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Abstract: People with diabetic foot frequently exhibit gait and balance dysfunction. Recent ad-
vances in wearable inertial measurement units (IMUs) enable to assess some of the gait and balance
dysfunction associated with diabetic foot (i.e., digital biomarkers of gait and balance). However,
there is no review to inform digital biomarkers of gait and balance dysfunction related to diabetic
foot, measurable by wearable IMUs (e.g., what gait and balance parameters can wearable IMUs
collect? Are the measurements repeatable?). Accordingly, we conducted a web-based, mini review
using PubMed. Our search was limited to human subjects and English-written papers published in
peer-reviewed journals. We identified 20 papers in this mini review. We found preliminary evidence
of digital biomarkers of gait and balance dysfunction in people with diabetic foot, such as slow
gait speed, large gait variability, unstable gait initiation, and large body sway. However, due to
heterogeneities in included papers in terms of study design, movement tasks, and small sample size,
more studies are recommended to confirm this preliminary evidence. Additionally, based on our mini
review, we recommend establishing appropriate strategies to successfully incorporate wearable-based
assessment into clinical practice for diabetic foot care.

Keywords: diabetic foot; diabetic neuropathies; peripheral arterial disease; foot ulcer; gait; walking;
postural balance; wearable electronic devices; inertial measurement unit; digital technology

1. Introduction

The global epidemic of diabetes imposes significant burdens on healthcare systems [1].
The International Diabetes Federation estimated that in the year 2021, 537 million people
were living with diabetes worldwide, and that this number would increase to 643 million by
the year 2030 and 783 million by the year 2045 [2]. Diabetes is a cause of 6.7 million deaths
worldwide [2]. Medical expenditures for diabetes are enormous: more than $200 billion in
the USA alone and nearly $1 trillion worldwide [2,3].

Diabetes comprises a group of disorders that results in high blood-glucose levels,
namely hyperglycemia, caused by deficits in insulin response [4]. There are two main types
of diabetes: type 1 diabetes, also known as insulin-dependent diabetes, and type 2 diabetes,
characterized by insulin-resistance [5,6]. More than 90% of people with diabetes have type
2 diabetes [6]. If poorly managed, diabetes causes a number of complications.

Diabetic foot, defined as “infection, ulceration or destruction of tissues of the foot
associated with diabetic neuropathy or peripheral artery disease in the lower limb of
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a person with diabetes” [7], is one of the most common and devastating complications
of diabetes, which affects 2–6% of people with diabetes annually [8,9]. Diabetic foot
accounts for more than 100,000 lower-extremity amputations in the USA and more than
1,000,000 lower-extremity amputations worldwide each year [10,11]. Remarkably, lower-
extremity amputation is more fearful than death for people with diabetic foot [12].

Although diabetic foot is generally a consequence of multiple factors, common causal
factors are sensory neuropathy causing sensory loss, motor neuropathy causing biome-
chanical abnormalities, autonomic neuropathy causing dry skin, and peripheral arterial
disease causing claudication, rest pain, and tissue loss in the lower-extremity [13]. All these
factors inherently limit gait and balance [14].

Gait and balance dysfunction has significant negative impacts on survival and quality
of life of people with diabetic foot [15]. For example, the risk of fall and likelihood to be
injured from a fall in people with diabetic foot is 23 and 15 times greater, respectively, than
in people without diabetic foot [16]. Gait and balance dysfunction in people with diabetic
foot is associated with an onset or progression of fear of falling, and restricts normal daily
activities [17–19]. Furthermore, gait and balance dysfunction alters kinematics and kinetics,
such as excessive plantar pressure and shear stress, and may contribute to the development
of a foot ulcer or leads to deterioration of an already developed foot ulcer [20,21]. Thus,
assessing gait and balance with valid and effective tools has been a critically important
aspect of the management of diabetic foot.

Traditionally, visual observation in clinical settings or 3D-optoelectronic-motion cap-
ture systems in laboratory settings have been popularly utilized to assess gait and balance
in people with diabetic foot. However, visual observation relies on clinicians’ experiences
and is limited to gait speed, and 3D-optoelectronic-motion capture systems are expensive,
time-consuming, and may not be suitable for translational research [22,23]. Instrumented
walkways are another popular method; however, they are also expensive and limited to a
relatively short distance (four to eight meters).

Wearable inertial measurement units (IMUs) are a viable option that can address limi-
tations of the popular methods. Wearable IMUs, typically composed of an accelerometer
and a gyroscope, have shown to provide repeatable and valid data in gait and balance
assessment across clinical settings [24,25]. For example, Schwenk and colleagues used
five IMUs attached on the shins, thighs, and lower back, and reported spatiotemporal
parameters during gait and balance parameters during quiet standing tasks [26]. Further-
more, recent technical advances enabled wearable IMUs to assess gait and balance outside
traditional gait laboratories in diabetic foot [27].

Nevertheless, we found no published reviews regarding these aspects. Accordingly,
we aimed to summarize up-to-date findings regarding gait and balance assessment in
people with diabetic foot using wearable IMUs. In particular, because gait and balance
assessment using wearable IMUs is an emerging area of research, which has been studied
only in recent years, and our topics (i.e., diabetic foot, wearable IMUs, gait and balance) are
specific rather than broad, we conducted a mini review in this study. The primary focuses
of our mini review were parameters of gait and balance measurable by wearable IMUs in
people with diabetic foot, and repeatability of such parameters. Additionally, based on our
mini review, we aimed to discuss limitations from previous papers and suggest areas of
future research in gait and balance assessment in people with diabetic foot using IMUs.

2. Materials and Methods

Since this study was a mini review, we performed a web-based, electronic search using
one database, PubMed (which covers a significant number of citations [≥34 million] for
biomedical research papers), for papers published before 9 August 2022. The following
terms were used for PubMed search: “diabetic neuropathies”, “diabetic foot”, “peripheral
arterial disease”, “foot ulcer”, “gait”, “walking”, and “postural balance”. The full search
query is described in Table 1.
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Table 1. PubMed search query.

Concept Search Query

Diabetic Foot

“Diabetic Neuropathies”
[MeSH Terms] OR “Diabetic
Foot” [MeSH Terms] OR “Foot
Ulcer” [MeSH Terms] OR
“Peripheral Arterial Disease”
[MeSH Terms])

AND Gait and Balance

“Gait” [MeSH Terms] OR
“Walking” [MeSH Terms] OR
“Postural Balance” [MeSH
Terms])

Our inclusion criteria were English-written papers that assessed gait and balance
performance using IMUs in people with diabetic foot. If a paper utilized either an ac-
celerometer or a gyroscope, we included the paper. Additional inclusion criteria were
papers reported outcomes related to kinematic variables during gait and/or quiet standing,
such as spatiotemporal parameters during gait or center-of-mass displacement during quiet
standing. An experienced reviewer (G.E.K.) conducted screening of the searched papers
based on titles and abstracts. This reviewer had sufficient experiences in such tasks and
published multiple reviews previously [28,29].

Exclusion criteria were review papers, editorial comments, conference abstracts, and
letters from the final paper selection. We limited our search of papers to human-subject
studies, and thus, excluded animal studies. Additionally, if a paper reported a validity of
IMUs in comparison to another motion-analysis system or subjective reports within one
group, we excluded the paper. Furthermore, because the focus of this review is diabetic
foot, if a paper included people with diabetes, assessed gait, and balance performance
using IMUs, but did not specify the presence or a diagnosis of foot complications in the
people of diabetes, the paper was excluded from final selection.

3. Results
3.1. Search Results

The flow diagram for paper selection is shown in Figure 1. A total of 986 papers
were identified through PubMed. After screening titles and abstracts, 964 papers were
excluded because they did not meet our inclusion and exclusion criteria, described in
the previous section. After evaluating eligibility of the remaining 22 articles, two more
papers were excluded based on full-text review because they were validation studies
comparing two different measurements. Consequently, 20 papers were included in the
current review [30–49].
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Figure 1. Flow chart for selecting papers.

3.2. Study Characteristics

We summarized the findings from the final 20 papers in Table 2. All included papers
were published between 2004 and 2021: a total of thirteen studies were conducted in the
USA, three studies in Switzerland, one study in Australia, one study in the UK, one study
in China, and one study jointly conducted in the USA and Qatar.

Table 2. Summary of included papers. A list of abbreviations was added at the bottom of this table.

Study
Title
Country

Study Design
Participants Tasks

Sensor Type
(Manufacturer)
Placement
Sampling Frequency

Key Measures Findings

Menz et al., 2004 [30]
Walking stability and
sensorimotor
function in older
people with diabetic
peripheral
neuropathy
Australia

Observational
DPN
n = 30 (22 men; 8 women)
Age (years) = 73.5 ± 8.3
BMI (kg/m2) = 28.2 ± 6.0
Duration of DM (years) = 12.3 ± 8.4
HbA1c (%) = 7.6 ± 1.3
VPT (Volts) = 37.6 ± 11.4
HC
n = 30 (22 men; 8 women)
Age (years) = 73.9 ± 9.0
BMI (kg/m2) = 25.6 ± 3.4

Gait
20 m
Two surface
conditions

• Level
• Irregular

3D Accelerometer
(NA)
n = 2
Head (n = 1)
Sacrum (n = 1)
Frequency not
reported

Gait speed
Cadence
Step length
Step time variability
Smoothness
(harmonic ratio)

↓ Gait speed, cadence,
step length, and
smoothness on both
surfaces in DPN vs.
HC
↑ Step time variability
on irregular surface
in DPN vs. HC
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Table 2. Cont.

Study
Title
Country

Study Design
Participants Tasks

Sensor Type
(Manufacturer)
Placement
Sampling Frequency

Key Measures Findings

Allet et al., 2009 [31]
Gait alterations of
diabetic patients
while walking on
different surfaces
Switzerland

Observational
DPN
n = 15 (sex ratio not reported)
Age (years) = 61.29 ± 6.52
Height (m) = 1.67 ± 0.08
Weight (kg) = 86.94 ± 9.13
Duration of
DM (years) = 8.83 ± 4.60
Blood sugar level not reported
VPT (Scale) = 2.63 ± 1.58
DM (without neuropathy)
n = 15 (sex ratio not reported)
Age (years) = 55.83 ± 8.20
Height (m) = 1.72 ± 0.12
Weight (kg) = 90.30 ± 22.15
Duration of
DM (years) = 9.87 ± 7.78
Blood sugar level not reported
VPT (Scale) = 5.65 ± 1.14
HC
n = 15 (sex ratio not reported)
Age (years) = 57.42 ± 4.31
Height (m) = 1.73 ± 0.10
Weight (kg) = 79.93 ± 11.53
VPT (Scale) = 6.80 ± 0.86

Gait
Distance not reported
Three surface
conditions

• Tar
• Grass
• Stones

IMU
(BioAGM, Lausanne,
Switzerland)
n = 4
Shin (n = 2;
right and left)
Thigh (n = 2;
right and left)
Frequency = 200 Hz

Gait speed
Cadence
Stride length
Stance phase
Double support
Gait cycle time
Step time variability

↓ Gait speed, cadence,
and stride length in
DPN vs. HC, but not
DPN vs. DM
↑ Stance phase,
double support, gait
cycle time, and stride
time variability on all
surfaces in DPN vs.
HC, but not DPN
vs. DM

Allet et al., 2010 [32]
An exercise
intervention to
improve diabetic
patients’ gait in a
real-life environment
Switzerland

Interventional (RCT):
IG (Exercise intervention
60 min per session; two sessions per
week; 12 weeks)
DPN
n = 35 (sex ratio not reported)
Age (years) = 63.0 ± 8.0
BMI (kg/m2) = 30.5 ± 6.0
Disease duration not reported
Blood sugar level not reported
VPT (Scale) = 3.2 ± 1.3
CG (No treatment or advice)
DPN
n = 36 (sex ratio not reported)
Age (years) = 64.0 ± 8.9
BMI (kg/m2) = 31.5 ± 5.3
Disease duration not reported
Blood sugar level not reported
VPT (Scale) = 3.3 ± 1.3

Gait
Distance not reported
Two surface
conditions

• Tar
• Cobblestone

Gyroscope
(NA)
n = 4
Shin (n = 2;
right and left)
Thigh (n = 2;
right and left)
Frequency = 200 Hz

Gait speed
Cadence
Stride length
Stance time
Gait cycle time
Step time variability
Time points:
Baseline
12-week
6-month

All gait and balance
variables were similar
between IG and CG
at baseline
↑ Gait speed, cadence,
and stride length in
IG at 12-week and
6-month vs. baseline
on both surfaces
↓ Gait cycle time and
stance time in IG at
12-week and 6-month
vs. baseline
on both surfaces

Crews et al., 2012 [33]
Impact of strut height
on offloading
capacity of removable
cast walkers
USA

Observational
DPN with diabetic foot risk
classification:
Grade 1 (n = 8)
Grade 3 (n = 1)
Grade 4 (n = 2)
n = 11 (7 men, 4 women)
Age (years) = 51.4 ± 10.0
BMI (kg/m2) = 33.9 ± 7.3
Duration of DM (years) = 14.5 ± 9
Blood sugar level not reported
VPT value not provided

Gait
20 m
Four shoe conditions

• Ankle-high
RCW

• Knee-high
RCW

• Shoe RCW
• Standard

athletic shoe

IMU
(BioAGM, Lausanne,
Switzerland)
n = 5
Shin (n = 2;
right and left)
Thigh (n = 2;
right and left)
Lumbar region (n = 1)
Frequency = 200 Hz

Gait speed
Stride length
Stride time
Double support
Gait speed variability

↓ Gait speed and
stride length in
ankle-high RCW and
knee-high RCW vs.
standard athletic shoe
↑ Stride time, double
support, and gait
speed variability in
ankle-high RCW and
knee-high RCW vs.
standard athletic shoe
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Table 2. Cont.

Study
Title
Country

Study Design
Participants Tasks

Sensor Type
(Manufacturer)
Placement
Sampling Frequency

Key Measures Findings

Najafi et al., 2013a
[34]
The impact of
footwear and walking
distance on gait
stability in diabetic
patients with
peripheral
neuropathy
USA

Observational
DPN
n = 12 (8 men; 4 women)
Age (years) = 60 ± 12
BMI (kg/m2) = 33.2 ± 6.4
Duration of DM (years) = 10 ± 13
Blood sugar level not reported
VPT (Volts; right foot) = 56 ± 25
VPT (Volts; left foot) = 61 ± 29
HC
n = 8 (6 men; 2 women)
Age (years) = 60 ± 6
BMI (kg/m2) = 27.0 ± 3.2
VPT (Volts; right foot) = 19 ± 4
VPT (Volts; left foot) = 20 ± 3

Gait
Four conditions
(two distance × two
footwear)

• Short (7 m)
• Long (20 m)
• Barefoot
• Regular shoes

IMU
(BioSensics, Newton,
MA, USA)
n = 5
Shin (n = 2;
right and left)
Thigh (n = 2;
right and left)
Lower back (n = 1)
Frequency = 100 Hz

Gait initiation steps
Gait initiation speed
Gait speed
Stride length
Stride time
Double limb support
Gait speed variability
CoM sway

All variables were
similar between DPN
and HC in the
short-distance
condition regardless
of footwear
conditions
↓ Gait initiation
speed, gait speed,
and stride length in
DPN vs. HC in the
long-distance
condition regardless
of footwear
conditions
↑ Gait initiation steps,
stride time,
double-limb support,
and gait-speed
variability in the
short-distance
condition regardless
of footwear
conditions
CoM sway was
similar between DPN
and HC in all
conditions

Najafi et al., 2013b
[35]
A novel plantar
stimulation
technology for
improving protective
sensation and
postural control in
patients with diabetic
peripheral
neuropathy: A
double-blinded,
randomized study
USA

Interventional (RCT)
IG (Electrical plantar stimulation;
30 min per treatment; 5 treatments
per week; 6 weeks)
DPN
n = 25 (sex ratio not reported)
Age (years) = 61.6 ± 8.3
BMI not reported
Disease duration not reported
HbA1c (%) = 7.6 ± 1.6
VPT (Volts) = 46.8 ± 23
CG (Sham stimulation)
DPN
n = 29 (sex ratio not reported)
Age (years) = 61.4 ± 8.2
BMI not reported
Disease duration not reported
HbA1c (%) = 7.1 ± 1.5
VPT (Volts) = 37.6 ± 22

Quiet standing
Two conditions

• Eyes open
• Eyes closed

Measured in a
sub-sample

IMU
(BioSensics, Newton,
MA, USA)
n = 2
Shin (n = 1)
Lower back (n = 1)
Frequency not
reported

CoM sway area
Time points:
Baseline
2-week
4-week
6-week
6-month

All variables were
similar between IG
and CG at baseline.
↓ CoM sway area at
weeks 2, 4, and 6 vs.
baseline in IG
↑ CoM sway area at
weeks 2, 4, and 6 vs.
baseline in CG

Grewal et al., 2013
[36]
Diabetic peripheral
neuropathy and gait:
Does footwear
modify this
association?
USA

Observational
DPN with active DFU
n = 16 (sex ratio not reported)
Age (years) = 58.3 ± 4.4
BMI (kg/m2) = 29.5 ± 3.7
Disease duration not reported
Blood sugar level not reported
VPT value not provided
DPN without active DFU
n = 15 (sex ratio not reported)
Age (years) = 54.2 ± 11.3
BMI (kg/m2) = 31.2 ± 5.9
Disease duration not reported
Blood sugar level not reported
VPT value not provided
HC
n = 8 (sex ratio not reported)
Age (years) = 59.6 ± 6
BMI (kg/m2) = 27 ± 3.2

Gait
200 feet
Habitual pace

IMU
(BioSensics, Newton,
MA, USA)
Sensor placement not
reported
Sampling frequency
not reported

Gait initiation steps
Gait initiation
distance
Gait speed
Stride length
Gait cycle time
Double stance
Gait speed variability
CoM sway
Knee RoM

↑ Gait initiation steps,
gait speed variability
in DPN groups vs.
HC
↓ Knee RoM in DPN
groups vs. HC
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Table 2. Cont.

Study
Title
Country

Study Design
Participants Tasks

Sensor Type
(Manufacturer)
Placement
Sampling Frequency

Key Measures Findings

Kelly et al., 2013 [37]
Fear of falling is
prevalent in older
adults with diabetes
mellitus but is
unrelated to level of
neuropathy
USA

Observational
DPN
n = 16 (10 men; 6 women)
Age (years) = 73 ± 8
BMI (kg/m2) = 30.6 ± 5.7
Duration of DM (years) = 17 ± 11
HbA1c (%) = 8.9 ± 2.7
VPT (Volts) = 49.7 ± 21.9
DM without neuropathy
n = 18 (5 men; 13 women)
Age (years) = 62 ± 7
BMI (kg/m2) = 31.2 ± 5.9
Duration of DM (years) = 13 ± 13
HbA1c (%) = 7.2 ± 1.6
VPT (Volts) = 18.3 ± 4.5

Gait
20 m
Habitual pace

IMU
(BioSensics, Newton,
MA, USA)
n = 5
Shin (n = 2;
right and left)
Thigh (n = 2; right
and left)
Lower back (n = 1)
Frequency not
reported

Gait initiation steps
Gait speed
Stride length
Stride time
Double stance
Gait speed variability
CoM sway

↑ Gait initiation steps
and double stance in
DPN vs. DM without
neuropathy
Gait initiation steps
and double stance
were significantly
correlated with VPT

Wrobel et al., 2014
[38]
A novel shear
reduction insole effect
on the thermal
response to walking
stress, balance, and
gait for diabetic
neuropathy
USA

Interventional
DFO; immediate effect
DPN
n = 27 (14 men; 13 women)
Age (years) = 65.1
BMI (kg/m2) = 33.9
Disease duration not reported
Blood sugar level not reported
VPT value not provided

Gait
200 steps
Two conditions

• Habitual pace
• Dual task

Quiet standing
Two conditions

• Eyes open
• Eyes closed

IMU
(BioSensics, Newton,
MA, USA)
Sensor placement not
reported
Frequency not
reported

Gait
Gait initiation steps
Gait initiation speed
Gait initiation double
stance
Gait speed
Stride length
Stride time
Double stance
Gait speed variability
CoM sway
Quiet standing
CoM sway area

↓ Gait initiation
double stance for
DFO vs. standard
shoe during habitual
walking

Grewal et al., 2015
[39]
Sensor-based
interactive balance
training with visual
joint movement
feedback for
improving postural
stability in diabetics
with peripheral
neuropathy: A
randomized
controlled trial
USA

Interventional (RCT)
IG (Balance training exercise with
real-time visual feedback; twice a
week; 4 weeks)
DPN
n = 19 (male = 8, female = 11)
Age (years) = 62.58 ± 7.98
BMI (kg/m2) = 31.78 ± 7.53
Duration of
DM (years) = 17.17 ± 10.08
HbA1c (mmol/mol) = 65.23 ± 19.65
VPT (Volts) = 34.28 ± 8.16
CG (Not specified)
DPN
n = 16 (male = 8, female = 8)
Age (years) = 64.90 ± 8.50
BMI (kg/m2) = 29.58 ± 4.24
Duration of
DM (years) = 17.40 ± 9.42
HbA1c (mmol/mol) = 65.40 ± 29.91
VPT (V) = 33.52 ± 6.16

Quiet standing
Two condition

• Eyes open
• Eyes closed

IMU
(BioSensics, Newton,
MA, USA)
n = 2
Shin (n = 1)
Lower back (n = 1)
Frequency = 100 Hz

CoM sway
Ankle sway
Hip sway
Time points:
Baseline
4-week

↓ CoM, ankle and hip
sway at 4-week vs.
baseline in IG during
eyes open

Toosizadeh et al.,
2015 [40]
The influence of
diabetic-peripheral
neuropathy on local
postural muscle and
central sensory
feedback balance
control
USA

Observational
DPN
n = 18 (11 men; 7 women)
Age (years) = 65 ± 8
BMI (kg/m2) = 29.3 ± 5.4
Duration of DM (years) = 19 ± 11
Blood sugar level not reported
VPT (mV) = 34.6 ± 7.0
HC
n = 18 (7 men; 11 women)
Age (years) = 69 ± 3
BMI (kg/m2) = 27.0 ± 4.1

Quiet standing
Two conditions

• Eyes open
• Eyes closed

IMU
(BioSensics, Newton,
MA, USA)
n = 2
Sensor placement not
reported
Frequency not
reported

CoM sway
Local-control balance
Central-control
balance

↑ CoM sway,
local-control balance,
and central-control
balance in DPN vs.
HC for both
conditions
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Table 2. Cont.

Study
Title
Country

Study Design
Participants Tasks

Sensor Type
(Manufacturer)
Placement
Sampling Frequency

Key Measures Findings

Toosizadeh et al.,
2016 [41]
Alterations in gait
parameters with
peripheral artery
disease: The
importance of
pre-frailty as a
confounding
variable
USA

Observational
PAD
n = 17 (10 men; 7 women)
Age (years) = 74 ± 8
BMI (kg/m2) = 26.8 ± 3.5
ABI = 0.83 ± 0.04
HC
n = 24 (12 men; 12 women)
Age (years) = 76 ± 7
BMI (kg/m2) = 27.9 ± 5.7

Gait
25 steps
Two conditions

• Habitual pace
• Fast pace

IMU
(BioSensics, Newton,
MA, USA)
n = 5
Shin (n = 2;
right and left)
Thigh (n = 2;
right and left)
Lower back (n = 1)
Frequency not
reported

Gait initiation steps
Gait initiation
distance
Gait speed
Stride length
Gait cycle time
Double support
Gait speed variability
Trunk sway
Knee RoM

↑ Gait initiation steps,
gait-initiation distance,
and trunk sway in PAD
vs. HC for both paces
↑ Gait speed in PAD vs.
HC for both paces
↓ Stride length, ↑ Gait
cycle time and double
support in PAD vs. HC
for habitual pace
↑ Knee RoM and
gait-speed variability in
PAD vs. HC for
fast pace

Thiede et al., 2016
[42]
Gait and balance
assessments as
early indicators of
frailty in patients
with known
peripheral artery
disease
USA

Observational
Pre-frail PAD
n = 9 (4 men; 5 women)
Age (years) = 74.4 ± 7.5
BMI (kg/m2) = 27.1 ± 3.1
ABI = 0.79 ± 0.14
Non-frail PAD
n = 8 (6 men; 2 women)
Age (years) = 73.4 ± 9.9
BMI (kg/m2) = 26.4 ± 4.1
ABI = 0.88 ± 0.12
Note: Fried criteria for frailty
measurement

Gait
25 steps
Three conditions

• Habitual pace
• Dual task
• Fast pace

Quiet standing
Two conditions

• Eyes open
• Eyes closed

IMU
(BioSensics, Newton,
MA, USA)
n = 5
Shin (n = 2;
right and left)
Thigh (n = 2;
right and left)
Lower back (n = 1)
Frequency not
reported

Gait
Gait speed
Stride length
Gait cycle time
Double support
Trunk sway
Gait-speed variability
Quiet standing
CoM sway
Ankle sway
Hip sway

↓ Gait speed, ↑ Gait
cycle time, double
support, gait-speed
variability in pre-frail
PAD vs. non-frail PAD
for dual task walking
↑ Double support and
trunk sway in pre-frail
PAD vs. non-frail PAD
for fast pace
No significant
difference
in quiet standing

Najafi et al., 2017
[43]
Using plantar
electrical
stimulation to
improve postural
balance and plantar
sensation among
patients with
diabetic peripheral
neuropathy: A
randomized double
blinded study
USA and Qatar

Interventional (RCT)
IG (Wearable plantar electrical
stimulation; 1 h daily; 6 weeks; at
home)
DPN
n = 17 (12 men; 5 women)
Age (years) = 56 ± 11
BMI (kg/m2) = 28.7 ± 5.9
HbA1c (%) = 8.8 ± 1.9
Disease duration not reported
VPT (Volts) = 41 ± 7
CG (Sham stimulation)
DPN
n = 11 (9 men; 2 women)
Age (years) = 64 ± 10
BMI (kg/m2) = 31.5 ± 8.0
HbA1c (%) = 9.6 ± 2.2
Disease duration not reported
VPT (Volts) = 40 ± 10

Gait
10 m
Two conditions

• Habitual pace
• Fast pace

Quiet standing
Two conditions

• Eyes open
• Eyes closed

IMU
(BioSensics, Newton,
MA, USA)
n = 2 (gait)
Shin (n = 2;
right and left)
n = 2
(quiet standing)
Shin (n = 1)
lower back (n = 1)
Frequency not
reported

Gait
Gait speed
Cadence
Stride length
Stride time
Quiet standing
CoM sway
Ankle sway
Hip sway
Time points:
Baseline
6-week

All variables were
similar between IG and
CG at baseline
↑ Gait speed, cadence,
and stride length ↓
stride time at 6-week vs.
baseline in IG
↓ Ankle sway at 6-week
vs. baseline
in IG

Esser et al., 2018
[44]
Single sensor gait
analysis to detect
diabetic peripheral
neuropathy: A
proof of principle
study
UK

Observational
DPN
n = 17 (14 men; 3 women)
Age (years) = 63 ± 9
BMI (kg/m2) = 33.6 ± 7.6
Duration of DM (years) = 24 ± 13
HbA1c (%) = 8.8 ± 1.0
HC
n = 42 (30 men; 12 women)
Age (years) = 61 ± 4
BMI (kg/m2) = 31.6 ± 3.9

Gait
10 m
Habitual pace

IMU
(NA)
n = 1
Lower back (n = 1)
Frequency = 100 Hz

Gait speed
Cadence
Stride length
Stride time

↓ Gait speed, cadence,
and stride length ↑
stride time in DPN
vs. HC

Kang et al., 2019
[45]
The effect of daily
use of plantar
mechanical
stimulation
through
micro-mobile foot
compression device
installed in shoe
insoles on vibration
perception, gait,
and balance in
people with
diabetic peripheral
neuropathy
USA

Interventional:
Micro-mobile foot compression; 4 h
daily; 4 weeks
Severe DPN
n = 30 (11 men; 19 women)
Age (years) = 68.1 ± 9.7
BMI (kg/m2) = 33.4 ± 6.1
Disease duration not reported
Blood sugar level not reported
VPT (Volts) = 27.4 ± 12.6

Gait
10 m
Three conditions

• Habitual pace
• Dual task
• Fast pace

Quiet standing
Four conditions (two
eyes conditions ×
two foot conditions)

• Eyes open
• Eyes closed
• Double stance
• Semi-tandem

stance

IMU
(BioSensics, Newton,
MA, USA)
n = 5 (gait)
Shins (n = 2;
right and left)
Thigh (n = 2;
right and left)
Lower back (n = 1)
Frequency not
reported
n = 2 (quiet standing)
Shin (n = 1)
lower back (n = 1)
Frequency not
reported

Gait
Gait speed
Stride length
Stride time
Double support
Quiet standing
CoM sway
Ankle sway
Hip sway
Time points:
Baseline
4-week

↑ Gait speed and stride
length at 4-week vs.
baseline for habitual
pace
↑ Gait speed and stride
length ↓ stride time and
double support at
4-week vs. baseline for
dual task walking
↑ Gait speed ↓ double
support at 4-week vs.
baseline for fast pace
↓ CoM sway at 4-week
vs. baseline for double
stance eyes open and
eyes closed
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Table 2. Cont.

Study
Title
Country

Study Design
Participants Tasks

Sensor Type
(Manufacturer)
Placement
Sampling Frequency

Key Measures Findings

Kang et al., 2020
[46]
Characteristics of
the gait initiation
phase in older
adults with
diabetic peripheral
neuropathy
compared to
control older adults
USA

Observational
DPN
n = 38 (20 men; 18 women)
Age (years) = 72.6 ± 5.6
BMI (kg/m2) = 31.63 ± 6.07
Disease duration not reported
Blood sugar level not reported
VPT (Volts) = 32 V ± 14
HC
n = 33 (13 men; 20 women)
Age (years) = 77.9 ± 8.2
BMI (kg/m2) = 27.05 ± 4.23

Gait
12 m
Two conditions

• Habitual pace
• Dual task

IMU
(BioSensics, Newton,
MA, USA)
n = 5
Shins (n = 2;
right and left)
Thigh (n = 2;
right and left)
Lower back (n = 1)
Frequency = 100 Hz

Gait-initiation steps
Gait-initiation
distance
Gait speed
CoM sway

↑ Gait-initiation steps,
gait-initiation distance,
and CoM sway, ↓ gait
speed in DPN vs. HC
for both walking

Ling et al., 2020 [47]
The impact of
diabetic foot ulcers
and unilateral
offloading footwear
on gait in people
with diabetes
USA

Observational
DPN with DFU wearing unilateral
offloading
n = 12 (10 men; 2 women)
Age (years) = 55.6 ± 2.7
BMI (kg/m2) = 30.9 ± 1.3
Blood sugar level not reported
Disease duration not reported
VPT not reported
DPN without DFU
n = 27 (20 men; 7 women)
Age (years) = 64.3 ± 1.5
BMI (kg/m2) = 30.9 ± 1.0
Blood sugar level not reported
Disease duration not reported
VPT not reported
HC
n = 47 (22 men; 25 women)
Age (years) = 62.9 ± 2.3
BMI (kg/m2) = 29.0 ± 0.9

Gait
10 m
Habitual pace

IMU
(BioSensics, Newton,
MA, USA)
n = 5
Shins (n = 2; right and
left)
Thigh (n = 2; right
and left)
Lower back (n = 1)
Frequency not
reported

Gait speed
Stride length
Gait cycle time
Double support
Gait-speed variability
Stride-length
variability
Double-support limp
Step-length limp

↓ Gait speed, and stride
length, ↑ gait cycle time,
double-support limp,
and step- length limp in
DPN with DFU wearing
unilateral offloading vs.
DPN without DFU and
HC
↑ Double support,
gait-speed variability,
stride-length variability
in DPN with DFU
wearing unilateral
offloading and DPN
without DFU
vs. HC

Du et al., 2021 [48]
The feasibility and
effectiveness of
wearable sensor
technology in the
management of
elderly diabetics
with foot ulcer
remission: A
proof-of-concept
pilot study with six
cases
China

Observational
Longitudinal
DM with recently recovered from
DFU
n = 6 (sex ratio not reported)
Offloading footwear group (n = 3)
Regular footwear group (n = 3)
Age (years): between 55–80
Duration of
DM: lasting for > 5 years
Blood sugar level not reported
VPT not reported

Gait
1 min
Habitual walk
Quiet standing
Four conditions (two
eyes conditions ×
two surface
conditions)

• Eyes open
• Eyes closed
• Hard surface
• Soft surface

IMU
(BioSensics, Newton,
MA, USA)
n = 5 (gait)
Shin (n = 2;
right and left)
Thigh (n = 2;
right and left)
Lower back (n = 1)
Frequency = 100 Hz
n = 2 (quiet standing)
Shin (n = 1)
lower back (n = 1)
Frequency = 100 Hz

Gait:
Gait speed
Stride length
Double support
Swing phase
Quiet standing:
CoM sway
Ankle sway
Hip sway
Timepoints:
Baseline
1-week
1-month
4-month
6-month

↑ Gait speed and stride
length, ↓ double
support in offloading
footwear group
Quiet standing
remained similar

Lanzi et al., 2021
[49]
Supervised exercise
training improves
6 min walking
distance and
modifies gait
pattern during
pain-free walking
condition in
patients with
symptomatic lower
extremity
peripheral
artery disease
Switzerland

Interventional:
Supervised exercise training
PAD
n = 29 (15 men; 14 women)
Age (years) = 65.4 ± 9.9
BMI (kg/m2) = 28.7 ± 6.2
ABI = 0.79 ± 0.14

Gait
6 min walk test
Habitual pace

IMU
(GaitUp, Renens,
Switzerland)
n = 2
Sensor placement not
specified
Frequency not
reported

Gait speed
Stride length
Stride time
Stride frequency
Double support
Stance phase
Swing phase
Loading response
Heel-strike pitch
angle
Toe-off pitch angle
Max-heel clearance
First max-toe
clearance
Second max-toe
clearance
Minimum toe
clearance
Time points:
Baseline
3-month

↑ Gait speed, stride
length, swing phase,
and loading response,
↓ stance phase at
3-month vs. baseline
↑ Toe off pitch angle at
3-month
vs. baseline

Abbreviations: DM = Diabetes mellitus; DPN = Diabetic peripheral neuropathy; DFU = Diabetic foot ulcer;
BMI = Body-mass index; HC = Healthy controls; RCT = Randomized controlled trial; IG = Intervention group;
CG = Control group; IMU = Inertial measurement unit; CoM = Center of mass; DFO = Dynamic foot orthoses;
PAD = Peripheral artery disease; ABI = Ankle brachial index; RCW = Removable case walker; RoM = Range of
motion; NA = Not available; VPT = Vibration perception threshold.
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3.3. Study Design and Participant Characteristics

Of the twenty included studies, seventeen studies included people with diabetic-
peripheral neuropathy, and three studies included people with peripheral-arterial disease.
A total of thirteen studies were non-interventional observational studies, and seven studies
were interventional studies, among which four studies were randomized controlled trials.

Among the thirteen observational studies, eight studies compared people with diabetic-
peripheral neuropathy and healthy controls, among which two studies included those with
active diabetic-foot ulcer; and one study compared people with peripheral- artery disease
and healthy controls. Three studies included only one group of people with diabetic-
peripheral neuropathy, and one study included only one group of people with recently
healed diabetic-foot ulcer.

Four randomized controlled trials tested the effectiveness of exercise or electrical
stimulation within groups of people with diabetic-peripheral neuropathy. Three non-
randomized interventional studies tested the effectiveness of diabetic-foot orthoses and
mechanical stimulation in people with diabetic-peripheral neuropathy, and the effectiveness
of exercise in people with peripheral-artery disease.

For the seventeen studies which included people with diabetic-peripheral neuropathy,
eleven studies reported vibration-perception threshold to measure the severity of neuropa-
thy, and six studies reported blood sugar level. The three studies which included people
with peripheral-artery disease, reported ankle-brachial index to assess lower-extremity
blood flow.

3.4. Tasks and IMUs

Common tasks assessed with IMUs were gait and quiet standing in various conditions.
Of the twenty studies included, twelve studies tested gait, three studies tested quiet
standing, and the other five studies tested both gait and quiet standing (Figure 2).
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In terms of methods, of the twenty included studies, eighteen studies used IMUs and
two studies used either 3D accelerometers or gyroscopes (Figure 3). The number of sensors
was between one and five. Sampling frequencies, if reported, were either 100 Hz or 200 Hz.
Common sensor positions for gait assessment were the lower back, thighs, and shins for
the five-sensor system; the thighs and shins for the four-sensor system; the shins for the
two-sensor system; and the lower back for the one-sensor system. One study that used 3D
accelerometers for gait assessment attached the sensors to the head and lower back. For
assessing balance during quiet standing, two IMUs were commonly used with the sensors
attached to the lower back and shin.
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3.5. Measures and Key Findings

The most popular gait measures were gait speed, stride length (or step length), and
stride time (or gait cycle time or step time), each of which was reported in 100% of gait
studies (Figure 4). Gait-variability measures (i.e., fluctuations in stride-to-stride), such as
gait-speed variability, stride-time variability, and stride-length variability were reported
in ten studies. Gait-initiation variables, including the number of steps and distance to be
taken from standing posture to steady state walking, were reported in six studies. There
was one study which quantified smoothness using the harmonic ratio, and another study
quantified limping during gait. Besides, one study reported foot-kinematic variables, such
as toe clearance.
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In terms of quiet standing, center-of-mass sway was the most popular measure, which
was reported in 100% of quiet-standing studies (Figure 5). Other variables of quiet standing
included ankle sway and hip sway. There was one study which reported local- control
balance and central-control balance.
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In terms of key findings, gait studies reported slow gait speed, shorter stride length,
greater gait variability, and longer gait-initiation phase in people with diabetic foot, com-
pared to control subjects (e.g., healthy controls, people with diabetes but no diabetic foot).
Similarly, studies that measured quiet standing reported larger sway in center-of-mass, an-
kle, or hip in people with diabetic foot, compared to control subjects. Interventional studies
also reported improvements in these gait and quiet-standing measures at post-intervention,
compared to pre-intervention.

4. Discussion
4.1. Summary

We aimed to provide an up-to-date review of the existing literature regarding assess-
ment of gait and balance using wearable IMUs in people with diabetic foot. Given the main
role of the foot during gait (i.e., force absorption) and biomechanical deformities in diabetic
foot, the importance of assessing gait and balance has been continuously emphasized
in numerous review papers [14,15,50,51]. Furthermore, gait and balance dysfunction is
the key indicator of increased risk of falling in people with diabetic foot, which might in
turn increase risk of hospitalization [52,53]. Gait and balance dysfunction may facilitate
ulceration because of abnormal loading pattern [54].

In this mini review, we identified a total of 20 papers that met our inclusion and
exclusion criteria. Although there were some heterogeneities in gait and quiet-standing
protocols and findings, across the reviewed studies, key parameters of IMU-based gait and
balance assessment were gait speed, gait-initiation steps and distance, gait variability, and
body sway during quiet standing. Furthermore, reviewed studies demonstrated reasonably
consistent patterns of such parameters in people with diabetic foot in comparison to non-
diabetic people or in response to an intervention.

Based on these findings, our mini review suggests IMUs may have potential to be used
in clinical settings to measure kinematic aspects of gait and balance dysfunction in people
with diabetic-peripheral neuropathy, active diabetic-foot ulcer, or peripheral- artery disease.
Furthermore, IMU-based parameters could assist in designing remote-patient-monitoring
platform to track changes in digital biomarkers of gait and balance dysfunction among
people with diabetic foot. To our knowledge, this is the first review (regardless of the type
of the review) that focused on gait and balance assessment using IMUs in people with
diabetic foot. Our review may also be used as the first step towards establishing a general
agreement on gait metrics specifically described for people with diabetic foot.

4.2. Challenges and Future Directions

From this review, we realized an agreed protocol for IMU-based gait assessment is
urgently needed. Although most of the studies that tested IMU-based quiet standing
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used similar protocols adopted from the Romberg test [55], protocols for gait assessment
varied significantly between studies in terms of distance, single or dual task conditions,
speed conditions, and footwear conditions. These varied conditions might have resulted in
heterogeneities in gait results. Furthermore, IMU-based gait outcomes that can indicate
an important sub-phase of gait cycle, such as propulsion phase or breaking phase, would
be beneficial. Because these phases account for the greatest shear and vertical pressure
on the foot during gait, which is directly associated with an onset of an ulcer (i.e., skin
breakdown) or progressing ulcerations, a way to assess characteristics of these phases will
be particularly beneficial for people with diabetic foot.

Another important issue is the repeatability. Repeatability of IMU-based, gait analysis
and balance assessment has been reported in general or other clinical populations [56,57].
For example, Washabaugh and colleagues used commercially available IMUs (APDM
Inc., Portland, OR; n = 2), attached on the feet or ankles, and evaluated repeatability of
the IMUs in measuring spatiotemporal-gait parameters during overground gait (three
trials; healthy young adults), including gait speed, stride length, and cadence [56]. They
reported high repeatability of the IMU-based, spatiotemporal-gait parameters. Felius and
colleagues used a commercially available IMU (Aemics b.v. Olden-zaal, The Netherlands)
and evaluated repeatability of the IMUs in measuring balance parameters of the trunk in
quiet standing [57]. They reported medium-to-high repeatability of the IMU-based balance
parameters. However, we were unable to find evidence of repeatability in people with
diabetic foot. It is urgently needed to investigate if IMUs can provide repeatable gait or
balance parameters in diabetic foot.

Small sample sizes in nearly every included study is another issue. Surprisingly,
regardless of study design, the maximum number of participants in a group (either in-
tervention group or control group in a randomized controlled trial) was 38. These two
issues can lead to a subsequent question of the generalizability of the findings. In terms
of participant characteristics included in this review, the vast majority of the recruited
people had diabetic-peripheral neuropathy, the most common underlying etiology causing
a diabetic foot ulcer [58], but reports are needed for different diabetic-foot problems, such
as Charcot foot and diabetic foot in remission [59,60].

Limitations of this review should be acknowledged. Due to the issues regarding study
protocol, repeatability, and small sample size, we recommend considering our review as a
preliminary review, not a confirmatory work. Another limitation is heterogeneity in IMUs.
Although validations of the IMUs that were chosen in each paper have been reported
previously, different IMUs may have slightly different results for sampling frequency and
filtering techniques, though this has not been reported in the included papers.

Despite these limitations, based on the current status of using IMUs in assessing gait
and balance in the management of diabetic foot, we believe the following examples are
areas of future research. One primary area is to establish an implementation strategy.
One strength of IMUs is the possibility of them being incorporated into clinical practice.
IMUs provide more detailed and necessary information about a person’s functional sta-
tus comparable to a stopwatch, and are more portable and translational, compared to
three-dimensional, optoelectronic-motion-capture technology. In fact, the importance of
implementation has been discussed previously [27,61], and implementation has been at-
tempted in another population [62]. We believe appropriate strategies, such as IMU-based,
perioperative-gait assessment will significantly advance the management of diabetic foot.
Another primary area is to better identify people at the highest risk of diabetic-foot ulcer-
ation. This may be particularly beneficial for those who have recently recovered from a
diabetic-foot ulcer. IMU-based gait assessment during clinic visits on a regular basis (e.g.,
every three or six months according to established guidelines) may better identify those
whose ulcers are likely to recur and those who will likely remain ulcer-free.
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5. Conclusions

Assessing gait and balance dysfunction and investigating biomechanics have undoubt-
edly advanced our understanding of diabetic-foot syndrome. Based on our review, we
found that IMU-based gait and balance assessment can provide information regarding
gait analysis, gait initiation, and gait variability, and body sway during quiet standing.
Our review identified several issues and limitations of the included studies, and sug-
gested future directions that may address current limitations and achieve advancements
in diabetic-foot management. We believe rapid developments in sensing technology and
data-analysis technology will further speed up the processes to successfully incorporate
IMUs into clinical practice.
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