
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Computer Science Faculty Publications and
Presentations College of Engineering and Computer Science

2021

EDSC: An Event-Driven Smart Contract Platform EDSC: An Event-Driven Smart Contract Platform

Mudabbir Kaleem

Keshav Kasichainula

Rabimba Karanjai

Lei Xu
The University of Texas Rio Grande Valley, lei.xu@utrgv.edu

Zhimin Gao

See next page for additional authors

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kaleem, Mudabbir, Keshav Kasichainula, Rabimba Karanjai, Lei Xu, Zhimin Gao, Lin Chen, and Weidong
Shi. 2021. “An Event Driven Framework for Smart Contract Execution.” In Proceedings of the 15th ACM
International Conference on Distributed and Event-Based Systems, 78–89. DEBS ’21. New York, NY, USA:
Association for Computing Machinery. https://doi.org/10.1145/3465480.3466924.

This Conference Proceeding is brought to you for free and open access by the College of Engineering and
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty
Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information,
please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

Authors Authors
Mudabbir Kaleem, Keshav Kasichainula, Rabimba Karanjai, Lei Xu, Zhimin Gao, Lin Chen, and Weidong Shi

This conference proceeding is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/cs_fac/68

https://scholarworks.utrgv.edu/cs_fac/68

EDSC: An Event-Driven Smart Contract Platform
Mudabbir Kaleem∗, Keshav Kasichainula∗, Rabimba Karanjai∗, Lei Xu†, Zhimin Gao‡, Lin Chen§, Weidong Shi∗

∗University Of Houston, USA
Email: {mkaleem,kkasichainula,wshi3}@uh.edu, rkaranja@cougarnet.uh.edu

† University of Texas Rio Grande Valley ,USA
Email: xuleimath@gmail.com

‡Auburn University at Montgomery,USA
Email:mtion@msn.com

§Texas Tech University,USA
Email: Lin.Chen@ttu.edu

Abstract—This paper presents EDSC, a novel smart contract
platform design based on the event-driven execution model as
opposed to the traditionally employed transaction-driven execu-
tion model. We reason that such a design is a better fit for many
emerging smart contract applications and is better positioned
to address the scalability and performance challenges plaguing
the smart contract ecosystem. We propose EDSC’s design under
the Ethereum framework, and the design can be easily adapted
for other existing smart contract platforms. We have conducted
implementation using Ethereum client and experiments where
performance modeling results show on average 2.2 to 4.6
times reduced total latency of event triggered smart contracts,
which demonstrates its effectiveness for supporting contracts
that demand timely execution based on events. In addition, we
discuss example use cases to demonstrate the design’s utility and
comment on its potential security dynamics.

Index Terms—Smart contracts, Blockchain, Event-driven ar-
chitecture, Scalability

I. INTRODUCTION

The advent of Bitcoin, in late 2008, demonstrated how a
digital payment system could be implemented using a novel
decentralized public data structure, i.e., a blockchain [1].
Additionally, Bitcoin also incorporated a built-in scripting
framework that could be used for controlling the tokens,
storing data, and specifying logic on the blockchain itself. This
was a decentralized implementation of smart contracts [2].
Smart contracts are essentially pieces of code that enforce the
terms and procedures of an agreement or protocol digitally.
However, Bitcoin’s smart contract functionality was limited
in its application, and it was not until the introduction of
Ethereum [3] that smart contracts took center stage in the
cryptocurrency arena. Ethereum offered an integral Turing-
complete programming language to create blockchain-based
smart contracts, allowing for their employment in a wide range
of potential use cases [4].

Presently, smart contracts continue to grow in their utility
and outreach. Since the launch of Ethereum, many alter-
native smart contract platforms have also emerged, which
have gained considerable adaption and sizeable user bases
[5] [6] [7] [8] [9]. The majority of these platforms aim
to overcome or readdress Ethereum’s limitations and trade-
offs, e.g., achieving higher throughput, decreasing computa-
tion costs, deploying a different consensus mechanism, etc.
Although initially limited to token control and on-chain data
access, smart contracts today are increasingly interfacing with

real-world data and events, rapidly extending their application
sphere. This interaction is enabled through oracles [10] [11],
which are services designed to provide external information
in the smart contract environment. To avoid a single point of
compromise for such integration, many recent oracle projects
[12] [13] [14] are adapting a decentralized approach for
collecting and aggregating data.

Despite numerous innovations and advancements, the smart
contract ecosystem’s evolution has been stifled by various
impediments, mostly prevailing in transaction performance
(e.g., latency, throughput) and scalability domains. Although
several projects [15] [16] [17] have sought to address these
concerns through imaginative solutions like sharding and exe-
cution parallelization; many complex design challenges remain
unsolved for practical purposes. With the recent unprecedented
growth of decentralized financial services (DeFi), an ever-
increasing percentage of smart contracts are interfacing with
oracle networks to fetch real-world information [18]. Since
this interfacing is accomplished through two-way transactions
on most platforms, the trend is bound to further burden an
already congested system [19].

In the smart contract space, most existing popular plat-
forms conform to the transaction-driven execution model.
This means that all contract executions on these platforms
are triggered by initiating transactions on the system through
non-contract accounts. In this paper, we present an alterna-
tive smart contract platform design built on the event-driven
execution model. The event-driven architecture pattern is a
simple yet powerful distributed architecture pattern, proven to
produce highly scalable and adaptable applications. The model
enables communication by allowing participants to publish
notifications of occurring events, along with subscribing to
events of interest and being asynchronously notified of their
occurrence by the system. The event-based methodology has
previously been extensively studied in the context of systems
and software engineering [20] [21] [22]. We reason that a
smart contract platform framework centered around the pub-
lish/subscribe paradigm will be a good fit for many emerging
smart contract applications that demand or can benefit from
timely execution. We also demonstrate that it will be, by
design, better positioned to address the aforementioned issues
hampering the ecosystem’s progression.

This paper intends to describe an event-driven smart contract
platform’s architectural layout and implementation. We use

ar
X

iv
:2

10
1.

05
47

5v
1

 [
cs

.D
C

]
 1

4
Ja

n
20

21

the Ethereum architecture as the base template and outline the
modifications required in its design to actualize our system.
The rationale for this approach is that we assume most readers
to be acquainted with Ethereum’s mechanics, given that it
is one of the most widely used smart contract platform to
date. This familiarity, we hope, will allow the readers to
draw parallels between the two models while enabling us to
communicate our design succinctly. It is worth mentioning
that although presented using Ethereum as the reference, the
concept of event-driven smart contracts illustrated in this work
can be extended to other smart contract platforms, consensus
protocols, and programming models with trivial adjustments.
The proposed design also has numerous advantages over the
prior art that attempted to support events in the application
layer. To the best of our knowledge, the proposed system
is the first smart contract platform designed upon the event-
driven execution model. We hope that our work will inspire
further research in the direction of applying the event-driven
communication paradigm to blockchains.

To summarize, the main contributions of the work and paper
are: (i) We propose an event-driven smart contract platform
with native support for real-time event processing. (ii) We
provide the design of an event-based system using Ethereum
as a reference target. (iii) We describe the design’s advantages
in potential use cases and comment on its security aspects.
(iv) We have performed an implementation using the Golang
Ethereum client and conducted experiments where perfor-
mance modeling results show on average a 2.2 to 4.6 times
reduction in total latency of event triggered smart contracts,
which demonstrates its effectiveness for supporting contracts
that demand timely execution based on events.

II. RELATED WORK

In recent years, the advancement of blockchains, smart
contracts, and decentralized infrastructures have created an
emerging frontier that combines traditional concepts of event-
driven systems with blockchains. As such, there have been
ongoing efforts to harness the benefits of this paradigm in
blockchain-based smart contracts. Oracles and subscription-
based payment models have sought to achieve this but have
encountered limitations. Currently, oracle systems typically
follow a pull-based model with the client contract requesting
data from an off-chain source. Present designs favor off-chain
implementations to incorporate the event-based subscription
model and then interact with the blockchain.

We take as a case study the implementation of the IBM
blockchain, which is built on Hyperledger [23]. Prior work
by Hull [24] shows how event-based processing is used for
data-centric applications. The commercial implementation and
offering by IBM [25] uses Java micro-services to listen for
events form the blockchain using OpenLiberty. Blockchain
provides the integrity of the process, whereas the java micro-
service layer and OpenLiberty ensure it can have event-based
transactions. However, apart from the implementation layer,
it does not use the smart-contracts for any event-based trans-
actions. Another commercial offering is provided by Amazon
[26], which uses the Hyperledger Fabric and Ethereum as the
underlying layer. Their implementation allows three distinct
kinds of events to interact with the blockchain network,

namely: (i) Block event, which occurs when a new block is
added to the ledger; (ii) Transaction event and; (iii) Chaincode
event, which can hold conditions for triggering events. The
triggering mechanism for these events relies on AWS Fargate
to act as an event listener and then on Amazon Simple Queue
Services to be processed by lambdas. Just like IBM, Amazon’s
implementation also relies on a layer of auxiliary services to
enable event-driven architecture.

Recent works remedying this limitation include EventWar-
den [27], where the authors propose a decentralized event-
driven proxy that can interact with Ethereum-like blockchain
networks and pass the transactions. This approach eliminates
the use of auxiliary services similar to what IBM and Amazon
were employing since this can be implemented directly onto
the Ethereum network. It allows a user to create a proxy
smart contract describing an event into the contract. Anyone
in the blockchain network can trigger a release of the reserved
transaction by calling the proxy contract and showing that the
concerned event has been recorded into blockchain logs.

Another recent work Ethereum Alarm Clock [28] allows a
user to deploy a request contract with a future time limit on
the Ethereum network. However, this project supports only one
type of event, the arrival of a predefined time-frame. Work by
Chao and Palanisamy [29] takes a similar approach to handle
only events based on time.

In contrast, this paper tackles the fundamental limitations
seen in [25], [26], [28], [29] by proposing a smart contract
platform based on the event-driven execution model, complete
with a pub-sub scheme, which can be applied as a modification
on the present Ethereum architecture or blockchains with smart
contract support.

III. OVERVIEW OF EDSC

EDSC is built on the event-driven execution model us-
ing the publish/subscribe communication paradigm. In the
publish/subscribe interaction scheme, components subscribe
to events of interest, or to a pattern of events, and are
subsequently asynchronously notified by the system when any
event published matches their registered interest. In order to
incorporate this paradigm into a smart contract platform, the
platform design should provide the following basic features to
the participating smart contracts and external accounts:
• Event Definition: Any external account or smart contract
in the system is able to define/register new and unique event
types in the system. This is analogous to defining a class in
an object-oriented programming paradigm.
• Event Subscription: Any smart contract in the system is
able to subscribe or unsubscribe to a particular event type that
is already defined in the system. At the time of subscription,
the subscriber contract may specify additional logic that will
be used by the system to evaluate whether to invoke it in
response to the event of interest’s occurrence in the system.
• Event Publishing: Any smart contract is able to publish an
event that has already been defined in the system.
In order to provision the three fundamental features mentioned
above, the smart contract system needs to incorporate the
following functionality specific to the event-driven execution
model:

• Event Definition Maintenance: The event templates are
saved immutably in the system. This may be achieved in
practice by referencing the event definitions on the blockchain
itself, similar to how smart contract code is stored on-chain
by reference in Ethereum.
• Subscription Information Maintenance: The subscription
information is also saved immutably in the system. This can
also be achieved in practice by referencing the subscription
information on the blockchain itself, similar to how smart
contract code is stored on-chain by reference in Ethereum.
• Event Matching: Every time a published event is processed,
the system determines all the smart contracts which are sub-
scribed to that particular event. The system also evaluates the
corresponding subscription logics of all those subscriptions to
determine which smart contracts to invoke in response to the
publishing event.
• Event Queueing: Based on the event matching, the system
queues all the matching subscribed smart contracts for exe-
cution. Since the system is asynchronous, there are no guar-
antees as to when the subscription triggers will be executed.
The system guarantees the queueing of these executions.
Since the publish/subscribe method is an anonymous and
indirect communication paradigm, the system decouples the
communicating entities i.e., the smart contracts in space and
execution flow:
• Space Decoupling: The publishing and the subscribing
smart contracts do not need to know each other since they are
not required to address each other for communication. Hence,
the event publisher does not maintain a record of all the
smart contracts which will be evoked in response to its event
publication. Likewise, the subscriber may subscribe to events
from multiple sources without specifying them individually.
• Time Decoupling: There is no provision for the publisher
or the subscriber to run within any time constraint. The
subscriber execution can be queued for a later time window
(depending on future events).
• Execution Flow Decoupling: The inherently asynchronous
communication decouples execution flow from inter-contract
communication. A smart contract is not blocked when sending
a notification to an external contract. The system can handle
the subscriber execution in response to the notification by
running it concurrently or queueing it for later. The subscriber
and publisher of events do not have to be synchronized in their
execution.

IV. ADVANTAGES OF EDSC
Based on our basic design framework from Section III, the

proposed smart contract system will offer attractive advantages
to the ever-evolving ecosystem of smart contracts:
• Lower Fee for All: We reason that the proposed platform

will result in a majority of the system participants having to
pay a lower gas fee for their executions, especially in a system
that is highly interfaced with external oracle systems through
oracle contracts. User smart contracts only pay for the gas
for executing themselves. In other words, the transaction cost,
which is now the cost of putting the event on-chain, is shared
by all the subscribers collectively.
• Improved Security: Ethereum smart contracts developed in

Solidity have been marred with security issues centered around

reentrancy and unexpected reverts [30]. This is because, by
design, an Ethereum transaction has to complete the contract
execution in the current as well as called contracts before
the transaction is considered complete. On the other hand,
the event-driven paradigm is free from such vulnerabilities,
since events are asynchronously published without waiting for
the subscriber contracts to run. This offers better security
guarantees.
• Less Network Clogging: Having multiple smart contracts

subscribe to a single event translates to lesser network usage
as opposed to smart contracts requiring transactions to be
broadcasted every time they need to execute or interface with an
oracle provider. Also, only a single event needs to be recorded
on-chain as opposed to multiple transactions. This is beneficial
for freeing up vital network bandwidth, which has recently been
clogged [19].
• Better Scalability: We also claim that an event-driven

system based on the proposed basic design is better positioned
for employing parallel-processing and sharding solutions for
scalability. This is because all executions are restricted in
context to the currently executing contract, and event-based
subscription triggering occurs asynchronously. All events can
be posted to a shared global non-sharded trie for inter-shard
communication borrowing from a similar concept in the Zilliqa
project [16].

V. EDSC SYSTEM DESIGN

We present the detailed design of the event-driven smart
contract system based on the current Ethereum design frame-
work. The rationale for this approach is that Ethereum is
arguably the simplest and unarguably the most widely adopted
smart platform to date. Using Ethereum’s design as the base
reference will allow the readers to grasp the design proposals
clearly and draw parallels between the two approaches. Note
that the design presented is general and independent of any
specific platform.

A. Event Definition Trie

All events have to be defined in the system before smart
contracts can subscribe to or publish them. The event def-
initions must be stored in the system immutably and free
from loss. In the Ethereum context, this may be achieved by
requiring all nodes to maintain the global event definition data
locally. This event definition data can then be referenced on
the blockchain for immutability. This is analogous to how the
current Ethereum design maintains the state of the system. In
other words, the event definition trie will need to be added to
the Ethereum system, as illustrated in Fig. 1.

As mentioned in Section III, any smart contract or external
account in the system has the ability to define a new event
type. This can be done by posting a special type of event
that is already predefined in the system. The special event’s
payload consists of the definition of the new event’s template.
Any node of the network, when processing this event, adds
the event definition to their local event definition database. An
event definition consists of the attributes listed in TABLE I.

TABLE I
EVENT DEFINITION ATTRIBUTES.

Attributes Description
Event Iden-
tifier

This is a unique identifier for every event type that is defined in
the system. One possible implementation is to use the hash of the
entire event definition.

List of Vari-
ables

A list of variables and their types which are posted as payload
whenever this event is published in the network.

Comments This part is for documentation purposes and can be used to write
a description of the event, document the variables in the payload,
for specifying other information for potential subscribers like event
generation frequency or for any other information which the event
definition originator desires.

B. Event Subscription Trie
Once an event has been defined in the network’s subscrip-

tion trie, the system participants, i.e., the smart contracts, can
subscribe to such events. Subscribing to an event allows a
smart contract to be executed in response to the particular
event getting posted in the network. Whenever the subscribed
event occurs, the subscriber smart contract’s default callback
function is asynchronously invoked, and the event’s unique
identifier and the payload are passed as arguments. The smart
contract can then execute the desired functionality accordingly.

Like event definitions, event subscription information also
needs to be stored in the system immutably and without loss.
We propose storing the subscription information in a similar
manner to the event definition storage where it is stored across
all nodes and referenced on the blockchain. In fact, the event
definitions and subscription information can be combined into
one trie which can be referenced on-chain, as shown in Fig. 1.

Like event definition, event subscription also occurs through
a special type of event that is predefined in the system. Smart
contracts post this event to signal their desire to subscribe to
a particular event type, which is passed as the payload of this
predefined subscription event. The nodes of the network then
update their subscription trie when this event is processed. In
addition to the event type, the system also allows subscribers
to specify other parameters of their subscription which are
summarized in in TABLE II.

All the subscription parameters are stored in the subscription
trie against each subscription and used by the system to deter-
mine which subscriptions to trigger in response to a generated
event. Every time a smart contract makes a subscription to an
event type, an entry against that event type is added in the
subscription trie with the subscriber smart contract’s address
and all the subscription parameters provided.
C. Event Generation

Events can be generated in the system in three ways. Firstly,
by external or non-contract accounts, which is similar to
generating a transaction in the Ethereum system. An external
account has to digitally sign such an event, similar to Ethereum
transactions. Such events are generated outside the system
and then broadcast in the network. Secondly, events can
also be generated by smart contracts using a specific event
generation opcode. Such events can be thought of as the
analogous functionality for the CALL opcode in the Ethereum
domain but working asynchronously. Thirdly, certain special
events can be generated by the system itself as described in
Section V-D. The second and third types of events do not
have to be digitally signed and only exist in the execution

TABLE II
EVENT SUBSCRIPTION ATTRIBUTES.

Attributes Description
Event Iden-
tifier

The unique identifier for the event to subscibe to.

Gas Rate Each subscriber contract at the time of subscription specifies the
gas price that they will pay for their execution as a result of
the subscription. The nodes decide which subscriptions to execute
based on the gas price that they are willing to pay. So setting
a higher gas price decreases the delay between event generation
and subscription execution. Note that the design can be adapted
to other public blockchain systems that apply alternative incentive
mechanisms for running smart contracts.

Subscription
Fee

The maximum fee that the subscriber is willing to pay the event
publisher in order to be triggered by its generation (e.g., gas limit
for event subscription in Ethereum).

Publisher
Identifier

The subscriber also has the provision to only subscribe for execu-
tion when the event is published signed by a specific public key.
This feature exists to allow a subscriber to only run in response to
event publishers which they trust and to prevent spamming in the
system. A subscriber may provide more than one public key.

Block Rate The subscriber can also specify a block rate to run the subscription.
For example, a subscriber may only want their subscription to be
executed once every one hundred blocks for a frequently occurring
event.

Event Rate The subscriber can also specify the event rate to run the subscrip-
tion. For example, a subscriber may only want their subscription
to be executed once every hundredth instance of a specific event
being generated.

Subscription
Logic (Con-
straints)

The subscriber may also use the subscription logic field to specify
any complex expression involving the block number, block time,
event payload, event publisher public key, etc. This expression can
then be evaluated to determine if the corresponding subscription
should be triggered. The computational cost of evaluating the
expression will be paid out of the subscriber’s account at a fixed
system rate.

Event-driven system Blockchain
Transaction Trie

State Trie

Receipts Trie

Storage Trie

Storage Root

Transactions

Root

State

Root

Receipts

Root

Event Definition Trie

Event Trie

Root Event Subscription Trie

Fig. 1. Subscription Trie addition to Ethereum design.

environment. Only the external account generated events are
recorded on-chain, similar to Ethereum’s transactions. More
on the topic follows under Section V-H.

An event generation message needs to contain the parame-
ters summarized in TABLE III.

D. Special Event Types

In addition to event definition and subscription/unsubscrip-
tion events, there are two other special types of events in
the system: the transaction event and the deploy event. A
transaction event is an event to which every smart contract
is subscribed by default and is triggered if the event contains
that smart contract’s address in its payload. The transaction
event is used to transfer tokens from one account/contract to
another. The system automatically increments and decrements
the receiver and sender’s balances depending upon the value
specified in the payload when this event is processed. Since

TABLE III
EVENT MESSAGE ATTRIBUTES.

Attributes Description
Event Iden-
tifier

The unique identifier of the event in the system.

Publisher
Identifier

The public key of the event publisher is required when generating
an event. The subscribers may use this information to subscribe to
events from specific entities only. If the event is generated through
an external account, then a digital signature corresponding to that
public key is required to establish identity.

Payload The event object also contains the event’s payload arguments as
defined in the event definition.

Subscription
Fee

This is the fee that any contract which subscribes to this event must
pay to the event publisher when it runs in response to the event.
This is different from the gas fee which is paid to the miners as
the computation, network, and storage costs of running the smart
contract. The subscription fee exists purely to incentivize event
publication on the network.

Inclusion
Fee

This is the fee that the publisher is willing to pay the miners for
the inclusion of their generated event in the block. This is only
required of external account generated events.

the transactions are also now events, the proposed system
processes all transfer of tokens asynchronously too.

The deploy event is used to deploy a new smart contract in
the system and specifies the contract code in its payload. It is
analogous to using a transaction in Ethereum to deploy a new
contract.

In addition to these two events, there can also be other
special events that are system generated. Currently, we propose
to have one special system generated event, which is the new
block event. This event can be generated by the system once
for every block and contain information like the block number
and other block parameters. This special event does not need
to have an Inclusion and Subscription fee, and neither requires
a signature. Smart contracts in the system may subscribe to
this event, in order to be triggered automatically at certain
block intervals.

E. Gas Fee for Computation

In a transaction-based system, the entity that generates a
transaction has to pay for the gas fee associated with the
computation, storage, and other costs of any smart contract
code executed due to the transaction. This includes the contract
code to which the transaction is sent and those contracts that
the recipient code calls or invokes.

Such a design cannot be adapted with an event-driven model
to avoid subscriber spamming. Hence, the natural design is to
have any subscriber pay for the gas fee associated with running
its code. This is also in line with the event-driven paradigm’s
space decoupling since the publisher does not have to concern
itself with the subscribers to its event. The event publishers pay
an inclusion fee (specified as part of the event data structure)
each time they publish an event to the chain. This fee is
specified explicitly if the event is published externally. In case
the event is published internally i.e., through a smart contract,
the fee is determined by the gas fee being paid by the publisher
contract for its execution.

The other side of this problem is a malicious contract
spamming the network with events and draining subscriber
contracts of their ether. This can be addressed by allowing
smart contracts to specify, at the time of subscription, to
only run for events if generated by a particular public key
(contain the corresponding digital signature) as described

under heading V-C. Such a system works, for example, even if
an oracle platform has multiple nodes because they can all still
generate events with the same public key signature. Additional
logic and using the block rate and event rate variables also help
prevent these spams from occurring.

All smart contracts specify at the time of subscription the
gas price they are willing to pay for their execution. The
system prioritizes subscription execution, depending upon the
gas price offered. Perhaps in the future, a provision can also
be made for a floating gas price, with a maximum value and
a weight value defined in the subscription parameters and the
gas price computed by the network dynamically based on the
variable system traffic and the constant weight parameter.

F. Incentivization for Event Publishing
Smart contracts that publish events have no incentive to

do so unless they are being compensated. For example, an
oracle interface contract providing external data to the system
through events needs to be compensated for its services. In
a transaction-based system, this is pretty straightforward. The
user contract pays the interface contract when it interfaces
with it i.e., generates the first transaction. In an event-driven
system, this can be achieved by having the publisher describe
a compensation rate each time it publishes an event. This is
done through the subscription fee parameter in the event data
structure. Each subscriber then has to pay the publisher the set
fee in order for the system to execute the subscriber contract
code’s subscription. So the subscriber pays both the miners
and the publisher for the subscription execution. Subscribers
specify the maximum rate they are willing to pay through the
subscription fee field at the time of subscribing.

G. Execution Independence and Atomicity
In the event-driven paradigm, smart contracts only interact

with each other through posting and listening to events. Smart
contracts do not have to make calls and wait for the execution
of other smart contracts before resuming their execution.
This is the execution flow decoupling which the event-driven
paradigm provides. Hence, once a smart contract starts ex-
ecuting in the proposed system, it completes its execution
independently of other smart contracts. The system must
ensure that the currently running smart contract finishes its
execution before any new contracts triggered by the completed
contract are run. The system guarantees atomicity in smart
contract execution, and any exceptions raised in execution
result in the current smart contract execution being reverted.
However, no other contracts and their state is affected by the
reversion.

This approach saves the systems from many troubles that ex-
ist in the transaction-based systems like cyclic executions and
execution livelocks/deadlocks. This paradigm also prevents the
publisher contract’s execution state from being reverted by
any subscriber contracts running out of gas or throwing an
exception.

The system can still allow the reuse of smart contract code
by having a similar opcode like that of DELEGATECALL in
Ethereum. Since the called contract’s code is executed in the
state of the current contract, this will not violate the system’s
paradigm.

TABLE IV
COMPARISON OF TRANSACTION-DRIVEN AND EVENT-DRIVEN MODELS

Transaction-driven model Event-driven model
Communication Smart contracts and external accounts communicate through

transactions.
Smart contracts and external accounts communicate through
events.

Execution Trig-
ger

Smart contract executions are triggered by transactions initiated
through external accounts.

Smart contract executions are triggered by events generated by
external accounts and smart contracts.

Computation
Cost

Execution costs of the triggered contract and all its calls are
paid by the transaction initiator.

Subscribing smart contracts pay for their own execution costs and
specify the gas fee when subscribing.

Synchronization All communication between participants is synchronous with
the triggering transaction.

All communication between participants is asynchronous.

Token Transfer Tokens are transferred between participants through transac-
tions.

Tokens are transferred between participants through a special
transaction event.

Direct On-chain
record

Only external account generated transactions are directly
recorded on-chain.

Only external account generated transaction events are directly
recorded on-chain.

Indirect On-
chain record

The root of the transaction trie, state trie(includes storage trie)
and receipts trie is referenced on chain.

The root of the transaction trie, state trie(includes storage trie),
event state trie (includes event definition and event subscription
trie) and receipts trie is referenced on chain.

Inter-contract
Sends

Inter-contract token transfers are completed when triggering
transaction is processed.

All inter-contract token transfers are asynchronous.

Transaction/Event
Queueing

A pending transactions pool stores all the transactions that are
yet to be processed.

A pending buffer stores all the events and subscription triggers
that are yet to be processed.

Transaction/Event
Ordering

Miners are free to decide the order of the transactions in a
block.

Miners order the events/subscription triggers based on the gas
price offered.

Transaction/Event
effects

A transaction’s effects on the system state only occur when the
transaction is processed.

An event’s effects on the system state may occur indefinitely (until
the queueing buffer clears).

H. Subscription Execution and Selection

In a transaction-based system, the selection of contracts to
execute is relatively straightforward. Upon receiving a new
block, any node begins executing transactions in the order that
they are present in the block transactions list, and for each
transaction execution, all subsequent in-lying smart contract
calls and executions are executed first in the form of a LIFO
stack.

The situation is somewhat trickier in an event-based system.
If executing a smart contract generates one or more events,
we have to decide which subscriptions to execute first. The
previous heading has already established that a running smart
contract execution will complete before any other subscrip-
tions are processed. Hence in the event-driven system, a buffer
is maintained of all pending subscription executions and events
to process. We mandate that the list is ordered based on
whichever subscriptions pay more gas fee. If two subscriptions
pay the same gas fee, then the older defined subscription gets
the preference.

Whenever a new event is generated while running a smart
contract, all its subsequent relevant subscriptions are added to
the execution buffer, which is somewhat similar to the pending
transaction pool in Ethereum. Subscriptions go into the buffer
list, and their position is determined by the gas fee that they
are paying. Whenever a subscription execution completes, the
system will pick the next subscription from the list to execute.
This buffer is not discarded between blocks and allows event-
triggered subscription from previous blocks to run too, pro-
vided space is available. However, unlike the transaction-based
model, there is no guarantee of a subscription being executed
in the current or even succeeding blocks. Subscriptions paying
more gas fee will always get the precedence in the system.
Events that are generated externally have to be processed
independently. The processing of an external event refers to
determining the corresponding subscriptions to execute against

Execution Buffer

Event g4T5 Payload: […]

Signature: […]

Gas:

7 wei

Subscription 0x4R5eL

Payload: […]

Gas:

5 wei

Subscription 0xW5Bb2

Payload: […]

Gas:

3 wei

Event fT3a Payload: […]

Signature: […]

Gas:

2 wei

...

...

Subscription 0xl96Wd

Payload: […]

Gas:

2 wei

Execution Buffer

Event g4T5 Payload: […]

Signature: […]

Gas:

9 wei

Subscription 0x4R5eL

Payload: […]

Gas:

5 wei

Subscription 0xW5Bb2

Payload: […]

Gas:

3 wei

Gas:

4 wei

...

Subscription 0xl96Wd

Payload: […]

Gas:

3 wei

Subscription 0xl3SA7

Payload: […]

Gas:

9 wei

Gas:

2 wei

Event fT3a Payload: […]

Signature: […]

Subscription 0xaFt9c

Payload: […]

Gas:

3 wei

...

Event

Processing
1.

2.

3.

4.

5.

6.

7.

Fig. 2. Event processing in execution buffer.

it. External events also exist in the execution buffer competing
for processing with subscription triggers, and the inclusion fee
specified when generating these events determines when the
system will process them. Once an event is processed by the
system, its corresponding subscription triggers replace it in the
pending executions buffer as illustrated in Fig. 2.

Having a deterministic fee-determined execution rule allows
us to do away with putting all events on-chain. Since the
system follows a gas price determined precedence rule for
subscription executions, all nodes will arrive at the same state,
and there is no need to put contract generated events on-
chain. This allows the system to be as efficient in its chain
space usage as the transaction-based system in the worst-case
scenario. Any advantage provided by using event subscriptions
is a bonus.
I. Block Validation

For block validation, each node looks at only the events
generated by the external accounts present in the event list
for the current block. The node then proceeds to place these
events in the pending subscription buffer. It then begins
subscription executions/event processing from the pending

subscription buffer, and subscription triggers for all the internal
events generated by contracts are also placed in the buffer as
they occur. The node keeps on executing subscriptions/event
processing until the block gas limit is reached, or the buffer is
empty. The node then compares the state, receipt, and event
subscription/definition trie references to the ones provided in
the block. If they match, the block is approved.
J. Parallel Processing and Sharding

The system design allows it to be a better candidate for
sharding and parallelization solutions than transaction-driven
models. Since a smart contract being executed is not dependent
on other contracts’ states, other contracts can be simultane-
ously executed in parallel on other shards. Because contract
execution atomicity is guaranteed, there is no need for state
locks. In case sharding is to be implemented, we propose
having a shared subscription/event definition trie between the
shards and a shared pending execution buffer. The shards can
then divide contracts among themselves and only execute the
relevant ones. Since the pending subscription execution list
will be shared, they will have visibility to any events generated
for the contracts in their domain. Any new events generated
will be broadcast on the network for all shards to see.

A summarized comparison between the transaction-driven
execution model and the event-driven design proposed in this
section is presented in TABLE IV.

VI. SECURITY CONSIDERATIONS

The event-driven smart contract platform design offers nu-
merous security benefits over a traditional transaction-driven
model. For instance, when EDSC is integrated with Ethereum,
the system can prevent inter-smart contract communication-
related vulnerabilities, including reentrancy and denial-of-
service attacks [30]. Since the proposed design provides exe-
cution flow decoupling, smart contract execution independence
and atomicity, these vulnerabilities are no longer present
in such a design. Aside from these vulnerabilities at the
programming and toolchain layer, EDSC can also mitigate vul-
nerabilities arising from transaction ordering dependence [31].
EDSC achieves this by enforcing an order for event processing
and subscription execution based on the gas fee. This design
choice also provides the additional benefit of not having to
put smart contract generated events on-chain and allows for
reduced block confirmation times. Below, we discuss some
attack scenarios and mitigation approaches.

Denial-of-service (DoS) is a realistic risk for public
blockchains. For instance, an attacker may try to flood the
event processing module with event messages, or launch star-
vation attacks by polluting the event buffer. These attacks can
be mitigated with a variety of countermeasures, for instance,
imposing a limit on event update and event creation rates
for an account. In addition, event publishing also has a gas
cost associated with it, which is paid by the publishers,
to discourage them from publishing events unnecessarily.
Depending on the gas limit of an event, a registered event
can be kept in the system for only a bounded number of
blocks (limit can be re-fueled later by the creator with a
transaction). Similarly, generating a new subscription/event
definition and deploying a new contract also have an associated
gas fee, which the event publisher must pay analogous to

Ethereum’s associated gas fee for deploying a new contract.
These fees serve as a deterrent against spamming and DoS
attacks on the system. Furthermore, event manager enforces
that for each event and user account, there is a maximum
number of transactions that can be triggered in each epoch,
which prevents event buffer pollution. To further mitigate the
risk of event publishers spamming the system, EDSC allows
subscribers to use variables like the Event Rate and Block Rate
as well as the Subscription Logic expression to control their
frequency of subscription execution.

Malicious market exploiting and related cheating behaviors
are another type of threats. In many DeFi applications such
as DEX, a smart contract is applied to execute financial
transactions. Such systems are exposed to various market-
exploiting behaviors (e.g., frontrunning) [32]. Similar market-
exploiting behaviors may pose a risk to EDSC. For instance,
when a node observes an event update where financial value
can be extracted, the node may send a shortcut message
that registers to the event or updates its event registration to
boost its priority in the event buffer. Similarly, when a miner
detects an opportunity that value is extractable, the miner may
be incentivized to directly insert a new event subscription
or modify existing subscriptions. Since miner controls event
processing, the miner may take advantage of this position to
order events or transactions generated from event subscriptions
in a particular epoch in ways to extract values besides block
reward and transaction fees. In EDSC framework, such attacks
are prevented by the global event subscription state. The event
subscription state is protected with Merkle hash tree and the
root hash is included as part of block header. Updates to the
global event subscription state are initiated through on-chain
transactions and confirmed using the underlying blockchain
consensus mechanism. The EDSC system enforces minimal
delay for changes to the global event subscription state to be
effective (minimal block delay). When a block is propagated
and received by a peer, the peer will validate the transactions
that are triggered by events according to the global event
subscription state. This means that any foul play or dishonest
manipulation of event triggered transactions can be detected
by other peers and the block will be rejected.

EDSC is also susceptible to “freeloading” risk, i.e., freeload-
ers in the system can observe the events being published and
copy the payload and publish the same events themselves
at a lower subscription fee. This problem also exists for
oracle systems like ChainLink [12]. Several methods can be
applied to address this issue. For instance, ChainLink uses
a commitment scheme to prevent such attack, which can be
easily incorporated into EDSC.

Since EDSC can be implemented on any smart contract
platform, vulnerabilities that are present in smart contract itself
are not considered. We summarize all the security analysis in
TABLE V.

VII. IMPLEMENTATION

A. Event Enabled Blockchain Node
Design of EDSC model can be implemented by extending

Ethereum blockchain. We used Golang implementation of
Ethereum client as the target. Extensions include new mes-
sages for creating events, sending event updates, managing

TABLE V
SUMMARY OF EVENT-DRIVEN DESIGN SECURITY CONSIDERATIONS.

Layers Threats Analyses

Economic
Market exploiting attack (from miners
or event subscribers)

Addressed by enforcing block delay for any update to event subscription states
and Merkle hash.

Miner ordering attack to realize ex-
tractable values

Addressed by validation of scheduling of triggered smart contracts according
to the global subscription states by peers (protected by hash of subscription
states stored in block header).

Programming & Toolchain

Reentrancy Attack

Addressed in the system by execution flow decoupling and having execution
independence and atomicity.

DoS with unexpected revert
DoS with gas limit exceeded
Unchecked call return value
Call stack depth limit exceeded

Protocol
Transaction ordering dependence Addressed by having gas price based execution order for subscriptions and

events.
Event publishing freeloading Addressed by commitment scheme.
Event spam attack on subscriber by
publisher

Addressed by allowing subscriber to specify subscription logic and frequency.

DoS by event spamming Addressed by having gas fee associated with event registration and publication.
Fairness Addressed by enforcing upper bounds of triggered smart contracts per user

account and/or per event in each epoch.
Data Various

Not event-driven design dependent, and addressed by blockchain protocols.Consensus Various
Network Various

event subscriptions, processing events, generating new trans-
actions in real-time based on event updates, and etc.

In Ethereum, P2P module is responsible for communicating
with the underlying P2P network using a gossip-type strategy.
It receives and routes various messages through communica-
tion with the neighbors (nodes that are peers) under protocol
manager. In case of EDSC, in addition to blocks and trans-
actions, a node receives and delivers event-related messages
and transactions to the extended protocol manager module that
handles event-related messages and decides the next step of
processing. There are dedicated messages for event creation,
event updates, event subscription, event unsubscription, and
event subscription updates. Except for event updates, event
messages are special transactions that affect the global event
states. A gas fee is charged for operations such as creating an
event, making an event subscription, or updating an existing
event subscription.

There is a dedicated address for receiving event messages.
Event messages are signed using ECDSA and secp256k1 dig-
ital signatures by the senders. There is a nonce in each event-
related message. Event creation transaction is used to register
an event, identified with a 160-bit long unique address (created
from the sender’s account address and event definition). In
addition to event payload data, each event update message
identifies its associated event address and sender’s address.

Each node implements an event buffer and event manager
for processing event messages. When a node receives a new
event message, its ProtocolManager module first sends the
new message to the event manager for validation, including
verifying signatures and checking other constraints and secu-
rity requirements such as event update rates. When validation
is passed, event transactions will be forwarded to the Pend-
ingPool of Ethereum TxPool where incoming and pending
transactions are stored. Event update messages are handled
by the event buffer (evtBuffer) because event updates are not
processed as transactions.

TxPool and event manager notify the ProtocolManager

Event ID
(160 bits)

Creator addr
Public key
Gas limit
Gas price
Comment
Event updates[]
Subscribers[]
…

Subscription
(SC addr, account)

Nonce
Gas price
Gas limit
Constraints
Data to SC when
triggered
…

Event Update

Nonce
Event addr
Sender addr
Payload
Signature (ECDSA – r, s, v)

Subscription
(SC addr, account)

Nonce
Gas price
Gas limit
Constraints
Data to SC when
triggered
…

Subscription
(SC addr, account)

Nonce
Gas price
Gas limit
Constraints
Data to SC when
triggered
…

Subscription
(SC addr, account)

Nonce
Gas price
Gas limit
Constraints
Data to SC when
triggered
…

Subscription
(SC addr, account)

Nonce
Gas price
Gas limit
Constraints
Data to SC when
triggered
…

Event Update

Nonce
Event addr
Sender addr
Payload
Signature (ECDSA – r, s, v)

Event Update

Nonce
Event addr
Sender addr
Payload
Signature (ECDSA – r, s, v)

Event Update

Nonce
Event addr
Sender addr
Payload
Signature (ECDSA – r, s, v)

Event ID
(160 bits)

Subscription
(SC addr, account)

Event Update

Subscription
(SC addr, account)Subscription

(SC addr, account)

Event Update Event Update

Fig. 3. Illustration of event data structures and states.

module that there is a new event message that can be
forwarded to other neighbors. Then, the ProtocolManager
randomly selects

√
N downstream peers that do not know the

event messages as the targets to forward this message. For the
remaining N -

√
N downstream peers, the event message hash

will be forwarded. A peer will receive event message hashes
from its neighbors. When a node randomly selects one of the
neighbors that have sent it the new event message each peer
receives the hash of a new message, the node waits for a while
(e.g., 500 ms). During this period, if there is no other neighbor
sending the same event message to it, the nsh, and sends a
GetEvt information to the selected neighbor for requesting the
new event message. After the requested neighbor returns the
event message, the node first validates it. After validation, it
is either added to the TxPool or evtBuffer of the node.

The extended protocol manager module processes the re-
ceived event messages and delivers event updates to evtBuffer.
A node maintains and keeps track of event subscription state,
as illustrated in Fig. 3. There is a map where the node can

retrieve a list of subscriptions for each event update. Each
subscription links to a smart contract and user account. For
each event address, subscriptions are ranked based on priority
(e.g., using gas price or other metrics of priority). For each
event address, event updates are ordered using nonce. For each
epoch, based on the event subscription state and events in
evtBuffer, a new set of event triggered transactions are created.
The event triggered transactions are added to the node’s
PendingPool. In Ethereum client, PendingPool maintains the
pending transactions that have not been included in the blocks
on the blockchain but are ready to be packaged into a new
block. Similar to how PendingPool tracks pending transac-
tions for each account, the set of event triggered transactions
enforces separate upper bounds for number of transactions per
event update and number of transactions for account.

Algorithm 1: Event processing algorithm.
Input : tx pool txPool , event updates newEvts , event

subscription state evtSubState
Output: block , updated txPool

1 Create a new empty block
2 Set tmpEvts = newEvts
3 While
4 stop when txPool is empty
5 stop when block limit is reached (gas limit or block size)
6 Set tmpEvts = validate-and-filter-evts(tmpEvts)
7 Set newTxs = create-tx-based-on-evts(evtSubState ,
tmpEvts)

8 Set txPool = merge newTxs with txPool
9 Set pendingTxs = tx-filter(txPool)

10 Set sortedTxs = sort(pendingTxs)
11 Set selectedTxs = pick top n best txs from sortedTxs
12 block , tmpEvts = execute-txs(selectedTxs , block)
13 End while loop

After event triggered transactions are added to the Pending-
Pool, the way that they are sorted and picked for execution and
block creation very much follows the same design of Ethereum
client. In case of PoW, the incentive includes block reward and
transactions fee. A miner uses the gas mechanism to calculate
the fee for transactions with smart contracts. To determine the
fee for transactions and blocks, it uses attributes such as gas
limit and gas price. In short, used gas multiplied by the gas
price corresponds to the fee that the miner receives, where
used gas depends on the computational requirements of the
smart contract [33], [34], but never exceeds the gas limit.

B. Modeling Tools
For modeling EDSC and experimenting with design options

in scalable manner, we extended BlockSim [35], a framework

TABLE VI
OPERATIONS

Operation Meaning
validate-and-filter-evt Validate and filter events including verification of sig-

natures and constraints such as rate of event updates.
create-tx-based-on-
evts

Create txs based on event subscription states (enforce
rules such as k txs at most for each event based on
priority).

tx-filter Filter pending txs, for instance m txs at most for each
account.

sort Sort txs based on priority (e.g., gas fees).
execute-txs Execute pending txs and add to block.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 20 30 40 50 60 70 80

block interval (second)

Block Interval vs. SC Delays

baseline
edsc

Fig. 4. Block intervals and SC delays (seconds).

and software tool based on discrete-event dynamic models
for blockchain systems. BlockSim supports the analysis of
a variety of blockchain deployments as well as for design
exploration and experimentation. It implements models for
Bitcoin, Ethereum and other consensus algorithms. Results
of BlockSim have been validated by comparing with design
properties and measurement studies available from real-life
blockchains such as Bitcoin and Ethereum. We modified
BlockSim’s full modeling technique for Ethereum to sup-
port the EDSC framework and event triggered transactions.
The model includes events, event subscriptions, transactions,
blocks, transaction pool, and blockchain ledger. Events and
transactions created by a node are propagated to all other nodes
in the network. Upon receiving the event or transaction, the
recipient node appends it to the corresponding pool/buffer for
event or transaction processing.

VIII. EXPERIMENT RESULTS AND ANALYSIS

We conducted experiments with the extended clients and
BlockSim modeling tool. The implemented model of Block-
Sim for Ethereum has been validated using real data [35].
The model takes a set of parameters as inputs. These current
implementation of Ethereum baseline model compromises of
12.42s block interval and 2.3s block delay [35]. The model
is configured to use the same parameters as currently in
Ethereum. The results are based on averages of independent
simulation runs of 10,000 blocks. We compare EDSC smart
contract delay with the baseline delay of oracle contract based
design. The delay is measured as the time when event update
is sent by an oracle node to the time that the transaction of
a triggered smart contract is added to a block of the longest
global chain.

As indicated by the results, EDSC achieves shorter delay
for running contracts that subscribe to events, on average often
less than time of block interval. In contrast, the baseline model
incurs delay longer than three blocks (similar delays observed
in Ethereum contracts in real life using oracle contracts: +3
block delays - see Fig. 8). This pattern is observed under
different block intervals, varying from 8s to 60s.

Both block delay and event/transaction delay can affect the
latency between the event update and inclusion of transactions
from the triggered contracts. One can assume that this latency
likely increases when either block delay or event/transaction
delay grows larger. Results in Fig.5 and 6 confirm this hypoth-
esis. However, delays in the baseline model appear to be more
affected negatively by block delay or transaction delay increase
as illustrated by the expanding distance between EDSC delay
and the baseline model delay.

Other factors may also have influences on latency of event
driven contracts. Block size is one such factor. As suggested by

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8

block propagation time (second)

Block Propagation Time vs. SC Delays

baseline
edsc

Fig. 5. Block propagation time and SC delays (seconds).

 10

 20

 30

 40

 50

 60

 200 400 600 800 1000

transaction propagation time (millisecond)

Transaction Propagation Time vs. SC Delays

baseline (Binterval=8s)
edsc (Binterval=8s)

baseline (Binterval=12.42s)
edsc (Binterval=12.42s)

Fig. 6. Event/transaction propagation time (millisecond) and SC delays
(seconds).

results in Fig.7, decreasing block size will negatively impact
contract latency under both models. However, the latency
benefit of the EDSC model over the baseline is not affected.

On average, delays under the EDSC model could be from
2.2 to 4.6 times less than the delays of the baseline model
(depending on block interval, block delay, etc), which demon-
strates its effectiveness for supporting contracts that demand
timely execution based on events.

IX. EXAMPLE USE CASES

The event-driven paradigm is, by design, a better fit
for many emerging smart contract applications. The event-
triggered execution, asynchronous communication, and con-
tract execution independence and atomicity features are par-
ticularly instrumental in building scalable, adaptable, and
easy to maintain applications on the smart contract enabled
blockchains. The paradigm also enables these applications
to be more reactive to external or internal triggers without
overloading the system. In particular, financial applications
like algorithmic trading, deploying financial instruments, real-
time analysis, or digital asset management are naturally suited
for the event-based model. The model also has been proven
instrumental in a diverse application range consisting of supply
chain management, online betting, oracle systems, gaming, etc.
[36]. Here we elaborate on the design’s benefits by discussing
two broad real-world smart contract use cases.

a) Digital Asset Trading and DeFi Applications: DeFi
applications relay on third parties to report real-time infor-
mation about the market price of the assets from real-world
(off-chain) sources [37]. Consider implementing a digital
asset trading platform on a blockchain-based smart contract
platform. The system would need regular and timely updates

Fig. 7. Block capacity and SC delays (seconds).

Fig. 8. ChainLink response average block delay (May 2019 to Oct 2020).

on various market indicators like stock prices, trade volume,
market trends, etc. Most of this external data is retrieved by
employing oracle systems. In a traditional transaction-based
system, this would require tedious and meticulous interfacing
with multiple oracle system interfaces. Regularly managing the
application would also not be easy. The implementer would
have to figure out the interfacing details multiple times and
familiarize themselves with the data formatting across multiple
interfaces and providers. The two-way transactions for oracle
fetches would burden the system if such applications were
widely deployed.

In an event-driven platform, the integration is much simpler,
cleaner, and easier to manage. The subscriber needs to know
only the trusted publisher’s address and the identifier of the
event that they are interested in. The publisher might be a
single entity or an oracle system. The event payload format
and documentation would be available on-chain and would not
differ if multiple sources were publishing the same event. For
example, if ten smart contracts are listening for a particular
stock price from a publisher, it would not result in ten or
twenty transactions going on-chain. Instead, only one external
event is recorded on-chain, and all ten contracts can run
by subscribing to this one event. In addition to a cleaner
interfacing mechanism, easier maintenance, and lesser data
on-chain, the event-driven paradigm also allows subscribers
to listen for particular transactions. Since transactions are just
a type of event in our design, participants using such financial
applications might subscribe to transactions only from a par-
ticular party, only to a particular party, or random transactions
exceeding a particular amount, etc. This is not achievable in
the transaction-driven model. A transaction model might use
external listeners to observe such events on the chain and then
make transactions to trigger specific executions but cannot do
it without incurring a block delay. We looked at the transaction
data for ChainLink [12], which is the most popular oracle
service provider for DeFi applications and see it having a 3-4
block delay on average while responding to oracle requests in
the last eighteen months as shown in Fig. 8.

b) Prediction Market Application: Similar to the first
scenario, a prediction application on the blockchain also bene-
fits from an event-driven paradigm’s features. Smart contracts
can lay dormant unless executed by external events like the
result of a sports match or an election. For long-term or small
bets, it might not be feasible to use the transaction model to
poll for these external events or pay the fee for interfacing
with an oracle system. The event-driven design makes such
applications more feasible for smaller amounts since the event
generation cost (maybe from a reputable news agency) is

spread over numerous participants (subscribers). Again, the
model also allows such an application to, for example, monitor
newly placed predictions and adjust odds accordingly.

Hence, it shows that for many use cases, the event-driven
design would be more cost-efficient (both computation and
oracle fee), scalable, cleaner to implement, easier to maintain
and allow for applications to have greater visibility on-chain
data and token exchange.

It is worth mentioning that research on oracle service
is complementary to event driven model of smart contract
execution. These two are related but separate research topics.
Our system can integrate various types of oracle services such
as TEE based oracle service [38], oracle service employing
secure multi-party computation [39], decentralized oracle
service, etc. In fact, an event driven smart contract platform
can arguably provide better support for integrating oracle
services.

X. CONCLUSION

We proposed the concept for a novel event-driven smart
contract platform with built-in event processing support on
the blockchain. We presented a basic design as well as
implementation of such a system in practice and commented
on its potential benefits to smart contract use cases. We also
presented analysis on its security aspects. Experiment results
based on BlockSim extension are shown to illustrate perfor-
mance advantages of event driven smart contract model. Being
the first attempt to combine the two avenues of blockchain-
based smart contracts and event-driven design, our work paves
the way for future research on the subject in various directions.
Future work can explore the application of this paradigm to
implementing a sharding solution for scalability.

REFERENCES

[1] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” https:
//bitcoin.org/bitcoin.pdf, 2008.

[2] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol. 2, no. 9, 1997.

[3] V. Buterin et al., “Ethereum: A next-generation smart contract and de-
centralized application platform,” URL https://github. com/ethereum/wik-
i/wiki/% 5BEnglish% 5D-White-Paper, vol. 7, 2014.

[4] J. Kehrli, “Blockchain 2.0-from bitcoin transactions to smart contract
applications,” Niceideas, November. Available at: https://www. niceideas.
ch/roller2/badtrash/entry/blockchain-2-0-frombitcoin, 2016.

[5] EOS.IO, “Eos.io technical white paper v2,” https://github.com/eosio/
documentation/blob/master/TechnicalWhitePaper.md, 2018.

[6] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the thirteenth EuroSys conference, 2018,
pp. 1–15.

[7] S. D. Lerner, “Rootstock: Bitcoin powered smart contracts v11,” https:
//www.rsk.co/Whitepapers/RSK-White-Paper-Updated.pdf, 2019.

[8] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Interna-
tional Cryptology Conference. Springer, 2017, pp. 357–388.

[9] D. Mazieres, “The stellar consensus protocol: A federated model for
internet-level consensus,” Stellar Development Foundation, vol. 32,
2015.

[10] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic, “Trust-
worthy blockchain oracles: Review, comparison, and open research
challenges,” IEEE Access, vol. 8, pp. 85 675–85 685, 2020.

[11] A. Egberts, “The oracle problem-an analysis of how blockchain oracles
undermine the advantages of decentralized ledger systems,” Available at
SSRN 3382343, 2017.

[12] S. Ellis, A. Juels, and S. Nazarov, “Chainlink: A decentralized oracle
network,” https://link.smartcontract.com/whitepaper, 2017.

[13] Provable, https://provable.xyz, accessed on Sep. 10, 2020.
[14] J. Peterson, J. Krug, M. Zoltu, A. K. Williams, and S. Alexander,

“Augur: a decentralized oracle and prediction market platform,” 2019.
[15] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,

“Chainspace: A sharded smart contracts platform,” arXiv preprint
arXiv:1708.03778, 2017.

[16] T. Z. Team, “The zilliqa technical whitepaper,” https://docs.zilliqa.com/
whitepaper.pdf, 2017.

[17] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 931–
948.

[18] B. Liu and P. Szalachowski, “A first look into defi oracles,” arXiv
preprint arXiv:2005.04377, 2020.

[19] R. McIntosh, “Ethereum struggles under the weight of
defi growth: Is eth doomed to fail?” Finance Magnates,
https://www.financemagnates.com/cryptocurrency/news/
ethereum-struggles-under-the-weight-of-defi-growth-is-eth-doomed-to-fail,
September 2020.

[20] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM computing surveys, vol. 35,
no. 2, pp. 114–131, 2003.

[21] H. Parzyjegla, “Engineering publish/subscribe systems and event-driven
applications,” Ph.D. dissertation, University of Rostock, Germany, 2012.

[22] M. Richards, Software Architecture Patterns. O’Reilly Media, Inc,
2015.

[23] C. Cachin et al., “Architecture of the hyperledger blockchain fabric,” in
Workshop on distributed cryptocurrencies and consensus ledgers, vol.
310, 2016.

[24] R. Hull, “Blockchain: distributed event-based processing in a data-
centric world,” in Proceedings of the 11th ACM International Conference
on Distributed and Event-based Systems, 2017, pp. 2–4.

[25] T. Jennings, “Listen to events from a distributed blockchain
network,” https://developer.ibm.com/technologies/java/tutorials/
listen-to-events-from-a-distributed-blockchain-network/, 2020.

[26] E. Baizel, “Building an event-based application with amazon
managed blockchain,” https://aws.amazon.com/blogs/database/
building-an-event-based-application-with-amazon-managed-blockchain/,
2020.

[27] C. Li and B. Palanisamy, “Eventwarden: A decentralized event-driven
proxy service for outsourcing arbitrary transactions in ethereum-like
blockchains,” ArXiv, vol. abs/2004.12793, 2020.

[28] P. Merriam, “Ethereum alarm clock,” Online document. URL http://docs.
ethereum-alarm-clock. com/en/latest, 2015.

[29] C. Li and B. Palanisamy, “Decentralized privacy-preserving timed exe-
cution in blockchain-based smart contract platforms,” 2018 IEEE 25th
International Conference on High Performance Computing (HiPC), pp.
265–274, 2018.

[30] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum sys-
tems security: Vulnerabilities, attacks, and defenses,” ACM Computing
Surveys, vol. 53, no. 3, pp. 1–43, 2020.

[31] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254–269.

[32] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges,” arXiv preprint
arXiv:1904.05234, 2019.

[33] K. Baird, S. Jeong, Y. Kim, B. Burgstaller, and B. Scholz, “The
economics of smart contracts,” arXiv preprint arXiv:1910.11143, 2019.

[34] A. Aldweesh, M. Alharby, E. Solaiman, and A. van Moorsel, “Perfor-
mance benchmarking of smart contracts to assess miner incentives in
ethereum,” in 2018 14th European Dependable Computing Conference
(EDCC), 2018, pp. 144–149.

[35] M. Alharby and A. van Moorsel, “Blocksim: An extensible simulation
tool for blockchain systems,” Frontiers in Blockchain, vol. 3, Jun 2020.
[Online]. Available: http://dx.doi.org/10.3389/fbloc.2020.00028

[36] A. Hinze, K. Sachs, and A. Buchmann, “Event-based applications and
enabling technologies,” in Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, 2009, pp. 1–15.

[37] B. Liu, P. Szalachowski, and J. Zhou, “A first look into defi oracles,”
arXiv preprint arXiv:2005.04377, 2020.

[38] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” Cryptology ePrint Archive,
Report 2016/168, 2016, https://eprint.iacr.org/2016/168.

[39] F. Zhang, S. K. D. Maram, H. Malvai, S. Goldfeder, and A. Juels, “Deco:
Liberating web data using decentralized oracles for tls,” arXiv preprint
arXiv:1909.00938, 2019.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/eosio/documentation/blob/master/TechnicalWhitePaper.md
https://github.com/eosio/documentation/blob/master/TechnicalWhitePaper.md
https://www.rsk.co/Whitepapers/RSK-White-Paper-Updated.pdf
https://www.rsk.co/Whitepapers/RSK-White-Paper-Updated.pdf
https://link.smartcontract.com/whitepaper
https://provable.xyz
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://www.financemagnates.com/cryptocurrency/news/ethereum-struggles-under-the-weight-of-defi-growth-is-eth-doomed-to-fail
https://www.financemagnates.com/cryptocurrency/news/ethereum-struggles-under-the-weight-of-defi-growth-is-eth-doomed-to-fail
https://developer.ibm.com/technologies/java/tutorials/listen-to-events-from-a-distributed-blockchain-network/
https://developer.ibm.com/technologies/java/tutorials/listen-to-events-from-a-distributed-blockchain-network/
https://aws.amazon.com/blogs/database/building-an-event-based-application-with-amazon-managed-blockchain/
https://aws.amazon.com/blogs/database/building-an-event-based-application-with-amazon-managed-blockchain/
http://dx.doi.org/10.3389/fbloc.2020.00028
https://eprint.iacr.org/2016/168

	EDSC: An Event-Driven Smart Contract Platform
	Recommended Citation
	Authors

	I Introduction
	II Related Work
	III Overview of EDSC
	IV Advantages of EDSC
	V EDSC System Design
	V-A Event Definition Trie
	V-B Event Subscription Trie
	V-C Event Generation
	V-D Special Event Types
	V-E Gas Fee for Computation
	V-F Incentivization for Event Publishing
	V-G Execution Independence and Atomicity
	V-H Subscription Execution and Selection
	V-I Block Validation
	V-J Parallel Processing and Sharding

	VI Security Considerations
	VII Implementation
	VII-A Event Enabled Blockchain Node
	VII-B Modeling Tools

	VIII Experiment Results and Analysis
	IX Example Use Cases
	X Conclusion
	References

