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Abstract

Conventional geometric metrology, or three-dimensional (3D) scanning, and reverse engineering heavily rely on the experience of the operators.
With an increasing need for automation, robot arms have been adopted for this task. However, due to the large variety of parts and designs,
automated path planning could provide a scanning solution that may overlook the critical area, which could potentially deteriorate the scan results.
This article explores the integration of collaborative robotics (cobots) with eye-tracking technology to improve the autonomous 3D scanning
process. The primary objective of this study is to enhance the accuracy and efficiency of cobots in 3D scanning, particularly in the capture of
functionally critical areas, and to provide a detailed description of regions with complex geometric features. The study develops a framework
where the scanning path of the robot-driven scanner is partially guided by eye tracking data, that is, calibrated gaze tracking, to improve the
automated 3D scanning process. This framework provides an innovative integration of human gaze movement with automatic robot path planning,
providing a new way of human-autonomy teaming. Case studies are presented to present and validate the proposed framework to automatically
improve the 3D point cloud collection process, specifically in areas that usually require human manual intervention to capture details.

© 2024 The Authors. Published by ELSEVIER Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the NAMRI/SME.
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1. Introduction

Three-dimensional (3D) scanning is a technology that could
transform an object or an environment from a physical world
to a digital world [1]. With the major advancements and needs
in Industrial 4.0 and 5.0, including digital twins, virtual real-
ity/mixed reality, etc., 3D scanning technologies have attracted
significant interest in different applications. For example, in
additive manufacturing, reverse engineering adopts 3D scan-
ning techniques for the digitization step to translate the phys-
ical object into a digital point cloud for design reconstruction

∗ Corresponding author. Tel.: +1-740-593-1520
E-mail address: zgeng@ohio.edu (Zhaohui Geng).

or metrology purposes [2]; in autonomous driving, or robotics
in general, 3D scanning could provide a survey of the surround-
ing environment with depth information, which provides more
detailed information for path planning or decision making [3].
However, manual operations are typically required for conven-
tional 3D scanning, especially those with requirements in high
accuracy and precision with a relatively fast speed, e.g., in a
manufacturing setting. In this case, an experienced operator car-
ries an arm scanner or a handheld scanner, equipped with laser
scanning capability or structured light scanners, to digitize the
target objects. The quality of the collected point cloud is heav-
ily influenced by the geometric complexity of the objects and
the experience of the operator.

Although multiple industrial vendors propose automated
scanning solutions, where robots are adopted to carry the scan-
ning instrument, automated path planning could provide a uni-
form scanning quality for different designs, which can overlook
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areas with complex geometric features. These features are gen-
erally related to the requirements in the functional specifica-
tions of the corresponding products. A scan of these areas with
low-quality point clouds or low point density could impact sub-
sequent decision-making or process planning in a manufactur-
ing system. On the other hand, a more detailed scan with all
areas of the targets could increase the burden for computing
and point cloud processing, which, in turn, could impact the
efficiency of the scanning project.

Current fully autonomous 3D scanners follow a pre-
programmed path for scanning, and this path doesn’t adapt to
the complexity of the object being scanned. Cobots do not have
the ability to assess or judge the complexity of the object on
their own. Therefore, human intervention is still necessary, even
in fully autonomous scanning processes.

In this study, we propose an innovative human-autonomy
teaming framework that integrates gaze tracking into the on-
line programming of a robotic arm carrying a 3D scanner to
perform the scanning task. The robotic arm, equipped with au-
tomated path planning for scanning, is partially guided by the
gaze movement of the operators, which introduces flexibility
into the path to adapt to the target and operator’s expert knowl-
edge regarding the specific object. In this way, we can both
increase the flexibility and efficiency of the 3D scanning task
while preserving the safety and effectiveness of the operators.

In Section 2, we review the literature and major advances
in recent trends in Industry 5.0 and human-robot collaboration,
with a special focus on embedded collaborative robotics with
eye tracking. Section 3 presents our framework that integrates
gaze-tracking for scanning path planning. The results and cor-
responding discussions of the proposed framework are in Sec-
tion 4. Concluding remarks and directions for future research
motivated by our framework are presented in Section 5.

2. Literature Review

The evolution of Industry 5.0 is based on the foundation es-
tablished by Industry 4.0 with additional needs and enhance-
ments in the integration of technology and human interaction
to a new level [4]. These advances require an urgent need to
rethink the role of humans and technology in practice, with
an additional emphasis on adaptation, sustainability, and re-
silience. As one of the key driving forces in Industry 5.0,
human-machine collaboration [5], or human-autonomy team-
ing, emphasizes not only automation, but also the participation
of operators in performing complex and flexible tasks in an ef-
ficient and effective way.

One of the most representative advancements in this transi-
tion from Industry 4.0 to Industry 5.0 is collaborative robotics,
or cobot. Cobots, introduced during the Industry 4.0 era, were
designed to be able to work alongside human operators, provid-
ing a more secure and adaptable automation solution in many
industrial applications, especially material handling [6]. This
type of robots is designed to enhance precision and strength in
work assignments and provide exceptional repetitive motions
on the production line to improve the safety of the operators.

Cobots are typically integrated with sensor technologies and
analytic algorithms for adaptivity and intelligence when human
operators are present in their work envelope. These robots could
function within close proximity to humans without risking their
safety, resulting in higher efficiency and more dynamic manu-
facturing processes.

Industry 5.0 elevates human-robot collaboration to a new
level of integration and engagement. While Industry 4.0 empha-
sized process optimization and task automation, Industry 5.0
emphasized the holistic inclusion of human workers in sophis-
ticated decision-making and problem-solving alongside robots.
In Industry 5.0, cobots extend beyond task execution. These
cobots are equipped with advanced machine learning and arti-
ficial intelligence algorithms that allow them to learn from hu-
man operators with more intelligent decision-making processes
and adapt to unexpected events in (near) real time [7]. Since
then, they have evolved to be able to actively participate in op-
erational tasks. Furthermore, emotional interactions and social
contact between humans and robots are also prioritized in In-
dustry 5.0 [8]. This indicates that robots have the ability to assist
human operators both in physical work and in recognizing and
responding to human emotions and needs [9]. This level of col-
laboration could further improve the work experience, resulting
in a pleasant and safe environment for human-robot collabora-
tion.

2.1. Collaborative Robotics

Collaborative robots have been significantly growing and
revolutionizing the manufacturing industry. They are specifi-
cally designed to work together with humans in tasks such as
material handling, assembly, welding, etc. By combining the
unique strengths of humans and robots, this collaborative ef-
fort provides an efficient and effective way of performing jobs
or tasks. The main goal of collaborative robotics is to integrate
robotic systems to complete tasks that are challenging for hu-
man operators, both from workplace safety or ergonomic per-
spectives and from the view of production quality [10], while
preserving the flexibility and ability of experienced workers.

Depending on how the operator works alongside the cobot
and their interference, different levels of collaboration are avail-
able. For example, confined-space collaborative robotics refers
to the use of robots or robotic systems that are designed to op-
erate in restricted or confined spaces while working alongside
human operators [11]. These robots are specifically designed to
perform tasks in environments where human access is limited
or hazardous. Other types include open space [12] and human
interaction [13].

Cobots can be utilized effectively in environments that are
difficult or dangerous for humans to access. In production lines,
cobots are adopted for assembly tasks in tight spaces where
human operators may have difficulty reaching. In emergency
response scenarios, robots are deployed to explore and assess
hazardous environments, such as collapsed structures or con-
taminated areas.

Cobots have also attracted interest in the metrology indus-
try. These cobots can move quickly while precisely scanning
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objects with various designs or large scales. Cobots are suit-
able for scanning complex components due to their agility and
precision in scanning paths, which could significantly benefit
throughput. However, there are challenges associated with us-
ing cobots in 3D scanning. The current practice of robot-driven
3D scanning ignores the regional complexity of the target while
placing equal weight on different design features. A rough scan
may overlook areas with complex geometric features or details,
which have a strong connection with the target’s functionality;
a detailed scan of all features could potentially solve this issue
while significantly increasing the burden in point cloud process-
ing. It seems to be trivial for an experienced operator to care-
fully plan the scanning path, but it can be hard to program the
robot to adapt to different objects. Therefore, there is a need for
a framework to incorporate human knowledge or guidance into
automated path planning.

2.2. Human and Robot Collaboration

Human-robot collaboration, enabled by the integration of
cutting-edge technologies, such as computer vision, advanced
sensors, such as eye tracking sensors, and advances in human
factors, marks a significant step forward in Industry 5.0. The
robot’s ability to record and comprehend human biometric data,
such as the actions of human workers, is a crucial component
of this relationship between robots and humans. Robots can see
and comprehend the gestures, posture, and motion patterns of
their human counterparts thanks to cutting-edge computer vi-
sion capabilities [14]. Given that robots could adapt their activ-
ities in real-time to the motions of the human worker, this infor-
mation is important for tasks that call for close collaboration.
Furthermore, robots are currently capable of interacting with
human biometric information that goes beyond simple physi-
cal movement. Robots can recognize subtle information, such
as facial expressions and emotional states based on different
algorithms such as convolutional neural networks (CNN) and
visual geometry groups (VGG), xception networks, and deep
face networks, which offer deeper insights into the emotions
and engagement of human operators [15]. A thorough under-
standing of biometric data based on computer vision algorithms
improves productivity while also enabling a more sympathetic
and flexible approach to human-robot collaboration. On the
other hand, eye-tracking technology enables robots to detect
human intents, increasing engagement and adaptability in dy-
namic working contexts.

2.3. Eye Tracking in Collaborative Robotics

Eye tracking technology has developed as an effective tool
for studying and analyzing human behavior and cognition. This
technology allows for the comprehensive monitoring and anal-
ysis of eye movements and gaze points, revealing information
on where people are looking, how long they concentrate on spe-
cific things, and their visual attention patterns. This information
has great potential to learn the intention and behavior of opera-
tors more efficiently and to improve collaborations between the
human operator and automation systems [16].

The gaze tracking algorithm is one of the most important al-
gorithms used in eye tracking for cobot applications. The cobot
can match its actions to the operator’s focus based on this al-
gorithm, which enables the cobot to precisely estimate the lo-
cation of the operator’s gaze [17]. By streamlining assembly
procedures, they become simpler to understand and more effec-
tive.

Cobots can easily coordinate their movements with the vi-
sual cues of the operator based on this level of object aware-
ness [18]. This technology can be used to make object scan-
ning more effective and streamline 3D scanning tasks. Ges-
turing gains extra depth when paired with object recognition
algorithms. Cobots are now able to recognize not just where
a worker is looking, but also what they are looking at, based
on the object identified by the deep learning algorithms [19].
Cobots could recognize specific objects of interest inside their
field of view by studying the real-time video feed from cameras
or sensors and utilizing image recognition techniques [20].

Eye and head movements are also important in human-robot
interaction because they allow robots to recognize significant
areas of interest and respond accordingly to human signals.
When humans focus their gaze on certain items or regions, it
is a potential indicator of their concentration and intent [21].
Robots with advanced computer vision and eye tracking tech-
nology can detect these minor movements in look and head
movement, allowing them to figure out the intent and areas
of interest triggered by the operators’ experiences in their sur-
roundings. This ability allows robots to adapt their actions, pri-
oritize work, and even offer assistance when needed, resulting
in a more natural and efficient human-machine collaboration.
The ability of robots to understand and respond to human gaze
and head movements improves safety, productivity, and overall
user experience in industrial settings, healthcare, and everyday
life [22].

The current state of research in fully automated laser-based
handheld scanning involves advancements in the miniaturiza-
tion of scanning equipment, improved sensor integration to im-
prove the accuracy of scanning, and real-time processing to en-
able accurate 3D scanning with handheld devices.

The subsequent methodology section outlines the approach
and apparatus used in our study. Section 3.2 includes the pro-
cess of obtaining scanner marker coordinates using the Convex
Hull and Maximum Distance algorithms. Section 3.3 describes
the method we used to create the coordinate system of the eye
tracker. Section 3.4 describes the algorithm used to convert the
3D point coordinators from the scanner to 2D coordinates to
register the markers with the 2D coordinates. The marker reg-
istration process we used is described in section 3.5. Followed
by the scanning process using Cobot described in section 3.6.
We selected a critical area to further understand the effective-
ness of the gaze tracking integrated 3D scanning process as de-
scribed in section 3.7. Following that, section 3.8 explains the
matrix we created to compare the performance of the fully au-
tonomous 3D scanning process and the gaze tracking integrated
3D scanning process.
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3. Methodology

In this study, the major objective is to enhance the efficiency
and flexibility of a robotic scanning system by integrating gaze
tracking to identify critical areas of a target object so that the
scanning path of the robotic scanning system could be updated
accordingly to improve the quality of the scanning. This section
presents the methods used to register the marker coordinates ac-
quired from the handheld scanner with the coordinates from the
eye tracking system. The integration of the registered coordi-
nates for planning the path of the robotic arm for scanning is
discussed in detail, as well as the application of gaze tracking
to identify critical areas that require re-scanning. The Formula
1 (F1) model car shown in Figure 1 is utilized as the scanning
object for the case study as it is of a free-form nature with a
combination of complex and simple geometric features.

Figure 1: Formula 1 model car used as a scanning object

3.1. Experimental Setup

The gaze movement of the operator is captured using the
Argus Science ET Vision glasses. The ET Vision device uses
a technique known as ”Pupil to CR” Tracking to monitor eye
movements. This method uses the dark pupil’s location and the
corneal reflections (CRs) to determine an individual’s gaze di-
rection. The anterior surface of the cornea is what generates
these reflections in the eye. With the help of two near-infrared
LEDs mounted on the headset, the system illuminates the eyes.
The eye camera located in the device captures the infrared light,
which is barely visible to the operator’s eyes. Corneal reflec-
tions appear as bright spots when viewed through the camera.
The center of the pupil moves in relation to these bright dots as
the eye moves. The eye tracking system determines the direc-
tion of gaze with respect to a coordinate system centered on the
scene camera by measuring the change in location between the
pupil and the CRs. The position of the pupil or CRs alone al-
lows the system to track the user’s gaze even while the headset
is stationary.

The technical specifications of the eye tracker used in the ex-
periment were as follows: Gaze Measurement Frequency of 180
Hz, enabling precise data collection. The estimated accuracy of
eye tracker is around 0.5 degrees, allowing a precise measure-
ment of eye movement. The ET vision system also consists of
SDK samples for Python programming language to import live
eye tracking data through ET remote software.

The scanning of the object was done using a Shinning 3D
Einscan HX handheld scanner that was attached to the KUKA

KR10 R1100 robotic arm. Rapid Scan and Laser Scan were
the two unique scanning modes available with the Einscanner
HX. EinScan HX provides two scanning modes, rapid scanning
and laser scanning. This study only utilized the laser scanning
mode. However, the eye tracking procedure used in the study
can also be applied to optimize rapid scanning.

The laser scan mode can increase precision up to 0.04mm
and volumetric accuracy to 0.04+0.06mm/m, with a scanning
sped of 480,000 points per second at 55 frames per second
(FPS). The camera frame rate in this mode was 55 frames per
second. In terms of alignment, laser scan only uses markers to
align the surface. The depth of field ranges for Laser Scan was
200 mm to 700 mm and 350 mm to 610 mm.

The EinScanner HX was attached to the KUKA robotic arm.
The 11.1 kg maximum payload capacity of the KUKA robot
made it easy to carry and move the 345g weight EinScanner
with ease. With a posture repeatability of ± 0.02 mm in accor-
dance with the ISO 9283 standards, it demonstrated its accuracy
in movement and placement. The six axes of motion ensure that
the robot could move in many different directions. In particular,
the motion range of Axis 1 (A1) was ±170 degrees; that of Axis
2 (A2) was ±190 to 45 degrees; that of Axis 3 (A3) was ±120
to 156 degrees; that of Axis 4 (A4) was ±185 degrees; that of
Axis 5 (A5) was ±120 degrees; and that of Axis 6 (A6) was
±350 degrees. This range of motion made it possible to be quite
flexible.

3.2. Scanner Coordinate System

The scanning of the object was performed using a Shining
3D EinScan HX handheld scanner, as shown in Figure 2. This
type of handheld scanners utilizes markers placed onto the sur-
face of the scanning object or platform as reference points to set
up the coordinate system for point cloud collection. Unlike co-
ordinate measuring machines or arm scanners, handheld scan-
ners do not have a fixed coordinate system. The relative posi-
tions of these markers establish the origin point and the axis
directions for point recording. This coordinate system is also
utilized to register scans from multiple views for a full-body
scan of the object. In our study, these markers are also utilized
to align the coordinate systems of the scanner and eye-tracking.
In addition, these markers help to maintain the accuracy of the
scanning process and minimize errors. Certain objects are chal-
lenging for the scanner to distinguish from one region to an-
other as they have repetitive textures or lack unique features.
Markers generate distinct points that are easy for the program
to recognize and track.

Initially, 18 markers were placed on the scanning table, as
shown in Figure 3. Four markers were placed at the corners of
the table at an equal distance, forming a perfect square shape,
while the other 14 markers were placed randomly within the
boundaries set by the four corner markers.

The coordinates of these markers are scanned and exported
from the EX Scanner HX software in .P3 file format. How-
ever, the order of these points presented in the raw data file
is randomized, which poses difficulties in identifying the corre-
sponding points and aligning them with the physical markers.
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Figure 2: Shinning 3D Eiscan HX handheld scanner

Figure 3: Scanning table with the white color circular markers

Therefore, the first and foremost step involves finding the cor-
respondence between the coordinates and the physical points.
Multiple criteria are tested to explore this correspondence.

3.2.1. Maximum Distance
This algorithm considers the diagonal of the square as the

longest line segment that can be drawn between any two points
among these 18 markers. Therefore, the opposing corners of the
square were determined by finding the two points that are the
farthest away.

In the algorithm, the Euclidean distance is utilized to mea-
sure the distance between any two points. The Euclidean dis-
tance, d(pi, p j) between point pi = (xi, yi, zi) and point p j =(
x j, y j, z j

)
is as follows,

d(pi, p j) =
√

(xi ≻ x j)2 + (yi ≻ y j)2 + (zi ≻ z j)2 (1)

Distances between each pair of points are computed. The
pair of points yielding the greatest (farthest) distance among
all points are identified and designated as the corner points,
which can be utilized for further alignment. In this way, two
pairs of corner points are identified sequentially, while any se-
lected points are removed from the candidate list.

3.2.2. Convex Hull
The convex hull algorithm is another way to identify cor-

ner points for alignment purposes. The convex hull is a concept
in computational geometry that refers to the smallest convex
set that contains a set of points. In a two-dimensional space,
this convex hull is presented as a polygon, whereas, in a three-
dimensional space, it is presented as a polyhedron. The vertices
of this convex polygon or polyhedron are a subset of the orig-

inal points and are called the ”hull points.” The convex hull
is unique because it creates a border that defines the external
boundary of a set of points, excluding all internal points.

To identify corner points from a set of 3D points, the convex
hull algorithm could be used to determine the outermost points,
which could be considered corners of the overall shape.

The correspondence of the order of these points is explored
by considering their angular position relative to a central point,
i.e., the centroid. These points were consistently sorted by mea-
suring the angle from the centroid to each point on the hull.
Although it was not explicitly constructed as a convex hull, this
approach is capable of detecting extreme or border points in the
dataset.

The coordinates identified from the algorithms mentioned
above as corner markers are used to determine the distance be-
tween each point using the Euclidean distance function. This
measurement can be used to confirm whether the distances
match up in a square pattern.

These two methods were repeated after eliminating the iden-
tified coordinates of the corner points in the dataset. The inten-
tion is to find the coordinates of the next possible corners out of
the remaining markers.

3.3. Eye Tracker coordinates

In order to align the eye-tracking information with the
robotic 3D scanning system, the coordinates of the markers
from the head-on display with the eye tracking system need to
be extracted for registration. A coordinate system can be set up
by image processing with the eye tracker and a live area of inter-
est (LAOI) can be set up in the eye tracking system, which can
be designated to image objects or features of the environment
captured through the scene camera of the eye tracker.

The operator is instructed to look at the scanning table and
the four corner markers are designated as the LAOI boundaries
as shown in the figure 4. In this study, two LAOIs were created
to accompany the eight identified corners, with four markers
assigned to each of the two LAOI1 and LAOI2. The distance
between the four corner markers was physically measured to
be 597 mm. After defining the two LAOI regions, the user can
walk around the scanning table while the LOAIs remain de-
fined and unchanged regardless of the movement of the user.
The gaze movement of the user was tracked within the two de-
fined LOAIs.

As we have clearly defined LAOIs in the eye-tracking co-
ordinate system, the closest point marker to the user from the
user’s point of view can be recognized as the origin point of
the eye-tracking coordinate system. The coordinate system is
shown in Table 1. A visual representation of the two LAOI
boundaries is shown in Figure 4.

3.4. Converting 3D Point Coordinates of the EX-Scanner to 2D
Coordinates

Since the coordinates of the markers provided by the 3D
scanner and the vision system on the eye tracker have differ-
ent dimensions, a multidimensional scaling (MDS) algorithm
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Figure 4: Boundaries of the LAOIs

Table 1: Eye tracking LAOI coordinate system

LAOI Point X Y

LAOI 1 0 0 0
1 597 0
2 597 597
3 0 597

LAOI 2 0.5 257 55
1.5 567 375
2.5 312 592
3.5 49 363

[23] is used to convert the coordinates for registration. The goal
of MDS is to preserve pairwise distances between points while
locating a lower-dimensional representation of the points. In ad-
dition, the stress value is calculated by measuring the difference
between the original and decreased distances.

In this study, two variants of MDS are used: one preserves
Euclidean distances, while the other preserves Manhattan dis-
tances. The most popular and basic distance metric is the Eu-
clidean distance, which is the straight-line distance between
two locations in Euclidean space. In contrast, the Manhattan
distance, which sums the absolute differences of their Cartesian
coordinates, is used in grid-like path calculations. The Manhat-
tan distance formula is given in the following formula:

d(pi, p j) = |xi ≻ x j| + |yi ≻ y j| + |zi ≻ z j| (2)

Both metrics have an effect on the location of points
in the MDS-transformed space, which affects the way the
item relationships are represented. This study uses these dis-
tances to construct MDS on a given dataset, producing a
two-dimensional representation of the points and comparing
item configurations using various distance metrics. The stated
”stress” number represents how well the MDS representation
preserves the original distances, with lower values indicating a
better match.

3.5. Marker Registration

The registration of the marker coordinates obtained from
both the scanner and the eye tracker was a crucial part of this
study. These coordinates should be precisely aligned so that the
eye tracking information can be utilized to guide movement or
path planning for the robotic 3D scanning system. Critical re-
gions or areas with poor point cloud quality could be quickly
identified by operators, while the eye tracking device could in-
tegrate this information into the movement instructions for the
robotic arm.

As one of the most popular registration algorithms, the iter-
ative closest point (ICP) algorithm is implemented to remove
the unnecessary rotational and translational factors in the coor-
dinates of the markers from two sources. ICP algorithm uses
a best-fit transform to reduce the distance between the two-
point sets, which the algorithm repeatedly determines the best-
fit via homogeneous transformations, singular value decompo-
sition (SVD), and closest neighbor search. Convergence is ac-
celerated by using centroids for an initial posture estimate.

Let A = {ai}
n
i=1 and B = {bi}

n
i=1 be the sets of markers, col-

lected by 3D scanning and eye tracking goggle. The main con-
cept behind the ICP algorithm is to find the nearest neighbor
of one set of points and then compute the rotation matrix and
translation vector for these pairs of points. Then, the error is
minimized and optimized using SVD. The ICP algorithm can
be explained using the following steps [24].

For the computation of SVD, the centroids need to be calcu-
lated, which are presented as follows,

cA =
1
n
∑n

i=1 ai,

cB =
1
n
∑n

i=1 bi.
(3)

Then, all the points in sets A and B are moved to the po-
sition, where the centroids are located at the origin, while the
translational factors are removed,

A
′

= {a
′

i}
n
i=1 = {ai ≻ cA}

n
i=1,

B
′

= {b
′

i}
n
i=1 = {bi ≻ cB}

n
i=1.

(4)

Next, a rotation matrix R can be found using SVD of the
matrix H = A′B′T to remove the rotational factor and align the
set of points A’ onto B’.

As for the pair of points that lack of correspondence, the
nearest neighbor algorithm could find the closest point in set B
for each point in set A.

The ICP algorithm iteratively updates the transformation
(using the best-fit transform) to minimize the distance between
the corresponding points in sets A and B. The stopping condi-
tion of the algorithm can be controlled by a pre-set tolerance.
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After aligning the markers in the scanning software and the
scanning table with the LAOI coordinate system of the eye
tracker, the robot could automatically identify the crucial areas
from the gaze hint from the operator.

3.6. Scanning with Cobot

In the initial scanning process, the path of the robotic arm
was designed to move around the scanning table one time,
as shown in Figure 5. This autonomous scanning process is
planned based on a path that could uniformly cover the entire
object. After finishing this initial automatic scan, the collected
3D point cloud is roughly screened to identify if the areas with
complex features or relevant to major functional specifications
are scanned properly.

Figure 5: KUKA robotic arm fully autonomous scanning path

In a parallel session, another round of scanning is guided
by integrated gaze tracking. The robot moves towards the crit-
ical region, guided by the registered gaze position, and a more
careful scan of the critical region is performed to collect an ad-
ditional set of point clouds for detailed description, as presented
in Figure 6.

Figure 6: Gaze movement as seen by the scene camera of the eye tracker

In the eye-tracking embedded scanning system, the oper-
ator identifies areas of re-scanning based on previous scan-
ning experience. The operator plays a vital role in performing
the measurements and critical area identification, as the auto-
mated systems lack such judgment skills. Subsequently, the cor-
responding coordinates are transformed into the robotic arm,
which then moves towards the assigned marker with the gaze

and scans again to collect additional points. The location of the
scanning table in relation to the robot is crucial for its mobility.
The robot’s end effector can move within a range of proxim-
ity, but there are several limitations on how far it can go from
its base. Furthermore, due to the torque required at each joint,
movement to new positions could not maintain consistent ve-
locities.

3.7. Critical Scanning Area

To further analyze whether integrating human input into the
autonomous scanning process through gaze tracking could im-
prove the scanning of complex geometries, we selected a crit-
ical area with a high level of detail and curvature. As shown
in Figure 7, the cockpit area of the F1 model car is selected as
the critical area, as it had more details compared to the overall
design of the car.

Figure 7: Critical area of the model f1 car

3.8. Performance Metric for 3D Scanning

In order to compare the performance of the two ways of
scanning using cobot, an innovative performance metric consid-
ering the local point density with respect to the local curvature
is proposed in this study.

In 3D point cloud scanning, the local point density, or the
number of points in a unit volume, can be utilized to describe
how much information is included in a local area. Typically,
the higher the local point density is, the more details can be
captured in a 3D scanning project. A high local point density
is essential to capture the fine features of an object, especially
the areas of complex features; while a relatively low local point
density is acceptable for simple features, such as prismatic fea-
tures. The local point density, ρi, for any point i in the point
cloud can be calculated as follows,

ρi =
Ni

4
3πr

3
(5)

where Ni is the number of points located in a local neighbor-
hood of point i with a pre-determined radius r.

The curvature, on the other hand, represents the deviation of
a surface from being flat at a given location in computational
geometry [25]. It is a geometric property that characterizes how
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quickly the direction of the tangent vector of a point on the sur-
face changes as one moves over the surface. At one extreme, the
curvature for any point on a flat surface has an infinitesimal cur-
vature; while, at the other extreme, a sharp edge has curvature
that goes to infinity. Therefore, curvature could be utilized as
a descriptor of the complexity of a surface. Regions with sharp
edges or curves, suggestive of high complexity, have been deter-
mined to be correlated with substantial curvature. On the other
hand, areas with flat surfaces correspond to minimal curvature
values, indicating less complexity. The idea was that areas with
more curvature have additional complex designs by nature. The
local curvature ν at a point is estimated by fitting a plane to its
neighboring points using the least-squares method as described
below.

Consider the

Gi = UisiVT
i (6)

where Gi is a matrix whose rows are the neighboring points
of point i and, then, SVD is used to decompose the matrix G.
The normal vector to the best-fit plane is obtained from the last
row of VT

i in SVD. Finally, the curvature is approximated by
the standard deviation of the distance between the neighboring
points and the fitted plane. The deviation between the jth point
in the neighborhood and the fitted plane is given by

d j =
(Gi j − pi) · ni

∥ni∥
, (7)

where Gi j represents the jth point in the neighborhood of point
i, ni is the normal vector of point i. Then the curvature can be
calculated by,

νi = 2 × S {d j} (8)

where 2 is a scaling factor used to adjust the curvature estima-
tion, and S {d j} is the standard deviation of the set of deviations
{d j}.

The metric proposed in this study is the product of the local
curvature and the point density (ρi × νi).This metric integrates
the local curvature, νi, which represents the complexity or com-
plexity of the surface at that point, and the local point density,
ρi, which indicates the number of points utilized to represent a
specific area. The metric representing regions of the scan with
high geometric complexity and detail levels may be obtained by
multiplying the local point density by local curvature. A high
value of ρ ∗ ν would refer to a scanned area that has a relatively
adequate number of points and is both geometrically complex-
ity and well-described. On the other hand, low values of ρ ∗ ν
can represent regions that are under-described, which may need
additional, more careful scans.

When we compare the different scanning strategies, both the
average and the smallest value of ρi × νi are reported. In this
study, we are assessing the details and geometric complexity
of the point cloud generated from fully autonomous scanning
and eye tracking integrated autonomous scanning. Ideally, we
look for a high ρi ∗ νi value for the autonomous scan integrated
with eye tracking compared to the fully autonomous scanning
process.

4. Results and Discussion

This section presents the results obtained for the methodolo-
gies proposed in Section 3.

4.1. Marker registration

The maximum distance and convex hull algorithms were
used to identify the coordinates of the four corner markers of
the scanner for each of the three data sets. In the maximum
distance method, the corner markers were identified accord-
ing to their maximum distances from each other. The convex
hull algorithm typically uses the outermost points that form the
smallest convex shape that covers all the points. The code was
formulated to give the coordinates of the markers in a counter-
clockwise manner for both methods.

Table 2: Coordinates of the corner markers from dataset 1

Order X Y Z MaxDis CHull

1 -8.748 88.0854 444.229
2 141.331 44.7749 501.154
3 -99.9607 -29.55 394.108 3 1
4 66.5732 187.866 485.654
5 184.314 207.819 536.017
6 -160.749 239.649 397.871
7 60.3446 308.54 495.921
8 -54.6399 309.828 448.872
9 75.3862 441.102 516.1
10 -68.6248 485.521 461.768
11 42.3092 608.279 520.249
12 -229.345 554.506 402.753 2 4
13 238.737 548.835 594.345
14 313.305 669.07 637.304 1 3
15 207.284 394.718 565.181
16 352.564 372.877 622.266
17 307.02 184.201 583.675
18 437.552 82.9147 626.005 4 2

Table 2 presents the coordinates of the corner markers, as
identified by each algorithm for the data set. It was observed
that of the 18 markers, the same coordinates were recognized as
the outermost markers by both algorithms. However, the order
in which these coordinates were arranged differed between the
two algorithms. The order identified by the maximum distance



1496 S. Karunathilake et al. / Manufacturing Letters 41 (2024) 1488–1498

algorithm is 14, 12, 3, and 18. On the contrary, the convex-hull
algorithm determined the sequence as 3, 18, 14, and 12. The
differences in the order of the marker coordinates obtained from
the two methods could be due to the contrasting criteria used in
calculating the corners of the polygon. The study only used the
coordinates of the identified corner markers, so the order of the
arrangement of the markers is not a factor to consider.

These coordinates are confirmed by calculating the lengths
of the 4 sides of the square using the Euclidean distance, as
shown in Table 3. Upon measuring the physical distance be-
tween the corner points, it was found that the length was around
597 mm. It is interesting that the calculated lengths were ap-
proximately equal to the physical length of the corner markers.

Table 3: Lengths between each pair of coordinates based on dataset 1

Length Max dis Convex hull

(1,2) 602.1695 596.1077
(2,3) 598.2779 599.2854
(3,4) 596.1077 602.1695
(4,1) 599.2854 598.2779

The results show that the order of the markers changes each
time a scan is performed. The scanner starts the scanning pro-
cess by identifying the orientation of the object and creating
a coordinate system based on its starting location in relation
to the object, which can be defined as an arbitrary ”origin”
point. Therefore, the origin point can change every time a scan
is done. As the scanning process proceeds, the scan uses the
markers to identify its location in relation to the origin point.
Therefore, the corner markers are identified as 3,12, 14, 18.

The original XYZ (3D) coordinates for the eight markers are
converted to XY (2D) coordinate system to be aligned with the
2D coordinates of the eye tracker coordinate system, as pre-
sented in Figure 8 and Figure 9. The new original coordinate
values and transformed coordinate values are shown in Table 4.

Table 4: Conversion of 3D coordinates to 2D coordinates 3D Coordinates
Transformed 2D Coordinates

3D Coordinates 2D Coordinates

X Y Z X Y
LAOI-1 -99.96 29.55 394.11 -392.29 156.86

-229.35 554.51 402.75 157.09 394.09
313.31 669.07 637.30 393.91 -159.50
437.55 82.91 626.01 -158.69 -391.45

LAOI-2 -160.75 239.65 397.87 241.36 158.34
42.31 608.28 520.25 131.49 -265.85
352.56 372.88 622.27 -251.02 -140.09
141.33 44.77 501.15 -121.83 247.60

Figure 8: Visualization of 3D to 2D coordinate conversion for LAOI 1

Figure 9: Visualization of 3D to 2D coordinate conversion for LAOI 2

The new transformed 2D coordinates were then confirmed
by calculating the Euclidean distance between the points as
shown in Table 5. The calculated distances of each pair of points
in the 2D system are approximately equal to the corresponding
distances in the 3D system.

Table 5: Euclidean distance between the points of 3D coordinates and 2D coor-
dinates

Points Lengths in 3D Lengths in 2D

LAOI 1 (0,1) 596.1077 598.415
(1,2) 599.2854 602.1238
(2,3) 602.1695 599.3071
(3,0) 598.2779 595.9947

LAOI 2 (0.5,1.5) 438.2888 438.19
(1.5,2.5) 402.5911 402.6516
(2.5,3.5) 408.5811 408.6486
(3.5,0.5) 374.0262 373.9994

The ICP point registration algorithm is applied to align the
2D coordinates of the scanner with the coordinates of the eye
tracking coordinate system. Figure 10 shows that of the 8 corner
markers 2.5, 2, and 1 are aligned slightly accurately with slight
deviation. However, the rest of the markers have a significant
deviation. There could be many reasons for the deviations to
occur, particularly with regard to sensor noise and calibration
errors of both the scanner and the eye tracker. Even though there
is no exact explanation for the deviations of these markers, it
is essential to acknowledge that obtaining perfect alignment is
challenging in practice.
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Figure 10: Eye tracker coordinates and scanner coordinates registration

(a) Fully autonomous 3D scanning (b) Gaze tracking integrated 3D scan

Figure 11: Comparison of mesh data of a selected region.

4.2. Object Scan

After a fully autonomous scan, we observe that areas with
more details and complex features require eye-tracking integra-
tion to improve the scanning results. Based on the observation,
the robotic arm was moved 0.5, 3.5, 2, 3.5, the markers with the
intention of capturing areas with high density and curvature.

The Figure 11 shows images of a selected region from the
F1 model car to interpret the meshdata of the two scans. The
images presented in Figure 12 showcase mesh data from scans
of the F1 model car. The first column displays the results from
the fully autonomous scan while the second column displays
the images of autonomous scanning optimized by eye tracking.
In comparison, gaps observed between the points in the first im-
age indicated that the point cloud has a lower point density. As
a result, the surface may appear to have less detail. The scanned
data of the fully autonomous scan exhibits visible irregulari-
ties, as several regions show sparse dots, which potentially in-
dicates that the scan did not fully capture all the characteristics
of the F1 model car. Closer visual observations indicated possi-
ble noise in both scans. To further confirm the metric provided
in the study.

4.3. Critical Area Scan

The same procedure was followed to obtain point cloud data
for the critical area of the F1 model car. Gaze tracking was inte-
grated into the 3.5, 2.5 marker to optimize the details captured
in the process.

4.4. Density and Curvature Metric

The Table 6 depicts the average ρi × νi and minimum ρi × νi
values from each fully autonomous scan and eye tracking inte-
grated autonomous scan carried out in the study. All three scans

Figure 12: (a) Fully autonomous scan; (b) Gaze tracking integrated scan.

carried out by the fully autonomous scanning process show a
modest average ρi ∗ νi value, which indicates a balanced mix-
ture of less detailed and highly detailed regions throughout the
scan. However, the three eye-tracking integrated autonomous
scans have a higher average ρi ∗ νi, when compared to fully au-
tonomous scans, suggesting that, in general, they contain more
complex and detailed regions compared to the first scan. The
higher average implies better capturing of intricate details or
inherently more complex surfaces.

A minimum value of 0 in ρi ∗ νi in both scanning methods
indicates the presence of surface areas with low point density
or low curvature.

Table 6: Density curvature (ρi ∗ νi) metric

Method Scan Avg(ρi ∗ νi) Min(ρi ∗ νi)

Fully Full scan 0.3543 0
autonomous Critical area 0.3408 0
Gaze tracking Full scan 0.4410 0
integrated Critical area 0.4330 0

5. Conclusion and Future Work

This study proposes a method to integrate eye tacking to im-
prove the autonomous 3D point cloud scanning process using
collaborative robots. The results of the experiment demonstrate
a significant improvement in the autonomous scanning process
in capturing high detail and complex curvature with the inte-
gration of human gaze to guide the robotic arm to critical areas
with a high level of detail and geometric complexity.

The metric presented in the study indicated that the gaze
integrated autonomous scanning process is compared with the
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fully autonomous scanning process. This metric proposed in the
paper provides valuable quantitative evaluation and comparison
of point-cloud scan complexity and detail, which will be help-
ful in applications where accuracy and detail are essential, such
as reverse engineering and geometric metrology.

A new research direction can be developed based on the pro-
posed metric. Moreover, the coordinate data obtained from eye-
tracking can be extracted and streamed in real time to control
the movement of the robotic arm. This process involves using
the live coordinates of the eye tracking system to guide the
movements of the robot arm instantly without delay. Marker
registration can also be extended to other markers to increase
the variations of the robotic arm.
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