, we 

finally see that the relationship goes right back to the equation of a plane.  So the shortest 

distance between any point and a plane is given by D = KLMPQRMPSLMNU√KTPQTPST .   

All of this then brings us to the topic of matrices.  We will be dealing with many systems 

of equations and need to understand where matrices play a part in optimizing the process for 

solving these systems.  One such optimization is known as Reduced Row Echelon Form.  There 

are a few basic credentials to reducing a system of equations to this form as will be discussed.  

Let’s take for example the following system of equations, 

�; + 2�� + �� + �V = 7�; + 2�� + 2�� − �V = 122�; + 4��  + 6�V = 4 .  This 

system of equations can easily be represented as a matrix by taking into account their 

coefficients as well as their equal values.  So we may start setting up a matrix without losing any 

of the information about the system in the following form, = = [112
2 1 12 2 −14 0 6 | 7124 ].  Without 

going to in depth, and taking into account that we can manipulate each row and add or subtract 

from other rows just as we could with a system of equations we may re duce the matrix to 

Reduced Row Echelon Form which will produce the following rref(=) = [100
2 0 30 1 −20 0 0 |250].  
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From the previous we can now speak about the conventions of reduced row echelon form.  The 

last row has been reduced to all zeros, while the preceding rows have leading one coefficients 

with the rest of their columns filled with zeros.  For convention the leading one’s are further 

trailing as we go down the matrix.  So the question then becomes, how does this help us?  Well 

aside from reducing our system of equations we can rewrite them in another form of the matrix.  

So for the previous example we can say that the remaining system of equations 

�; = 2 − 2�� − 3���� = 5 + 2�V , can be written as [�;�����V
\ = [2050\ + �� [−2100 \ + �V [−3021 \ .  This will eventually 

lead us to see that the solution for this system of equations is actually a plane defined within their 

space, which in this case is four dimensional.  The same would apply for three dimensional space 

and may become even easier as we have less to deal with.  It is important to note that we may 

easily use this reduction to completely solve the system for the values of x, y and z with respect 

to three dimensional space.   

 

  Multiple View Geometry Fundamentals 

From understanding the fundamentals we transition into understanding where matrix 

manipulation comes into play.  Although we will be looking at how to recreate a figure by using 

n-views eventually it will serve us best to first understand how we can do so from the perspective 

of two images. 

For most of the algorithms that follow, the main consideration between two images are 

their point correspondences.  So we consider the fact that there exists �] ↔ �]′ in two different 

images.  From this we also assume that there exits some sort of camera matrix P and P’ which 

share some sort of correspondence between the common three dimensional points Xi. This is to 
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say in other words that there exists some PXi=�] and P’Xi=�]′.  As a result we find that there 

exists a set of points Xi that projects to the initial given data points.  The problem then becomes 

that we do not know the data points nor do we know the camera matrix and so this becomes 

problem under question (Zisserman, 11) 

Looking at the worst case scenario of not knowing the calibration of the cameras we will 

fall into the topic of projective transformations.  The tool that we will be looking at as it is the 

most crucial in the reconstruction of two views is the fundamental matrix.  We can think of the 

fundamental matrix as the constraint to which points in different planes find a correspondence.  

This constraint comes about as a product of the camera centers, the image points and the space 

point of the two views all being on the same plane, or being coplanar (Zisserman, 11).  With this 

being said we can then say that �′]`a�] = 0 should be satisfied.  As will be discussed in more 

detail later, F is 3x3 matrix with a rank of 2. 

Zisserman discusses the method by which we use the fundamental matrix to reconstruct a 

scene is consisting of the following steps: 

1. Given several point correspondences across two view, we will form linear equations 

on the entries of F such that �′]`a�] = 0 is satisfied 

2. Find F as the solution to a set of linear equations 

3. The camera matrices will be computed from F  

4. Once the two camera matrices are known as well as the corresponding image points, 

find the three dimensional point that corresponds to the image points.  This solution is 

known as the triangulation of the points 
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Epipolar Geometry Towards the Fundamental and Camera Matrix 

The geometry that represents the relationship between two different views is known as 

epipolar geometry.  It is only dependent on the cameras’ internal parameters which will 

discussed in further detail later.   Even further, it is the fundamental matrix which is denoted by F 

that encapsulates this geometry.  F is a 3x3 matrix of rank 2.  This basically means that if we 

denote a point as x in one view of the object and x’ in a second view of the object, then these 

points and F should satisfy the relation �′`a� = 0. 

These being the basis it will then be important to understand epipolar geometry and then 

learn to derive the fundamental matrix as this will be essential in 3 dimensional reconstruction.  

The ultimate factor is to show that the cameras can be retrieved using F.   

We will first take a look at how epipolar geometry works and how it is used. In essence it 

refers to the intersection of the image planes having the baseline as their axis.  When we speak of 

the baseline we refer to the line joining the two camera centers.  If we look at the following 

figure let’s consider a few parameters.  Let’s denote X as some point in space which may really 

represent some point on an object.  This point may then be denoted as x and x’ on two 

corresponding image views respectfully.  We may then say that these three points are coplanar 

and denote this as plane π. 

 

Figure 1.  Coplanar Point Across Image Planes. (Zisserman, 240) 
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The question then becomes, how is one image point geometrically related to the other?  

So we can look at it in terms of the fact that the plane π is created by the baseline and the ray 

defined by the point x of the first view, which we will pretend to be the point that we do know.  

As far as the second point, x’, all we know is that it lies on the line l’ which is created by the 

intersection of the second image plane and the common plane π as shown by the following 

figure. 

 

Figure 2.  Common Plane Intersection. (Zisserman, 240) 

To further define the relationship, this newly created line l’ is really just the image in the 

second view of the ray created by x and the camera center c in the first view.  This known as the 

epipolar line corresponding to this x. What this means is that in order to find the corresponding 

point x’ to x, we would not need to search the entire second image plane but rather just the line 

l’.   

There are three basic terms to consider at this point.  The epipole is the point of 

intersection of the baseline with the image plane.  The epipolar plane basically is basically just 

the plane or planes containing the baseline.  Therefore there is an infinite number of epipolar 

planes.  Finally, the epipolar line is the intersection of the epipolar plane with the image plane.  

By these definitions, all epipolar lines intersect at the epipole and therefore corresponding 

epipolar lines on two image planes will help us find corresponding image points. 
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This then brings us to the fundamental matrix which we earlier denoted by F.  The 

following will look at how F is derived by mapping a point to its epipolar line.  As seen earlier 

we know that given a pair of images, for a point x in one image there exists an epipolar line in 

the other image.  We also know that the corresponding point x’ in the second image must lie on 

this epipolar line.  The fundamental matrix will then show that there is a mapping between these 

points and their corresponding epipolar lines l’ (Zisserman, 241). 

We will look at the following figure to understand the first step in creating this 

fundamental matrix.  We can reduce the mapping of a point in one plane to the epipolar line in 

two steps. The first would be to map the point to another on the second plane which should lie on 

the epipolar line.  Once we have decided that this point be a candidate, the same epipolar line 

should connect this candidate point to the epipolar line connecting the two camera centers.   

Let it be considered that there exists some plane π which does not intersect the camera 

centers at all.  The ray created by the first camera center and x intersects the plane at point X as 

shown. If this point X is then transferred to the second image plane through the second camera 

center it is seen that it intersects at a point x’ which now has some sort of relationship to the 

original image point.  This is known as transfer via a plane and thus shows us that for all points 

�] in the first plane there exists points �]’ in the second image plane which are equivalent 

through projection. This shows that there is a 2D homography bc that maps these corresponding 

image points on two different image planes. 
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Figure 3.  2D Homography (Zisserman, 243) 

The second step then shows us how finding the epipolar line will help us derive the 

fundamental matrix.  From the previous it is seen that the epipolar line l’ can be defined as the 

cross product of the epipole and the image point x’ shown as de = fe × �e.  By using some simple 

derivations we can also denote the previous as de = [fe]L�e.  Finally since we earlier showed that 

x’ can be written as bc� therefore we can write the final derivation as de = [fe]Lbc�=Fx where 

F is the fundamental matrix.  Therefore from all of this we get F=[fe]Lbc (Zisserman, 243). 

Zisserman describes the Fundamental matrix as having certain properties as outlined by 

the following table.  For our purposes will further investigate how the fundamental matrix is then 

computed as well as the computation of camera matrices.  It is important for now to note that 

from the fundamental matrix we should be able to extract the camera matrices of the two views.  

In fact if we look at the table as provided by Zisserman, the fundamental matrix corresponding to 

a pair cameras P=[I|0] and P’=[M|m] is equal to [m]xM (Zisserman, 254). 

A Method Towards 3D Reconstruction 

In order to proceed with the reconstruction of an object from two views, a few 

assumptions have to be made.  First is that the two views do contain points correlating to the 

same point in space.  Second, for our purposes we do not know where these points lie in space 

nor do we know the position, orientation or calibration of the cameras.  The task at hand then 
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becomes to find these camera matrices P and P’ as well as the 3D points such that the product of 

the camera matrices against the 3D points should give us their corresponding image points for all 

image points.  

 

Table 1.  Summary of Fundamental Matrix Properties.  (Zisserman, 246) 

We will assume for our purposes that we have an abundance of points that correlate to 

each other as should be the case if properly capturing images from two or more angles.  The 

reconstruction method can then be reduce to first computing the fundamental matrix.  Second we 

should be able to compute the camera matrices from the fundamental matrix.  Finally, for all 

point correspondences we should be able to compute a related point in space.  Although this is a 

simplification of the process, it will hold true for all cases. 
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Computing the Fundamental Matrix 

 Computation of the fundamental matrix comes down to the culmination of several 

algorithms which we will superficially discuss.  The main note to keep in mind is that many of 

these methods include estimation by using a set of point correspondences between two images.  

The main method we will be using is known is the 8-point algorithm for computation of the 

fundamental matrix. 

 The algorithm actually gets its name from how it works.  Since the fundamental matrix is 

3x3 with a determined up to an arbitrary scale factor, we will actually be using 8 equations to 

obtain the solution. The matrix basically works by using the equation of the form [xx’ yx’ x’ xy’ 

yy’ y’ x y 1]f = 0.  With the assumption that we have two points which we may describe as 

x=[xy1]^T and x’ = [x’y’1]^T and a vector f =[F11,F12,F13,F21,F22,F23,F31,F32,F33] which 

holds all the elements of the fundamental matrix F, by stacking eight of the equations in a matrix 

A we get Af = 0. We are then able to use Singular Value Decomposition (SVD) to solve the 

system of equations (Hartley, 581). 

 

Auto-Calibration of Cameras 

 A topic of great importance which umbrellas over what has previously been discussed is 

that of camera calibration.  Many methods of three dimensional reconstruction call for the initial 

calibration of cameras by using special methods or objects for calibration.  Although this may 

prove to be very accurate, it may prove to be inefficient especially when having already acquired 

the images without known the camera parameters or in moments where time was of the essence. 

We will be looking at how calibration can be done simply by using an image sequence rather 

than any tedious methods. 
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  For our purposes, of importance is the fact that the internal parameters of the 

camera or parameter matrix K is the same but unknown for each view.  Each camera in this case 

can then be decomposed as �] = g]h�].!]i, where the calibration matrix will differ for each 

view.  The essence will be the use then of a homography H as previously discussed to find these 

correlations.  Since the cameras for our purposes all have fixed internal parameters then we can 

say that the cameras decompose to �]b = g]�][j|!]].  The approach can then be defined under 

two steps.  The first step in so obtain a projective reconstruction {�] , kl}.  The second step is to 

then determine a homography H form auto-calibration constraints and transform to a metric 

reconstruction {�]b, bN;kl} (Zisserman, 459).   

Principal Component Analysis 

Principal Component Analysis or PCA as we will call it from now on is a very useful tool 

when we are looking at an immense number of data.  For our purposes we have to realize this 

becomes very useful as the point as to get as a sense a cloud as possible yet without losing 

quality.  So in essence we want both quantity and quality.  The main purpose of PCA is to find 

the principal components of data.  So with respect to our three dimensional cloud we can use it to 

get rid of anomalies or data with too much deviation.   

So although we may be used to measuring data conventionally with regards to their 

correlation from the x and y axis, we now find that we can instead reference their principal 

components.  This makes sense as we will be dealing with three dimensions and not necessarily 

consistency.  So better put, principal components are the directions in which the data is the most 

spread out towards or concentrated. A good example is to imagine data set out in the shape of an 

oval.  Depending on how we draw a line across this data we will either have data with more or 
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less of a spread.  So in essence if we draw a line from the two furthest points of the oval we will 

capture more of a spread of the data, making this the principal component. 

The focus then becomes on how to use math to find this principal component.  When we 

get a set of data points they can be deconstructed into eigenvectors and eigenvalues. 

Eigenvectors and values exist in pairs: every eigenvector has a corresponding eigenvalue. An 

eigenvector is basically a directional vector as the principal component is as well. An eigenvalue 

is a number that tells us the amount of variance that there is in the direction of that directional 

vector. By this logic, the eigenvector with the highest eigenvalue is therefore the principal 

component. 

Very important now is to realize that there is not an infinite number of eigenvectors or 

eigenvalues for that matter. In fact the amount of eigenvectors and values that exist equals the 

number of dimensions the data set has. It should be noted that we should keep in mind that we 

will be working in three dimensions. The following example will make more senses of this. 

 

Figure 4.  Example Data Layout 

At the moment the oval is on an x-y axis. x could be one variable of a data set  and y the 

other. These are the two dimensions that the data set currently exists in. From previously we 

need to remember that visually the principal component would be the line splitting this data on 

its longest side as shown by the following: 
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Figure 5.  First Principal Component 

Due to previous logic, since there is only one other dimension that means there is only 

one other principal component, in this case the line perpendicular to the first as shown. This why 

the x and y axis are orthogonal to each other in the first place. So the second eigenvector would 

look like this: 

 

Figure 6.  Perpendicular Principal Components 

The eigenvectors have given us a much more useful axis to frame the data in. We can 

now re-frame the data in these new dimensions which would show the following: 
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Figure 7. New Eigenvector Axis 

The question then becomes, how is this useful?  Although the new axis better concentrates 

our data, there is no real logic to what each axis represents.  Rather its use will be in manipulating 

the data to better suit our needs. One such use especially with huge amounts of data is dimension 

reduction as will be talked about. 

Harris Corner Detection 

In order to construct the fundamental matrix we need the help of the program itself to 

find points of interest as well.  There are several methods towards finding these.  One of the 

more popular ones is the Harris corner detector as presented by Harris and Stephens in 1988.  

The basic principal plays on the shifting changes around a point in order to detect whether it is a 

flat, edge or a corner.  The derivation is as follows as presented by Konstantinos. 

We look at a specific point as (x,y) and consider (∆�, ∆7) as shift in this point.  The auto-

correlation function can then be defined as, 

�(�, 7) = ∑ [j(�], 7]) − j(�] + ∆�,o 7] + ∆7)]^2 

Where I refers to the image function and (�], 7]) refer to the points in the Gaussian window.  A 

Taylor expansion is then used to approximate the image as follows 



21 
 

j(�] + ∆�, 7] + ∆7) ≈  j(�] , 7]) + [jL(�], 7])jR(�], 7])] q∆�∆7r 

Where Ix and Iy refer to the partial derivatives of x and y.  By then substituting the equations 

into each other we then get the following 

�(�, 7) = s(j(�], 7]) −o j(�] , 7]) + [jL(�], 7])jR(�], 7])] q∆�∆7r)� 

= ∑ (−o [jL(�], 7])jR(�], 7])] q∆�∆7r)� 

=∑ (o [jL(�], 7])jR(�], 7])] q∆�∆7r)� 

 = [∆�∆7] � ∑ (jL(�], 7]))�o ∑ jL(�], 7])jR(�], 7])o∑ jL(�], 7])jR(�], 7])o ∑ (jR(�], 7]))�o � q∆�∆7r 

=[∆�∆7]?(�, 7) q∆�∆7r 

where the matrix C(x,y) captures the intensity of the surrounding members of that point.  If we 

then let λ; and λ� be the eigenvalues of matrix C, they will form a rotational description.  From 

this three cases are considered.  If the values are small then that means it is a flat region 

indicating there is little change in direction.  If one value is low and the other is high then there is 

a high contrast indicating that we are looking at an edge.  Finally, if both values are high, this 

indicates there is much change in every direction indicating an edge. 

Scale Invariant Feature Transform 

The problem with the Harris corner detector is that it does not consider the possibility of 

change in scale, which  drives a need for another algorithm.  Commonly known as SIFT, Scale 

Invariant Feature Transform is an algorithm developed by David Lowe in 1999, used to detect 

and describe features within images.  Some of the more common applications include object 

recognition, image stitching, and video tracking.  The basis of this algorithm is that we are able 
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to extract interest points form an object in an image that is able to provide a feature description 

of the object.  These features should then allow us to identify this object in another image even 

when there are other objects.  Some of the driving mechanisms behind the algorithm push for 

being to identify the object regardless of changes in scale, noise and lighting.  To do so, these 

interest points usually lie in areas of extreme contrast such as would be expected for edges. 

The SIFT method starts by first extracting key points from a set of images.  These images 

should all hold some information about the object in question.  In other words, for our purposes, 

all images should contain the objects we are trying to recreating from one angle or another.  The 

extracted points are all stored in a central database.  Theoretically, the object in question should 

be found in another image by comparing each of its features to the database features.  This is 

done by first finding candidate features using the Euclidean distance of their feature vectors.  

From this set of potential matches, a filters is used by using location, scale, and orientation to 

reduce the number another subset.  After all this and the discard of outliers, object matches can 

be agreed upon with a pretty high confidence. 

There are about six steps to the algorithm each with methods about doing this as well aas 

their advantages over many other algorithms. The first is about finding interest points regardless 

of their scale or rotation.  In this case the DoG, or Difference of Gaussian scale space function is 

used.  The key factors behind this are that you can shoot for accuracy and stability while scale 

and rotation do not factor too much into the equation.  The second step speaks to the possibility 

of geometric distortion.  At this point we are able to bring up the subject of past discussion of 

Gaussian blurring.  The basis of this is that you can use this to first blur the image then clean it 

up for resampling.  So, a little distortion should not have an effect on the cleaned up samples.  

The advantage behind this is the ability to avoid overlooking matches due to a little bit of change 
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in geometry.  The next step is key in that we really focus on indexing and matching the key 

points.  A well-known algorithm, nearest neighbor is used.  At this point we will also introduce 

the Best Bin First search algorithm which will be talked about in more detail later in in this 

paper.  These algorithms both play upon their efficiency and speed.  Once we’ve got a good idea 

of which points match, we can begin to cluster them to points of similar interest.  The algorithm 

used for this is known as Hough Transform voting which we will also go further into detail later.  

The final steps speak to the ability to clean up the points by getting rid of outliers as well as 

define our acceptance of the left points.  This is done by first imposing the linear least squares 

method for cleanup and then reducing our success based on Bayesian Probability analysis 

(Lowe).  
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CHAPTER III 
 
 

METHODOLOGY AND FINDINGS 

 

Raspberry Pi Set Up and Configuration 

The initial set up of the Raspberry Pi first required that all necessary hardware be bought 

in order to properly operate the system.  In this case the model to be used would be the 

Raspberry Pi 2 Model B as it is the newest and fastest model.  The following are the specs of the 

model as provided by MCM Electronics which is where the model was specifically ordered 

from.   

 

 

 
 

• 900 MHz quad-core Arm Cortex-
A7 CPU 

• 1 GB RAM 

• 4 USB Ports 

• Full HDMI port 

• Ethernet port 

• 3.5mm audio jack and composite 
video 

• Camera Interface 

• Display Interface 

• Micro SD card slot 

• VideoCore IV 3D graphics core 

Figure 8.  Raspberry Pi Specs. Raspberry Pi 2. Digital image. MCM Electronics. Web 

The basic hardware needed to appropriately operate the Raspberry Pi would be a 

keyboard, mouse, Ethernet cable, HDMI cable, power supply and a Micro SD card. For the 
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purpose of my initiative I also ordered a camera module made specifically for this product.  It is 

important to note the price of these items, as the affordability of the overall product is an 

important factor. Every camera module would require a Raspberry Pi and Micro SD card, so 

these would really be the required items needed for each camera in use.  The Raspberry Pi cost 

$35, the Micro SD card cost $10 and the camera module cost $25 for a total of $70 for the entire 

setup.   

 There are a few important notes to make about the Raspberry Pi which were quickly 

brought to my attention in my initial attempt to set it up.  The first is that there is no pre-loaded 

software on the device itself therefore it has no operating system.  This is where the Micro SD 

card comes into play. In order to make sure that the OS safely loaded onto the SD card and for 

there to still be enough space for extra programs the minimum space required would be 8GB. 

The second is the required power in order to operate the device. A 5V 1A supply should be 

enough. It should be noted though that due to the high draw of current from multiple devices 

being connected to the Raspberry Pi, this may not meet the necessities as was the case initially 

for me. The Raspberry Pi worked best at 5V and 2A.   

 Once everything was set, it was time to load the OS onto the Micro SD card. In order to 

do so the card first had to be formatted.  The recommended formatting tool was the SD Formatter 

for Windows as provided at www.sdcard.org.  The following screenshot shows the format 

settings as required.  

 

Figure 9. Format Settings. 
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 In order to image the SD card, the Raspberry Pi website provides a package that takes 

care of this installation while also providing optional extra programs including several 

programming IDE’s.  The latest version of this is NOOBS 1.4.0 which is what I decided to go 

with for this device.  Once all the files were loaded onto the SD card the device was powered on.  

It is important to note that the Raspberry Pi has no actual on/off button.  It turns on as soon as the 

power supply is connected.  Everything must be connected before the power supply in order to 

ensure successful booting.  There are really only two indicators to look for in order to keep track 

of the initial status of the boot.  The red LED indicates that there is indeed power reaching the 

device.  It must be noted though that this does not necessarily mean that the appropriate amount 

is being supplied as was the original case with me.  The green LED is the main indicator of the 

processor working as it should.  Constant blinking of the LED indicates that the processor is 

actually reading the SD card.  The first time the system is booted we get the following screen 

which gives us the option for what to install.  In this case I decided to install Raspbian which is 

the OS most recommended and already comes with Python pre-installed. It is important to note 

that since the Raspberry Pi is connected to its own LCD screen, all images must be acquired 

externally. 

 

Figure 10. Raspbian Image Selection 
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Once the Raspbian image is selected, the process of installation takes about half an hour.  The 

following shows the screen as it goes through the operation of installation. 

 

Figure 11. Raspbian Image Installation 

The first time that the set up was tried, the Raspberry Pi never seemed to boot after the OS 

installation.  After trying everything from switching SD cards to better power supplies, the final 

conclusion was that the device was defective.  Another Raspberry Pi was sent as a replacement 

and the device worked fine on the first try.  The following screen shows the Raspi-Config tool 

which is the first configuration tool to pop up as soon as the OS installation finishes. 

 

Figure 12. Raspberry Configuration Tool 



28 
 

The first configuration would be to automatically log in with the default username and password 

into the GUI.  This should give a screen similar to what we see in Windows. 

 

Figure 13. Login Configuration 

Since I would eventually work with the camera module, it was important to enable camera 

support for the device.  The following screen shows this step of the procedure. 

 

Figure 14. Camera Enable 

After camera support was enabled, there would be three other items that would also have to be 

enabled.  These will later play a part in being able to remotely connect and control the Raspberry 

Pi.  These items include SSH, SPI and I2C as shown on the following screenshot.  These options 

were found under the advanced configuration settings.  The last thing to do was to update the 

tool to the latest version. This step probably took the longest at about half an hour. 



29 
 

 

Figure 15.  SSH Enable 

Once all configurations were successfully set up, the following screen shows the GUI that is 

shown.  It is very similar to the desktop GUI of a windows system.  

 

Figure 16. Raspbian GUI 

 Now that the system seemed to be configured and running as it should, the camera 

module would need to be installed and run to make sure it was properly working.  The following 

shows the camera module. We can also see where the camera module connects to the Raspberry 

Pi. 
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Figure 17.  Raspberry Camera Module. Cam Mod. Digital image. MCM Electronics. Web. 

 Once the camera was installed, the concentration would now turn to the actual 

networking of a multiple camera system.  In order to do so all previous configuration steps will 

be applied to all future Raspberry Pi and camera module setups. 

Multi-Camera System Construction and Network 

 In order to show case the intentions of the multi-camera system without spending too 

much, a minimalistic approach was taken to building system.  The drive behind this would be the 

ability to take the multiple pictures of an object from different angles simultaneously.  In order to 

do so without building a circular system and exhausting the number of needed cameras, a single 

angle system was designed as the following shows which would in turn take multi-level images 

while a rotating platform would allow for the variation in angles of the object under inspection.  

Materials used for the physical construction of the system would include PVC, Velcro and 

plastic ties in order to allow for quick setup and dismantling. 

 Other factors that quickly became apparent as playing a major role were lighting as well 

as background when it came to the topic of photography.  In order to best deal with these 

obstacles, consistent lighting was also integrated into the system as well as a solid background in 
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order to keep background anomalies from playing any sort of factor in the schema of the setup.   

The following shows the design of the system from a top view. 

 
Figure 18.  Top View Structure Design 

 
 The second physical aspect of the structure would entail the physical networking of all 

the cameras in order to properly receive feedback from them once all scripts were run.  In order 

to allow for further ease other factors would also play a part such as the ability to remotely and 

wirelessly access the system. It is important to note at this time that although specific 

components may have been used for the purposes of this project there are no limitations set as it 

depends solely on the scale of the structure to be built.  In order to allow all the cameras to speak 

to each other a multi-switch board would be used.  Although it communication between the PC 

and the Raspberry Pi’s could also have been accessed using the switch, adding a router would 

allow for remote communication creating for less clutter.  Ethernet cables would be used to 

connect all components.  Although it may seem like the most trivial aspect of all, powering the 

system would actually prove to be an important topic for discussion.  Since the Raspberry Pi’s do 

not have a specific specification but rather a minimum voltage and current supply it was 
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necessary to make sure that while finding ways to distribute power without using multiple power 

supplies, we did not cut the current distribution too low.  For this reason when looking for a 

power supply that would allow for multiple outputs, the current draw from each output was very 

important.  The Raspberry Pi seemed to work best with a minimum of at least 1A.  So a powered 

hub that would supply 5V while still draw at least 1A was used for these purposes.  Again it 

should be noted that there are multiple methods of doing this depending on the scale of the 

project.  The following figure shows the physical configuration of the network using two 

Raspberry Pi’s as an example. 

 

Figure 19.  Physical Network Setup 

Network Configuration 

 Once the design of both the network and well multi-camera structure was ensured to be 

accurate the structure was then actually built as shown in the following figure.  It is important to 

note that everything was kept to dismantle as well as be built as quickly and efficiently as 

possible in order to allow for easy mobilization. 
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Figure 20. Multi-Camera System Built 

Once everything had been physically set up to work within the realms of a network, it 

would become necessary to make sure and allow for the devices to speak to each other by way of 

scripts as well as commands from the user.  Before any of this was done some major 

considerations had to be taken.  Since future modifications and updates would only prove to be 

very tedious when using multiple Raspberry Pi’s, there had to be a way to do so simultaneously.  

Also, eventually the system should work to take an image from each Raspberry Pi and send it to 

one central location for further processing.  All this pointed to the need for a central file server.  

There were several options to proceed with the previous but the best proved to be Samba which 

seemed to be the best option for not only a Linux based system but specifically the Raspberry Pi.  

Before any of this could be done we had to consider the possibility of IP addresses updating 
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themselves in the future.  This would prove chaotic as this is the main method of addressing 

individuals Raspberry Pi’s.  In order to fix this problem a few different steps were undertaken.  

The first would be to modify the host name of each Raspberry Pi for simplification.  The second 

procedure called for the modification of each Raspberry Pi’s network configuration file in order 

to update the IP address to remain static rather than use DHCP.  The following Table 1 shows the 

settings used for the 4 Raspberry Pi’s used for the purposes of this setup. 

Host Name IP Address 

Pi01 192.168.1.18 

Pi02 192.168.1.22 

Pi03 192.168.1.10 

Pi04 192.168.1.24 

Table 2.  Raspberry Pi Static Configurations 

 Once the addresses were set to static, it allowed for many other abilities which would 

simplify the communication process. We would need a tool in order to communicate with the 

Raspberry Pi’s without having to switch monitors each time.  The initial enabling of SSH as well 

as the conversion to a static IP open up this line of communication.  The following figure shows 

a snapshot of Putty, a tool which would be used in order to SSH into the Raspberry Pi from now 

on. 
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Figure 21.  Putty Configuration 

 The next would be to actually make a shareable folder as well as allow for the rest of the 

Raspberry Pi’s to view it.  In order to do so, Pi01 was made to be the file server while the rest 

would be clients of this server.  It is important to note that the PC itself would also be a client.  

So a folder was created on the home directory of Pi01 which would eventually hold all the 

images.  One objective that quickly became apparent was that although a folder may become 

visible by other clients, the client may not have automatic access to it once the system was 

restarted.  For this reason it became necessary to mount the folder so that it was always available.  

This worked by writing the mount command onto the boot profile of the clients as well as 

pointing to the shared folder by using the complete address including the IP of the server.  At 

boot up all Raspberry Pi’s would now have access to the shared folder as well as the PC. 

Networking Scripts 

 For our purposes the scripts under discussion may be found in Appendix C.  In order to 

capture simultaneous images, all Raspberry Pi’s would have to receive the same message at the 

same time with as little if possible no lag.  Since all had access to the shared folder it became 

apparent that the folder itself could become the access point for any scripts.  In this manner, one 

script could be updated and affect all systems.  With this in mind, in theory the system would 
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work by using the server to cast out a simultaneous message to all Raspberry Pi’s telling them to 

take an image and save it to the central server.  Once each Pi took the image, the central server 

would wait for indication form each Pi that the image had been taken.  At this point a few other 

factors would come into play.  In order to know which Pi’s were responding they would each 

append their hostname to the replied message as well as the images.   

 There were two scripts that would undertake the previous procedures.  First we will 

discuss the send script as this is tied to the server.  The server would first open up a socket in 

order to allow for communication.  Once this was done, input was awaited from the user in order 

to know what the next step would entail.  If it entailed taking the image then the system would 

take an image while also simultaneously multicasting the message to the other Raspberry Pi’s.  

The server would then listen back to from the other Raspberry Pi’s to receive confirmation that 

the image was taken.  If at any point the message was given to exit, then then socket would be 

closed as well as simultaneously relaying the message to the others in order to also close their 

sockets. 

 On the receiving end, a listening script was written.  The difference in this case would be 

that aside from first opening up a socket, it would be bound to an address in order to continue to 

communicate consistently through the same port.  No action would be taken beyond this until it 

received a message indicating what it should do.  In the case of taking an image, it would save 

the image by appending its hostname as well as replying to the server that it had followed 

through with its hostname as well.  Each time it would continue to listen as well as update the 

count in order to not overwrite the previous images taken.  We now had a manner of taking 

simultaneous images saved to a central location for processing. The following shows the setup 

for taking the image of an inanimate object, in this case a cat. 
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Figure 22. Experimental Setup 

The following shows the images as taken from different angles of a cat statue.  It should 

be noted that there were a total of 20 angles were taken of the cat in order to increase the number 

of eventual cloud points.  This means that the rotating platform was rotated by 18 degrees in 

order to capture each image.  

    

    

Figure 23.  Sample Raspberry Pi Images 
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Python Vision Fundamentals 

 For the purpose of this application, I decided to use Jan Erik Solem’s book, 

“Programming Computer Vision with Python”, as a guide to learning and applying some of the 

fundamental principles which would be built on for the final reconstruction.  Only the most 

important of modules as well as techniques will be discussed. 

 The image is first imported into a new variable as is possible with the PIL library.  The 

image is further processed by being converted to into greyscale.  This will prove to be very 

important throughout the rest of this process as we are merely concerned for the variation in 

color intensity rather than the color itself in order to improve feature detection. The following 

screenshots show the results of before and after the transformation. 

 

      

Figure 24.  Greyscale Transformation 

Manipulation of the images became very important in not only implementing some of the 

functionality of the program but in improving efficiency as well.  For example, the resizing of an 

image may reduce the quality of the photograph but will ultimately allow for faster processing as 

there would be less pixels to deal with.  This would prove to be extremely import in future 

feature detection implementation.  Five different operations were run as shown by the following 
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figure.  The image was first resized to thumbnail size as shown by (a).  Parts (b) and (c) then 

show the ability to both crop a portion of the image and paste it in a different such as rotated 

which was the case for these.  Finally, parts (d) and (e) show the ability to both resize by 

different proportions as well as rotate the image if necessary. 

          

(a)                                               (b)                                                          (c) 

      

                                                (d)                                                (e) 

Figure 25.  Image Manipulation.  (a) Image thumbnail (b) Image region crop (c) Cropped region 

image paste (d)  Image resize unproportioned (e) Image rotate. 

 For the remainder of image processing the matplotlib library would become very 

important as it allowed for the ability to not only convert an image to an array representation but 

would allow for better understanding of the underlying mechanisms in using those values.  The 

following figure shows an example of the ability to import an image as an array and then use the 

plotting features to cater to exact points.    
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Figure 26.  Image Plot. 

One of the features that immediately popped out as important is the ability to extract 

contours from an image.  This would prove to be critical as point matching from different images 

will depend on the programs ability to define important variations within an image.  The 

following shows how we may do this by using the pylab module’s contour method.  One 

important note to make is the need to first convert the image to grayscale in order to get a better 

feel for the contour.  The following images show the change from the original image to the one 

who shows the true contour of the image. One important aspect to notice is the definition of the 

lines around areas that change in color.  Already it could be seen where this may come in handy 

by possibly using the contour option to match exact points on different images, then basically 

doing a layover of the original image to work with the true color images. 
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Figure 27.  Image contour. 

Once the image is converted into an array, we can manipulate it running the values 

through anything from very simple mathematical operations to complex algorithms.  The 

following shows an example of what simple manipulations will do to the image.  It is important 

to note that the already converted grayscale image is being used do many of these operations. If 

we realize that values of greyscale range from 0-255 we can use this knowledge to make some 

simple conversions.  In the first conversion we see that all the values will be subtracted from 

255.  This should have the effect of basically inverting all the values to their opposite on the 

greyscale.  The second manipulation of the image clamps the image values to anything from 100-

200.  This means that the values will be converted to a scaled version of themselves only within 

this range.  The final manipulation allows us to basically apply a quadratic function to the values 

of the image.  This should in turn set all the values to a darker level.  The following shows the 

three resulting images after each of the mathematical manipulations of the original greyscale 

image array. 
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(a)                                           (b)                                          (c) 

Figure 28. Mathematical Manipulations.  (a) Values subtracted from 255 (b) Values restricted to 

interval 100-200 (c) Quadratic function over values 

A very useful example of a graylevel transform is histogram equalization. This transform 

flattens the graylevel histogram of an image so that all intensities are as equally common as 

possible. This is often a good way to normalize image intensity before further processing and 

also a way to increase image contrast.  The transform function is in this case a cumulative 

distribution function (cdf) of the pixel values in the image. 

 It is important to note that on the technical side, at this point a script has been created 

which will house important functions which may not exist as libraries but will become useful in 

the further manipulation of images.  The script is saved as imtools and is easily used by calling it 

with the import command.  

 The function takes a grayscale image and the number of bins to use in the histogram as 

input and returns an image with equalized histogram together with the cumulative distribution 

function used to do the mapping of pixel values. It is important to note the use of the last element 

(index -1) of the cdf to normalize it between 0 and 1. 
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Figure 29.  Grey Level Transformation. 

To show how the function has actually worked, we are able to print out the function.  The 

way this works is by displaying the pixel values as a function of the range within which they fall 

within the bin value.  So for example in this case since we are displaying the images in grayscale 

the value will be anything from 0 to 255.  The following plots show the before and after of the 

histogram equalization.  It is immediately noticeable that there seems to be a more equal after.  

Although this may take away from the originality of the image, it may allow for better contrast 

which will ultimately allow for better point identification in different image views of the same 

scene. 

    

Figure 30.  Histogram Before and After. 
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 In continuation, other libraries that were built upon the previous yet may be more specific 

or advanced in their computations were implemented.  One of these is SciPy, which is based on 

NumPy.    One ability for example is Gaussian blurring.  In essence what is being done is a 

convolution on the image with a Gaussian filter.  The intensity is based on the deviation of the 

Gaussian effect.  The formula used to represent this may be seen as ju = j ∗ wx where I is the 

greyscale image and wx is the Gaussian filter with a standard deviation of x (Solem, 31).   

The following images show what happens when an image is convolved with a Gaussian 

filter of different deviation values, using the following code. Notice the second parameter of the 

filter is a number.  This is the standard deviation.  The images show standard deviations of 5, 10 

and 15 respectively. 

       

Figure 31.  Gaussian Blurring.   

Although the reason may not have been apparent immediately, Gaussian blurring may 

provide a quick way to provide points of interest.  Let’s say an image has too much detail and we 

only wanted to capture the superficial essence of its surface.  We may then use Gaussian blurring 

to first provide us with the most intense points to create that surface which we may then build off 

of.  

 We can use the derivatives to really see how intensity changes within the image.  In other 

words we may be able to better detect edges.  We can really see the intensities by using filter to 

find the x and y derivatives of the image.  We can use the following to understand this.  If we 
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think of the gradient of an image it is comprised by the following, ∇j = |jLjR|` , where jL 	,D jR 

are the x and y derivatives respectively.  From this there is some important information we can 

acquire.  The gradient magnitude |∇j| = zjL� + jR� describes the strength of the intensity, and 

the gradient angle { = arctan(j�, j7) describes the direction of the intensity at each point or 

pixel in the image (Solem, 33).  The best way to attain the derivatives may be by using filters.  

The following shows the convolution Sobel filters on the image respectively. We see the original  

    

    

Figure 32.  Image Derivatives. 

 At this point previous methods were used to actually find mathcing points between 

different images.  Although the code and implementation will not be elaborated on here, the 

literature review goes into the theory behind the subject matter.  The first of these methods is 
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known as the Harris corner detection algorithm which really plays on previous startegies such as 

the gaussian filtering and such.  The basics is that it looks for points which have several lines 

connected to it which would indicate some sort of corner.  The following shows the resulting 

image.   

 

Figure 33.  Harris Corner Detector. 

 Although finding points of interest is a great start to 3D reconstrcution, it did not yet give 

us any information as far as correlation between images.  It is at his point that the code was 

implemented to add descriptors to each of the points.  As described in the literature review, 

descriptors allow for a method of describing a point by way of its surrounding factors.  In this 

method we would then be able to find a good correlation between the two images.  The following 

figure finally shows the impplementation of mathing descriptiors and the output.  Lines are 

plotted to show the match across the two images.  It is important to note that there are some 

errors, which would be delt with in another fashion. 
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Figure 34.  Feature Matching 

  

Image Processing 

 Once all images were acquired, the next step would be to process them.  The Python 

Photogrammetry Toolbox became very apparent as the easiest tool to use in order to extrapolate 

all the data that would be needed in order to later reconstruct the object form this point cloud.  

After all the proper configuration and installation procedures the GUI was opened as shown by 

the following figure.  The photographs were run past three basic steps as the theory previously 

explained.  The first would be the calibration of the camera. This would be done by first 

checking the camera database for the proper camera setting depending on the width of the 

camera.  This was found to be .25 in for the Raspberry Pi camera module.  The camera was 
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found within the parameters.  The second step would include running bundler which would call 

upon the previously discussed algorithms in order to extrapolate common data points across the 

images.  Finally CMVS/PMVS were run to create an even denser cloud from the previously 

extrapolated points.  It is important to note that it may initially be useful to scale down the 

images so as to cut down on run time and the possibility of a crash due to low resources.   

 

Figure 35. Python Photogrammetry Toolbox GUI 

 The toolbox’s ultimate goal is to output a .ply file which can be read by other open source 

programs in order to then reconstruct and refine the point cloud.  At this point MeshLab comes 

into play as a very user friendly as well as efficient tool.  In order to open the point cloud it was 

as simple as importing the .ply file as produced by the previous toolbox in MeshLab. The 

following figure shows the point cloud produced as opened without any editing in MeshLab. 
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Figure 36.  MeshLab Point Cloud 

 As noted, the previous point cloud was a bit rough around the edges but for the most part 

captures the major details of the object under test including color.  At this point MeshLab 

introduces some techniques to smooth out some of the outlying data as well as close the gaps.  

Deleting outlying points was as easy as selecting and pressing delete.  In order to further smooth 

the figure a Poisson filter was used.  Once this was done the MeshLab could much easily create a 

mesh closing all the gaps on the object.  The following figure shows the resulting object after 

these actions were taken.  From this point the object could easily be exported for further 

processing or even 3D printing as MeshLab creates acceptable file extensions to do so. 
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Figure 37.  Poisson Filter Resulting Object 
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CHAPTER IV 
 
 

SUMMARY AND CONCLUSION 
 

 A finalization of the process of creating 3D scans of close range objects entailed the 

culmination of many fields of study with an emphasis on computer science.  It is necessary to 

give credit where due though so that the complete package is understood.  To begin, it was 

necessary to envision how multiple views of an image would be captured.  In order to understand 

this, the field of photogrammetry gave some insight into some of the requirements this would 

entail.  This pointed to the clear fact that each of the views should share common points as from 

this we would need to extract information in order to pin point their location in 3D space.   

 The outcome of the previous understanding was a 4-camera rig and a rotating platform in 

order to allow for consistency when capturing views at different degrees of rotation without 

changing the object.  In order to keep within the realm efficiency, this was built out of Raspberry 

Pi cameras which would allow for good quality images while still promoting both cost efficiency 

and ease of use.  In order to safely operate the entire networked system, a minor electrical 

background played a part in ensuring proper power distribution. 

 Although, the cameras were simple enough to physically setup, networking skills played 

an integral part to allowing for communication between the cameras as well as the user. The 

subjects of server/client relationships, socket programming, and multicasting as well as network 

configuration were all a recurring theme in order to acquire the images.
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 Finally, the integration of multiple libraries into one central location in order to process 

the images played a vital part in acquiring the cloud points which would be used for the final 

reconstruction of the object.  Although the ability to write such a program could have been the 

purpose of its own thesis, understanding of the subject led to the incorporation of several pieces 

of a puzzle to a centralized program which would use all the previously discussed algorithms in 

order to extract all the data necessary to create a point cloud and construct a mesh which would 

ultimately define the remake of the original object. 

 In summary, as was initially stated, a process was created to scan 3D close range objects 

by using Raspberry Pi technologies as well as open source software.  Specifically, the Raspberry 

Pi was programmed to work as a multi-camera system which would acquire simultaneous images 

and send them to a central location for processing.  The Bundler, CMVS, PMVS and MeshLab 

software libraries and packages were then used to both process the images as well as reconstruct 

the 3D object. 

 Although the proposed objectives were met, there is still much room for improvement.  

The processing time was too long at an average of about 30 minutes.  Although the intentions of 

this thesis were not to write a completely new software for 3D reconstruction, future work may 

look at this as a subject of interest in order to cut down on processing time.  The second 

improvement entails the subject of accuracy.  Since the previous algorithms were all based on 

auto-calibration of the cameras and only projective imaging, the resulting object is not an 

automatic replica of the original object.  This means that although the points in space are 

proportionally accurate with respect to each other, they may not be accurate with respect to the 

outside world.  Future improvements may entail adding distance parameters to the equation ro 

even automating this aspect with the use of distance sensors. 
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 Although, I do have areas for improvement I feel that the proposed objectives were met 

and am glad to have undertaken a difficult yet interesting subject.  I can only hope that research 

in this area continues as I can see the applications of this to be infinite.  My dream is that one day 

we may evolve all current two dimensional platforms to three dimensional to provide a new 

realm of possibilities. 
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APPENDIX A 

OPEN SOURCE LIBRARIES AND SOFTWARE 

Python 2.7.10 for Windows 32-Bit 
Source: https://www.python.org/download/releases/2.7/ 
 
Python Imaging Library (PIL 1.1.7) for Python 2.7 
Source:  http://www.pythonware.com/products/pil/  
 
Matplotlib for Python 2.7 
Source:  http://matplotlib.sourceforge.net/ 
 
NumPy for Python 2.7 
Source:  http://www.numpy.org/ 
 
SciPy for Python 2.7 
Source: http://www.scipy.org 
 
OpenCV Python for Windows 
Source: http://sourceforge.net 
 
PyQT for Python 2.7 
Source: http://sourceforge.net 
 
Bundler: 
Source: http://www.cs.cornell.edu/~snavely/bundler/ 
 
PMVS: 
Source: http://www.di.ens.fr/pmvs/ 
 
CMVS: 
Source: http://www.di.ens.fr/cmvs/ 
 
Pyhton Photogrammetry Toolbox 
Source: http://184.106.205.13/arcteam/ppt.php 
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APPENDIX B 

PYTHON FUNDAMENTALS SOURCE CODE 
 

Image.py: 

from PIL import Image 
from pylab import *  
from numpy import *  
import imtools 
from imtools import *  
import harris  
from scipy.ndimage import filters  
import cv2 
import numpy as np 
import os  
 
"""Start with one image file named sample1.jpg to test script""" 
 
"""Opens an image, converts it then writes it out to a different image""" 
"""pil_im=Image.open('sample1.jpg').convert('L') 
pil_im.save('sample2.jpg')""" 
 
"""Will create a thumbnail from an image""" 
"""pil_im2=Image.open('sample1.jpg') 
pil_im2.thumbnail((128,128)) 
pil_im2.save('sample3.jpg')""" 
 
"""Will crop a certain region""" 
"""box=(0,0,400,400) 
region=pil_im.crop(box) 
region.save('sample4.jpg')""" 
 
"""Can rotate and re-paste using the following""" 
"""region = region.transpose(Image.ROTATE_180) 
pil_im.paste(region,box) 
pil_im.save('sample5.jpg')""" 
 
"""To resize an image""" 
"""pil_resize=Image.open('sample1.jpg') 
out=pil_resize.resize((200,200)) 
out.save('sample6.jpg')"""
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"""To rotate an image""" 
"""pil_rot=Image.open('sample1.jpg') 
out=pil_rot.rotate(90) 
out.save('sample7.jpg')""" 
 
"""The following creates an array from an image then plots along with markers and a line 
it is important to note the array is of the form im[m,n]"""   
"""im = array(Image.open('sample1.jpg')) 
imshow(im)                   #Must be an mxn array 
x = [100,100,400,400] 
y = [200,500,200,500] 
plot(x,y,'r*') 
plot(x[0:2],y[0:2]) 
title('Plotting: "sample1.jpg"') 
show()""" 
 
"""The following creates an image contour""" 
"""im = array(Image.open('sample1.jpg').convert('L')) 
figure() 
gray() 
axis('equal')                 #This allows for the axis to both  
contour(im, origin='image')   # Secondary arguments relay to strting location and other features  
axis('off') 
show()""" 
 
"""The following will create a histogram for the image""" 
"""figure() 
hist(im.flatten(),128) 
show()""" 
 
 
"""The following will display information about the array in the form of a tuple, with the  
form (rows, columns, color channels).  The following string shows the datatype""" 
"""im = array(Image.open('sample1.jpg')) 
print im.shape, im.dtype 
im = array(Image.open('sample1.jpg').convert('L'),'f') 
print im.shape, im.dtype""" 
 
"""The following form allows us to access a single value from the array.  It is important 
to notice in the following we get back a single value  since it is in grayscale """ 
"""value=im[1,1] 
print value""" 
 
"""The following enables three different operations on the array of the image  
creating different effects which may become useful""" 
"""im = array(Image.open('sample1.jpg').convert('L')) 
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figure() 
im2 = 255 - im #invert image 
imshow(im2,cmap=cm.Greys_r) 
show() 
figure() 
im3 = (100.0/255) * im + 100 #clamp to interval 100...200 
imshow(im3,cmap=cm.Greys_r) 
show() 
figure() 
im4 = 255.0 * (im/255.0)**2 #squared 
imshow(im4,cmap=cm.Greys_r) 
show()    """              
 
"""The following will call on the histogram equalization tool and show its resulting 
image and new histogram""" 
"""im = array(Image.open('sample1.jpg').convert('L')) 
figure() 
imshow(im,cmap=cm.Greys_r) 
figure() 
hist(im.flatten(),128) 
im2,cdf=imtools.histeq(im) 
figure() 
imshow(im2,cmap=cm.Greys_r) 
figure() 
hist(im2.flatten(),128) 
show()""" 
 
"""The following will perform a Gaussian blur on an image""" 
"""im = array(Image.open('sample1.jpg').convert('L')) 
im2 = filters.gaussian_filter(im,15) 
imshow(im2,cmap=cm.Greys_r) 
show()""" 
 
"""The following will compute the convolution to derive the image derivatives""" 
"""im = array(Image.open('sample1.jpg').convert('L')) 
figure() 
imshow(im,cmap=cm.Greys_r) 
 
imx = zeros(im.shape) 
filters.prewitt(im,1,imx) 
figure() 
imshow(imx,cmap=cm.Greys_r) 
 
imy = zeros(im.shape) 
filters.prewitt(im,0,imy) 
figure() 
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imshow(imy,cmap=cm.Greys_r) 
 
magnitude = sqrt(imx**2+imy**2) 
figure() 
imshow(magnitude,cmap=cm.Greys_r) 
show()""" 
 
"""This will use the Harris corner detection algorithm""" 
"""im = array(Image.open('sample1.jpg').convert('L')) 
harrisim = harris.compute_harris_response(im) 
filtered_coords = harris.get_harris_points(harrisim,6) 
harris.plot_harris_points(im, filtered_coords)""" 
 
#This will compare two images using harris point descriptors 
"""wid=5 
im1 = array(Image.open('sample1.jpg').convert('L')) 
im2 = array(Image.open('sample1turn.jpg').convert('L')) 
 
# resize to make matching faster 
im1 = imresize(im1,(im1.shape[1]/2,im1.shape[0]/2)) 
im2 = imresize(im2,(im2.shape[1]/2,im2.shape[0]/2)) 
 
harrisim = harris.compute_harris_response(im1,5) 
filtered_coords1 = harris.get_harris_points(harrisim,wid+1) 
d1 = harris.get_descriptors(im1,filtered_coords1,wid) 
 
 
harrisim = harris.compute_harris_response(im2,5) 
filtered_coords2 = harris.get_harris_points(harrisim,wid+1) 
d2 = harris.get_descriptors(im2,filtered_coords2,wid) 
 
print 'starting matching' 
matches = harris.match_twosided(d1,d2) 
 
figure() 
gray() 
 
 
harris.plot_matches(im1,im2,filtered_coords1,filtered_coords2,matches) 
show()""" 
 

Imtools.py: 

from PIL import Image 
from pylab import * 
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from numpy import * 
import imtools 
from scipy.ndimage import filters 
import os 
 
"""Will print out all the file names of the images in a given path""" 
def get_imlist(path):     
    return [os.path.join(path,f) for f in os.listdir(path) if f.endswith('.jpg')]  
    print get_imlist('C:\Users\juan\Desktop\Photogrammetry\src') 
 
""" Resize an image array using PIL. """ 
def imresize(im,sz): 
    pil_im = Image.fromarray(uint8(im)) 
    return array(pil_im.resize(sz)) 
 
""" Histogram equalization of a grayscale image. """ 
def histeq(im,nbr_bins=256): 
    # get image histogram 
    imhist,bins = histogram(im.flatten(),nbr_bins,normed=True) 
    cdf = imhist.cumsum() # cumulative distribution function 
    cdf = 255 * cdf / cdf[-1] # normalize 
    # use linear interpolation of cdf to find new pixel values 
    im2 = interp(im.flatten(),bins[:-1],cdf) 
    return im2.reshape(im.shape), cdf 
def compute_average(imlist): 
    """ Compute the average of a list of images. """ 
    # open first image and make into array of type float 
    averageim = array(Image.open(imlist[0]), 'f') 
    for imname in imlist[1:]: 
        try: 
            averageim += array(Image.open(imname)) 
        except: 
            print imname + '...skipped' 
    averageim /= len(imlist) 
    # return average as uint8 
    return array(averageim, 'uint8') 
 
def pca(X): 
    """ Principal Component Analysis 
    input: X, matrix with training data stored as flattened arrays in rows 
    return: projection matrix (with important dimensions first), variance and mean. 
    """ 
    # get dimensions 
    num_data,dim = X.shape 
    # center data 
    mean_X = X.mean(axis=0) 



65 
 

    X = X - mean_X 
    if dim>num_data: 
        # PCA - compact trick used 
        M = dot(X,X.T) # covariance matrix 
        e,EV = linalg.eigh(M) # eigenvalues and eigenvectors 
        tmp = dot(X.T,EV).T # this is the compact trick 
        V = tmp[::-1] # reverse since last eigenvectors are the ones we want     
        S = sqrt(e)[::-1] # reverse since eigenvalues are in increasing order 
        for i in range(V.shape[1]): 
            V[:,i] /= S 
    else: 
        # PCA - SVD used 
        U,S,V = linalg.svd(X) 
        V = V[:num_data] # only makes sense to return the first num_data 
    # return the projection matrix, the variance and the mean 
    return V,S,mean_X 
 
 

Harris.py: 

 

from pylab import * 
from numpy import * 
from scipy.ndimage import filters 
 
 
def compute_harris_response(im,sigma=3): 
    """ Compute the Harris corner detector response function  
        for each pixel in a graylevel image. """ 
     
    # derivatives 
    imx = zeros(im.shape) 
    filters.gaussian_filter(im, (sigma,sigma), (0,1), imx) 
    imy = zeros(im.shape) 
    filters.gaussian_filter(im, (sigma,sigma), (1,0), imy) 
     
    # compute components of the Harris matrix 
    Wxx = filters.gaussian_filter(imx*imx,sigma) 
    Wxy = filters.gaussian_filter(imx*imy,sigma) 
    Wyy = filters.gaussian_filter(imy*imy,sigma) 
     
    # determinant and trace 
    Wdet = Wxx*Wyy - Wxy**2 
    Wtr = Wxx + Wyy 
     
    return Wdet / Wtr 
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    def get_harris_points(harrisim,min_dist=10,threshold=0.1): 
    """ Return corners from a Harris response image 
        min_dist is the minimum number of pixels separating  
        corners and image boundary. """ 
     
    # find top corner candidates above a threshold 
    corner_threshold = harrisim.max() * threshold 
    harrisim_t = (harrisim > corner_threshold) * 1 
     
    # get coordinates of candidates 
    coords = array(harrisim_t.nonzero()).T 
     
    # ...and their values 
    candidate_values = [harrisim[c[0],c[1]] for c in coords] 
     
    # sort candidates (reverse to get descending order) 
    index = argsort(candidate_values)[::-1] 
     
    # store allowed point locations in array 
    allowed_locations = zeros(harrisim.shape) 
    allowed_locations[min_dist:-min_dist,min_dist:-min_dist] = 1 
     
    # select the best points taking min_distance into account 
    filtered_coords = [] 
    for i in index: 
        if allowed_locations[coords[i,0],coords[i,1]] == 1: 
            filtered_coords.append(coords[i]) 
            allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),  
                        (coords[i,1]-min_dist):(coords[i,1]+min_dist)] = 0 
     
    return filtered_coords 
     
     
def plot_harris_points(image,filtered_coords): 
    """ Plots corners found in image. """ 
     
    figure() 
    gray() 
    imshow(image) 
    plot([p[1] for p in filtered_coords], 
                [p[0] for p in filtered_coords],'*') 
    axis('off') 
    show() 
     
 
def get_descriptors(image,filtered_coords,wid=5): 
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    """ For each point return pixel values around the point 
        using a neighbourhood of width 2*wid+1. (Assume points are  
        extracted with min_distance > wid). """ 
     
    desc = [] 
    for coords in filtered_coords: 
        patch = image[coords[0]-wid:coords[0]+wid+1, 
                            coords[1]-wid:coords[1]+wid+1].flatten() 
        desc.append(patch) 
     
    return desc 
 
 
def match(desc1,desc2,threshold=0.5): 
    """ For each corner point descriptor in the first image,  
        select its match to second image using 
        normalized cross correlation. """ 
     
    n = len(desc1[0]) 
     
    # pair-wise distances 
    d = -ones((len(desc1),len(desc2))) 
    for i in range(len(desc1)): 
        for j in range(len(desc2)): 
            d1 = (desc1[i] - mean(desc1[i])) / std(desc1[i]) 
            d2 = (desc2[j] - mean(desc2[j])) / std(desc2[j]) 
            ncc_value = sum(d1 * d2) / (n-1)  
            if ncc_value > threshold: 
                d[i,j] = ncc_value 
             
    ndx = argsort(-d) 
    matchscores = ndx[:,0] 
     
    return matchscores 
 
 
def match_twosided(desc1,desc2,threshold=0.5): 
    """ Two-sided symmetric version of match(). """ 
     
    matches_12 = match(desc1,desc2,threshold) 
    matches_21 = match(desc2,desc1,threshold) 
     
    ndx_12 = where(matches_12 >= 0)[0] 
     
    # remove matches that are not symmetric 
    for n in ndx_12: 
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        if matches_21[matches_12[n]] != n: 
            matches_12[n] = -1 
     
    return matches_12 
 
 
def appendimages(im1,im2): 
    """ Return a new image that appends the two images side-by-side. """ 
     
    # select the image with the fewest rows and fill in enough empty rows 
    rows1 = im1.shape[0]     
    rows2 = im2.shape[0] 
     
    if rows1 < rows2: 
        im1 = concatenate((im1,zeros((rows2-rows1,im1.shape[1]))),axis=0) 
    elif rows1 > rows2: 
        im2 = concatenate((im2,zeros((rows1-rows2,im2.shape[1]))),axis=0) 
    # if none of these cases they are equal, no filling needed. 
     
    return concatenate((im1,im2), axis=1) 
     
     
def plot_matches(im1,im2,locs1,locs2,matchscores,show_below=True): 
    """ Show a figure with lines joining the accepted matches  
        input: im1,im2 (images as arrays), locs1,locs2 (feature locations),  
        matchscores (as output from 'match()'),  
        show_below (if images should be shown below matches). """ 
     
    im3 = appendimages(im1,im2) 
    if show_below: 
        im3 = vstack((im3,im3)) 
     
    imshow(im3) 
     
    cols1 = im1.shape[1] 
    for i,m in enumerate(matchscores): 
        if m>0: 
            plot([locs1[i][1],locs2[m][1]+cols1],[locs1[i][0],locs2[m][0]],'c') 
    axis('of
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APPENDIX C 
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APPENDIX C 

NETWORKING RASPBERRY PI SCRIPTS 

Send.py: 

multicast_group = ('224.3.29.71', 10000) 
name=socket.gethostname() 
 
# Create the datagram socket 
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 
 
# Set the time-to-live for messages to 1 so they do not go past the 
# local network segment. 
ttl = struct.pack('b', 1) 
sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, ttl) 
counter=1 
while True: 
    count=0 
    message = raw_input('Press Enter to take picture or type Exit to quit: ') 
    if( message=='Exit'): 
        sent=sock.sendto(message, multicast_group) 
        break 
 
    # Send data to the multicast group 
    print 'Sending...' 
    sent = sock.sendto(message, multicast_group) 
 
    # Server will take picture as well 
    os.system('raspistill -n -q 100 -o '+name+'image'+str(counter)+'.jpg') 
    counter+=1 
    print name+' Complete!' 
 
    # Look for responses from all recipients 
    print 'Waiting to receive confirmation' 
    while True: 
        data, server = sock.recvfrom(16) 
        print >>sys.stderr, 'received "%s"' %(data) 
        count+=1 
        if (count!=0 and count%2==0): 
                break
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print >>sys.stderr, 'closing socket' 
sock.close() 
 

Listen.py: 

import socket 
import struct 
import sys 
import os 
import subprocess 
 
multicast_group = '224.3.29.71' 
server_address = ('', 10000) 
name=socket.gethostname() 
# Create the socket 
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 
 
# Bind to the server address 
sock.bind(server_address) 
 
# Tell the operating system to add the socket to the multicast group 
# on all interfaces. 
group = socket.inet_aton(multicast_group) 
mreq = struct.pack('4sL', group, socket.INADDR_ANY) 
sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq) 
counter=1 
# Receive/respond loop 
while True: 
    print >>sys.stderr, '\nWaiting to receive message' 
    data, address = sock.recvfrom(1024) 
    if(data=='Exit'): 
                break 
 
    print >>sys.stderr, 'Taking picture...' 
    print >>sys.stderr, data 
    os.system('raspistill  -n -q 100 -o '+name+'image'+str(counter)+'.jpg') 
    print >>sys.stderr, 'Done. Sending acknowledgement...' 
    sock.sendto(name+' Done!', address) 
    counter+=1 
 
sock.close() 
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