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Abstract: Additive manufacturing (AM) enables the spatially configurable 3D integration of sensors
in metal components to realize smart materials and structures. Outstanding sensing capabilities
and size compatibility have made fiber optic sensors excellent candidates for integration in AM
components. In this study, fiber Bragg grating (FBG) sensors were embedded in Inconel 718 tensile
coupons printed using laser powder bed fusion AM. On-axis (fiber runs through the coupon’s
center of axis) and off-axis (fiber is at 5◦ and 10◦ to the coupon’s center of axis) sensors were buried
in epoxy resin inside narrow channels that run through the coupons. FBGs’ spectral evolutions
during embedment in the coupons were examined and cyclic loading experiments were conducted
to analyze and evaluate the sensor integration process, complex strain loading, process flaws, and
sensing performance. This study also demonstrates that the AM process-born deficiencies such
as poor surface finish and staircase effects can be detrimental to the embedded sensors and their
sensing performance.

Keywords: smart materials and structures; additive manufacturing; embedded optical sensors; strain
loading; spectral response

1. Introduction

The integration of sensors in materials and structures has been one of the most effective
approaches to realizing smart structures and close-loop control in advanced manufacturing.
The layer-by-layer printing techniques of additive manufacturing (AM) in particular makes
it easy for the 3D integration of sensors to enhance functional capabilities of structures [1].
However, being a layer-by-layer approach, the AM technologies also experience material
and structural anisotropies which are hard to predict using numerical modeling and thus
pose challenges for sensor integration. The selection of the right sensors and proper manu-
facturing strategies to embed sensors in AM components are critical to minimize structural
defects and maximize their performance and operational life [2,3]. Fiber optic sensors have
shown great potential for embedded applications due to their intrinsic properties, including
compact size, excellent sensing performance, immunity to common hazards (electromag-
netic radiation, corrosion, chemical environments, etc.), and distributed measurements
using the sensor’s multiplexing capability [4,5].

Fiber Bragg grating (FBG) has been the predominant optical sensor selected for em-
bedding in various AM materials including polymer [6], thermoplastic composites [7],
metal [8], and metal alloys [9]. Among the metal additive processes, ultrasonic AM [10,11],
solid-state AM [12], and selective laser melting [13] have been mostly studied for sensor
integration in structures. A common approach is to deposit a metallic protective layer
(that is different from the host materials) around the optical fibers before the direct em-
bedding process [14,15]. While the temperature and strain sensitivity of the sensors in
such cases are expected to change, these studies reported significant spectral distortion in
post-process characterization. In addition, most optical fibers are likely to die in the harsh
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process conditions of metal AM environments. Epoxy resins are widely used industrial
materials that can be used in post-process embedding of FBG in AM components. However,
epoxies are known to shrink and apply strain on FBG due to chemical reactions during
the curing process. The FBG sensors were utilized to quantify cure-induced compressive
strain development in the epoxy resin during the curing activity [16,17]. Moreover, the
anisotropic nature of the AM process may result in pores and faults in neighboring mate-
rials and structures. With the AM being a bottom-up approach, depending on materials
and deposition properties, some processes may not be capable of depositing materials to
fill empty spaces between fiber and host materials/structures. In addition, the surface
roughness of AM components is known to worsen for larger build angles and such surfaces
may apply uneven strain on the FBG when they come in contact. All these events are likely
to introduce the uneven strain loading of the FBGs and result in signal attenuation and
spectral degradation. Consequently, a detailed spectral response of the FBG sensor dur-
ing embedding and post-process characterization is necessary to evaluate the embedding
process and sensing performance of the smart structures.

FBG’s spectral response has been studied to primarily understand strain transfer
characteristics and identify factors that contribute to it. Zhao et al. [18] conducted a
numerical study to discover factors such as the bonding length of FBG in host material and
the thickness and Young’s moduli of the adhesives that influence strain transfer. The study
also reveals that an uneven strain distribution is largely responsible for the chirping of FBG.
Another numerical study carried out strain transfer for non-axial stress and reported that
both the embedding angle and temperature deviation impact strain transfer [19]. Another
simulation model analyzes the reflection spectrum to evaluate both the uniform and non-
uniform spreading of dynamic strain along the length of the FBG [20]. With a limited study
on this topic, Wei et al. [21] reported an experimental study on the strain transfer response
for host materials such as epoxy, silane, and polypropylene. While most of these studies
primarily look at the FBG spectrum’s peak wavelength shift, the spectral shape change
carries important information on strain loading behavior. To this end, a simulation-based
study shows how the FBG’s spectral shape changes when localized transverse force is
applied to a small grating section [22]. Strain loading can be complex when FBG sensors
are embedded in AM processes or components and adequate experimental investigation is
currently missing to address that issue. With poor surface roughness and uneven strain
loading being common phenomena in AM, the FBG’s spectral responses, including shape
change, when embedded in the AM process require more study.

In this study, tensile coupons with internal channels (on-axis and off-axis) were printed
using the laser powder bed fusion (LPBF) AM of Inconel 718 alloy followed by embedding
FBGs in those channels using epoxy resin. Detailed spectral responses including peak wave-
length shift, spectral width, skewness, and intensity were recorded and analyzed during
sensor embedding and characterization with cyclic fatigue tests. This work also identifies a
few key aspects of LPBF AM such as process-born poor surface finish, and staircase effects
that may lead to distortion and chirping of FBG’s reflection spectrum because of uneven
strain loading during embedding. The cyclic fatigue tests were also conducted with the
tensile coupons (with fiber’s angular orientation of 0◦, 5◦, and 10◦ relative to the coupon’s
center of axis) to understand how fiber orientation relative to impact angle may influence
sensing performance and reliability.

2. Materials and Methods
2.1. 3D Printing of Tensile Coupons with Through-Holes

A high-strength nickel-chromium alloy, Inconel 718, was used to 3D print tensile
coupons using the M290 LPBF metal AM system (EOS North America, Austin, TX, USA).
Optimized process parameters (laser power: 285 W; layer thickness: 40 µm; scan speed:
960 mm/s; and hatch: 0.11 mm) were used to print the samples in an argon environment.
To facilitate sensor embedment, through-channels (with the angular orientation of 0◦, 5◦,
and 10◦ relative to the coupon’s center of axis) were added to the digital model of the
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coupons as shown in Figure 1a. Table 1 summarizes the design of experiments used for
AM to build tensile coupons with narrow channels suitable for embedding optical sensors.
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Figure 1. (a) Schematic of the tensile coupons with dimensions and through channels at different
angles relative to its center of axis, and (b) “cross-sections” where the tensile coupons were cut to
analyze channel morphologies.

Table 1. Experimental design for the 3D printing of tensile coupons with internal channels.

Channel Diameter (µm) Angle (◦)

350 0 5 10

450 0 5 10

550 0 5 10

650 0 5 10

750 0 5 10

2.2. Embedding of FBG Sensors in Tensile Coupons

FBG sensors with a grating length of 10 mm inscribed in standard single-mode fibers
(Corning SMF-28e+) were used in the embedment process. The tensile coupons with an
internal channel diameter of 550 µm were used to house the FBG sensors. The tensile
coupons were thoroughly cleaned using acetone for 30 min in an ultrasonic bath to remove
debris and unmelted powders from the channels. The FBGs were first carefully inserted
from one end and positioned at the center of the tensile coupons before injecting the
two-part Infinity Bond EP 3530ND Epoxy into the channels from the other end. The
epoxy was cured in the channels at 80 ◦C to accelerate the process. The specimens with
embedded sensors were cut at different lengths to examine cross-sections for fiber–resin
and resin–internal channel interfaces, as shown in Figure 1b. The Si 155 HYPERION optical
integrator (LUNA, Roanoke, VA, USA) was used to record spectral data at 1 kHz rate and
monitor the spectral response of the FBG sensors. Spectral responses such as a change
in peak wavelength, the intensity of FBGs’ spectra, spectral width in full width at half
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maximum (FWHM), and kurtosis value were documented during the embedding process
and later analyzed.

2.3. Cyclic Loading Tests

Three dynamic loading tests of tensile coupons (0◦, 5◦, and 10◦ sensor orientations
with coupons’ centers of axis) were performed using the MTS 810 test system. Each cyclic
fatigue test started with an initial dwell time without loading. Then, a base load of 0.1 kip
was applied followed by a dwell time at the elevated load. At this point, a cyclic load
with a peak-to-peak amplitude of 0.10 kip was introduced at a frequency of 0.25 Hz for
approximately 3 min followed by the removal of the cyclic load and dwell time at a 0.10 kip
load. Similarly, in the next step, a base load of 0.15 kip was applied followed by introducing
a cyclic load amplitude of 0.1 kip at 0.25 Hz. In the last step, the base load was elevated to
0.2 kip followed by a cycling loading of 0.10 kip at a frequency of 0.25 Hz. The dwell time
between each step was used to differentiate each loading situation. Finally, the load was
entirely removed from the tensile coupons followed by a final dwell time to investigate
sensor slippage or plastic deformation in the epoxy resin.

3. Results and Discussion

As AM offers freedom in the design and 3D printing of complex functional structures,
the spatially configurable integration of sensors in AM components adds tremendous value
to this technology. Figure 2a shows the 3D-printed tensile coupons with through-holes at
different angles with their center of axis. For mechanical loading applications, the diameters
of such channels should be as small as possible to minimize structural weakness and avoid
premature failure during loading. However, given the high length-to-width ratio, the
channels with diameters 350 µm and 450 µm were not printable with clear through-holes.
Moreover, for inclined channels, the staircase effect dominates as the angle increases leading
to reducing the effective channel diameter. For the sensor embedding, the tensile coupons
with 550 µm channel diameter were chosen. Figure 2b shows three coupons with fully
cured embedded fiber sensors that are at 0◦, 5◦, and 10◦ angles with coupon’s center of axis.
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Figure 2. (a) The 3D-printed Inconel 718 tensile coupons with through holes (diameter range from
350 µm to 750 µm) that are at 0◦, 5◦, and 10◦ angles with coupons’ center of axis, and (b) embedded
FBG sensors in the tensile coupons.

Figure 3a–f show a few cross-section images taken at the gauge region of the tensile
coupon with an on-axis (0◦) channel diameter of 550 µm. Although the position of the
fiber was not at the center of the channel, it’s location within the channel remains largely
unchanged over the gauge length of the coupon. The fiber-resin and resin-metal interfaces
appear well bonded once the resin is fully cured. All the cross-section images show an
irregular inner surface of the channel over the gauge length of the tensile coupon. The
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magnified images in Figure 3g,h show a significant presence of powder particles and slags
attached to the inner surface of the channel. The laser penetration effect was reported
to be the primary reason for the poor surface finish of the side walls of 3D-printed inner
channels [23]. The molten pool under good wettability tends to spread and grab un-melted
powder particles leading to higher surface roughness on the side walls. In addition to
the laser penetration effect, tensile coupons with off-axis inner channels are likely to have
rougher inner surfaces due to staircase effects. Embedded fiber sensors may experience the
uneven loading of the FBG when they come into contact with the inner surfaces’ irregular
features, which in turn may cause spectral broadening and distortion during curing and
dynamic loading.
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Figure 3. (a–f) “Cross-section” images of the gauge area at different locations that reveal the changing
position of fiber in the channel, and (g,h) magnified images of cross-sections 5 and 6 that highlight
adhering slags and powder particles at the inner surface of the through channels.

The peak wavelength of FBG’s reflection spectrum experienced both red and blue
shifts during the resin-based embedding in the on-axis 550 µm diameter channel, as shown
in Figure 4a. The FBG sensors placed in the resin-filled channel were isothermally cured
at 80 ◦C for about 1 h before letting them cool to room temperature. After an initial dwell
time of 10 min at room temperature (subplot 1), the temperature of the resin was raised
to 80 ◦C, as shown in subplots 2 and 3 of Figure 4. Subplot 3 shows uneven spectral
shifts that indicate the start of resin curing. Relatively rapid red spectral shift may result
from both temperature ramp and initial release of heat by the resin due to an exothermic
reaction [24]. Once the resin started to cure, it applied contractive stress to the fiber, as
evident in subplot 4, which is also observed in the literature [25]. Subplot 5 shows no
significant change in spectral shift and indicates curing is complete. Once the curing was
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completed, the temperature was removed from the tensile coupon and was allowed to cool,
as shown in subplot 6.
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Figure 4. (a) The spectral shift of the FBG during the curing of resin in the channel, (b) initial dwell
time at room temperature (subplot 1), (c) temperature ramp (subplot 2), (d) start of curing (subplot 3),
(e) contractive stress applied on the fiber during curing (subplot 4), (f) steady state phase (subplot 5),
and (g) cooling to room temperature (subplot 6).

Spectral responses revealed in Figure 5 offer valuable information on sensors’ loading
conditions during the curing process. The peak wavelength shifts for all three sensors
regardless of their axial orientation in the tensile coupons show similar strain loading
during sensor embedding, as shown in Figure 5a. The curing window reveals that the resin
compresses and applies compressive stress on the fibers which is also reported in similar
studies [26,27]. As shown in Figure 5b, after the curing completed, the signal intensity
of FBG’s reflection spectrum increased for all three sensors regardless of their angular
orientation relative to the coupons’ center of axis. This may be attributed to an increase
in reflection from the fiber end face due to the change in resin property after curing. The
post-curing spectral widths of all three sensors’ reflection spectra show increasing trends,
as shown in Figure 5c. It is noteworthy that the sensors embedded in channels that are at
5◦ and 10◦ relative to the coupons’ center of axis showed greater change in full width at
half maximum (FWHM) value which may impact their sensing resolution. Since the tensile
coupons were built vertically as shown in Figure 2, internal channels when built at an angle
introduced a staircase effect leading to a smaller effective channel diameter and higher
roughness, both of which increase the chances of the fiber sensor being exposed to irregular
edges and surface debris. In a narrow channel with high internal surface roughness, there
is a higher chance of the uneven loading of FBGs. This might explain why the post-curing
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FWHMs of sensors 2 and 3 were significantly increased compared to the FWHM of sensor
1. After 4000 s, during the cooling process, further compression was applied to the sensors,
resulting in a rise of irregular loading and a subsequent increase in FWHM for all three
sensors. Sensors in 5◦ and 10◦ channels showed the greater change in FWHM. Figure 5d
shows the change in the skewness of the spectra for all three sensors, and as expected, the
sensors embedded in 5◦ and 10◦ channels (relative to the coupons’ center of axis), show
a significant change in skewness. The skewness of all three sensors showed decreasing
trends, and an asymmetric to symmetric spectral transformation was observed (skewness
of normal distribution being zero, spectral). The Fisher–Pearson coefficient (g1) of skewness
was used to calculate the spectral skewness using the following formula:

g1 =
m3

m3/2
2

(1)

where m2 and m3 are the second and third central moments of the sample, respectively. The
ith central moment, mi, was calculated based on the following equation:

mi =
1
N ∑n=N

n=1 (x[n]− x)i (2)

where N is the sample size, x[n] is the nth observation in the sample, and x is the sample mean.
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Figure 5. Spectral responses of the three sensors during the curing process in tensile coupons (FBG
orientation: on-axis and off-axis): (a) peak wavelength shift, (b) signal strength, (c) spectral width,
and (d) skewness.

Although cyclic fatigue experiments are primarily designed to test a component’s
mechanical performance (fracturing, cracking, etc.) under repeated loading situations, such
tests can be used to evaluate the response characteristics of the sensors and its packaging
strength when subject to a periodic load. Figure 6a shows the peak wavelength response
of sensor 1 (embedded in the 0◦ channel that runs through the coupon’s center of axis)
under cyclic loading. At the first fragment (blue) of the cyclic test (base load of 0.10 kip
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and a peak-to-peak cyclic load of 0.10 kip), the FBG’s peak wavelength showed nearly
repeatable red and blue shifts when subjected to alternating tension and compression
loads, respectively. However, in the subsequent fragments, the sensor showed signs of
plastic deformation as it slipped in epoxy resin. The epoxy resin used in this embedding
application has a lap shear strength of 2600 psi at 25 ◦C (from Infinity Bond EP 3530 ND’s
technical datasheet). The use of epoxy or other adhesive with a higher lap shear strength is
likely to improve cyclic fatigue performance.
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Figure 6. (a) Cyclic loading test for sensor 1 (FBG runs through the coupon’s center of axis) at 0.25 Hz
for three incremental base loads (0.10 kip, 0.15 kip, and 0.20 kip) and a fixed cyclic load (peak-to-peak
amplitude: 0.10 kip), and (b) the subplots 1–3 showing magnified dynamic spectral shifts under
cyclic loading.

Figure 7 shows the peak wavelength response of sensor 2 (embedded in a channel that
is at 5◦ angle with the coupon’s center of axis) under cyclic loading. In this case, at the very
first fragment (blue) of the cyclic test (base load of 0.10 kip and a peak-to-peak cyclic load
of 0.10 kip), the FBG’s peak wavelength showed spectral red and blue shifts with visible
fluctuation when subjected to alternating tension and compression loads. The sensor also
showed early slippage/plastic deformation signs which indicate that the sensor was not
gripped well within epoxy in the channel. There is a possibility that the sensor might have
significantly deviated from the channel’s center of axis and come in close contact with the
channel wall. Throughout the cyclic test in such a case, the fiber is expected to rub against
the rough wall of the channel, leading to fiber slippage and uneven spectral shifts, both
of which are noticeable in Figure 7. During the second fragment (purple) of the cyclic test
when a base load of 0.15 kip and peak-to-peak cyclic load of 0.10 kip were applied, the
sensor quickly failed, resulting in the loss of sensor signal, as shown in Figure 7. This again
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indicates that during cyclic test, the fiber might have encountered sharp channel edges
and failed.
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peak amplitude: 0.10 kip), and (b) the subplots 1–2 show magnified dynamic spectral shifts under
cyclic loading.

The peak wavelength response of sensor 3 (embedded in a channel that is at a 10◦ angle
with the coupon’s center of axis) when subjected to cyclic loading is shown in Figure 8.
During the first (base load of 0.10 kip and a peak-to-peak cyclic load of 0.10 kip) and second
(base load of 0.15 kip and a cyclic load of 0.10 kip) fragments of the cyclic tests, the sensor
showed consistent red and blue shifts with alternating tension and compression loads,
respectively. However, during the third fragment (base load of 0.20 kip and a peak-to-peak
cyclic load of 0.10 kip), the sensor quickly failed. Sensor 3 was embedded in a channel which
is at a 10◦ angle with the tensile coupon’s center of axis. The coupon’s center axis being
the 3D printing build direction, the channel’s internal wall would have a rougher surface
due to the staircase effect. The metallic channel wall’s rough edges when encountering the
fragile glass fiber may bend and break it during the cyclic test. For sensors 2 and 3, the
fiber axis and the stress direction are at 5◦ and 10◦ angles, respectively. Hence, as expected,
the strain transfer in sensors 2 and 3 was slightly reduced compared to sensor 1, where the
external stress was applied parallel to its center of axis [28].
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FBGs’ spectral responses such as reflection intensity, width in FWHM, and skewness
during the cyclic fatigue tests for sensors 1, 2, and 3 are summarized in Figure 9a–c.
Although most of the responses remain unchanged, spectral width for sensors 2 and 3
shows a gradual change in FWHM before failure happened. Post-embedment changes
in spectral responses are expected to be minimal due to the encapsulation of the fibers in
epoxy resin. The sensors 2 and 3 are at 5◦ and 10◦ angles, respectively, to the direction of
applied stress and are likely to encounter the rougher surface/edges of the channels at
greater loading conditions. This might explain the premature termination of sensors 2 and
3 during their cyclic tests when the base loads were raised.

Response and recovery times are important characteristics of a sensor as they indicate
how fast data can be collected reliably from an embedded sensor. Figure 10a–c shows the
response and recovery times recorded during the cyclic loading test of all three tensile
coupons. Sensor 1 (embedded in a 550 µm on-axis channel), sensor 2 (embedded in a
550 µm diameter and 5◦ channel angle), and sensor 3 (embedded in a 550 µm diameter and
10◦ channel angle) show the response/recovery time of 156 ms/159 m, 160 ms/158 ms, and
157 ms/163 ms, respectively. The recorded data indicate that both the response and recovery
times appear to slowly increase for the sensors that are at larger angles with the applied
load. For FBGs that are at 5◦ and 10◦ angles to the direction of applied stress, the strain
transfers are lower which explains the reason for a slight increase in response/recovery
time for sensors 2 and 3.
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4. Conclusions

In summary, FBG sensors were embedded in the internal channels (at 0◦, 5◦, and 10◦

with coupons’ center of axis) of additively manufactured Inconel 718 tensile specimens.
Detailed spectral responses during sensor embedding and cyclic fatigue tests were recorded
and analyzed to understand complex strain loading inside the narrow channels whose
internal surface morphology varies depending on their angular orientation to the build
angle. The FBGs experienced compressive strain during the curing process and final
cooling, both of which resulted in an increase in FWHM. As the angle between FBG and
the tensile coupon’s center of axis increases, the strain transfer showed a decreasing trend,
and the response/recovery times showed an increasing trend. While the intensity and
skewness of FBGs’ reflection spectrum remained mostly unchanged during cyclic tests,
the sensors that failed showed signs of change in FWHM. Although the AM allows sensor
integration configurable in 3D space, the process-born and staircase effect-related surface
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roughness can be detrimental to embedded FBG sensors as they are likely to induce uneven
strain loading on the fiber. The findings of this study have significant importance for the
advancement of smart materials and structures.
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