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Abstract 

 

In busy metropolitan areas, traffic restrictions based on the last digits of license plates 

effectively ease traffic jams and improve air quality. Recently, policy-makers in China exempted 

battery electric vehicles (BEV) from traffic restrictions to promote their diffusion in place of 

conventional vehicles (CV). To examine the impacts of such an exemption on consumers and 

manufacturers as well as the environment, this study models the duopoly competition between 

BEV and CV manufacturers as a Cournot game. The numerical analyses compare three traffic 

restriction policies concerning BEV and CV, and reveal the pros and cons of each. In particular, 

the BEV-exempted policy promotes customer adoption, industry development, and environment 

protection with the least consumer surplus loss. As supplementary measures, relevant vehicle 

purchase tax and carbon tax may make such a policy more effective, respectively, in short and long 

terms. 

 

Keywords: Conventional vehicles (CV); Battery electric vehicles (BEV); Traffic restriction 

policies; Vehicle purchase tax; Carbon tax; Carbon emission. 
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Exempting Battery Electric Vehicles from Traffic Restrictions: Impacts on Market and 

Environment under Pigovian Taxation 

1. Introduction 

Exhaust from vehicles using fossil fuels is a major source of carbon emission. In 

metropolitan areas, traffic congestions not only cost people time but also make air pollution worse. 

To alleviate the issues, major cities around the world keep some vehicles off the road on certain 

days. Known as traffic restriction (Fernandes et al., 2016; Shi, Guo, & Hu, 2019), driving 

restriction (L. L. Wang, Xu, & Qin, 2014; Yang, Lu, Liu, & Guo, 2018), or restriction of car use 

(Gallego, Montero, & Salas, 2013; Z. Y. Liu, Li, Wang, & Shang, 2018), such a measure is a 

“necessary evil”. At the cost of individual convenience, a traffic restriction enhances the wellbeing 

of the general public.  

For instance, the traffic restriction helped Guangzhou, a megacity in China, reduce volatile 

organic compounds by 31% roadside and 34% rooftop on average (X. Y. Huang et al., 2017). 

Langfang is another severely-polluted city, and its enforcement improves air quality and 

significantly lowers the cancer risk level of its population (Zhao et al., 2018). To China's capital, 

Beijing, the measure brings tremendous public health benefits, especially for women and the 

elderly in winter (Y. Liu, Yan, & Dong, 2016). It also reduces carbon emission by more than 35%, 

or 15.5 million tons each year, in Beijing alone (P. H. Li & Jones, 2015). 

A typical traffic restriction covers all private cars but exempts public transport such as 

buses and taxis. In 2017, China further “whitelisted” new energy vehicles (NEV) to promote their 

diffusion (N. Wang, Pan, & Zheng, 2017). In the regulations regarding such an exemption and 

other preferential policies (e.g., tax breaks), NEV include battery electric vehicles (BEV), plug-in 

hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV) (MI&IT, 2020; MOF, 

2020a, 2020b). By the same token, this study distinguishes these three types of NEV from 

conventional vehicles (CV) that run on internal combustion engines as the main power source (e.g., 
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non-plug-in hybrid electric vehicles). In particular, BEV accounted for two-thirds (4.79 out of 7.2 

million) of total NEV sold worldwide by the end of 2019 (IEA, 2020), and over 80% (4.49 out of 

5.51 million) in the China market by the first quarter of 2021 (MPS, 2021). Thus, this study focuses 

on the effects of BEV-exempted traffic restriction in primary modeling, and includes PHEV and 

FCEV in extended robustness analyses. 

As “traffic restriction policies address economic, social, and environmental issues at the 

local level but may have effects beyond their area of application” (Anciaes, 2015), exempting BEV 

from traffic restriction has implications beyond its original intent. This study attempts to 

investigate the question of how BEV-exempted traffic restriction helps promote BEV diffusion and 

reduce carbon emission along with Pigovian taxation. First, it reviews the current literature on 

traffic restriction policies, BEV incentive programs and Pigovian taxation approaches to identify 

the research gap. Next, it sets up the mathematical model of a Cournot game between a BEV 

manufacturer and a CV manufacturer that compete for the same market, and compares BEV-

exempted traffic restriction with no restriction and uniform restriction. Then, numerical analyses 

are conducted to examine the effectiveness of EV-exempted traffic restriction under vehicle 

purchase tax and carbon tax, followed by extended robustness analyses. Finally, the implications 

of the findings are discussed. 

2. Research Background 

2.1 Traffic Restriction 

Often called last-digit restriction (X. D. Zhang, Li, Feng, & Chen, 2012) or license plate 

restriction (N. Jia, Zhang, He, & Li, 2017; Pu, Yang, Liu, Chen, & Chen, 2015), a typical traffic 

restriction policy determines when a car can be on the road based on the tail number of its license 

plate. Many cities of China, for instance, keep each private car off the road from one-day-out-of-

10 to odd-even-day, as shown in Table 1. Among the variants, one-day-per-week is the most 
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common. An increasing number of restriction programs implemented in major cities worldwide 

(e.g., Paris, Rome, Mexico City, and London) now differentiate cars by their pollution levels: high-

pollution vehicles are prohibited or restricted in down-town areas, while low-pollution vehicles 

are not (Barahona, Gallego, & Montero, 2020). 

Table 1. Traffic Restriction in China 

Restriction City 

One-day-out-of-10 Changchun 

One-day-per-week 

Beijing, Tianjin, Shijiazhuang, Tangshan, Qinhuangdao, Handan, Baoding, 

Cangzhou, Langfang, Zhengzhou, Kaifeng, Luoyang, Anyang, Hebi, 

Xinxiang, Puyang, Luohe, Xi’an, Xianyang, Weinan, Hangzhou, Lanzhou, 

Chengdu, Taiyuan. 

Odd-even-day Changzhi, Xinzhou, Dalian, Zhuhai. 

Four-days-on-road-

and-four-days-off 

Guangzhou 

Note: It is a nationwide policy to exempt NEV from traffic restriction (MOF, 2020b). 

 

The simplest odd-even-day traffic restriction keeps half of the cars home every week day. 

Delhi, one of the most polluted cities in the world, tried such a policy in 2016 (Chowdhury et al., 

2017). Beijing, the capital of China, enforced it during the 2008 Olympic Games (Cai & Xie, 2011). 

On a regular basis, more cities choose milder traffic restriction policies. The one-day-per-week 

restriction keeps a car off the road for one day every week, reducing about 20 percent of traffic 

each weekday. In addition to those in China, many major cities in the world also implement this 

policy, such as Milan (Invernizzi et al., 2011), Ramallah (Vermote, Macharis, Boeykens, 

Schoolmeester, & Piutman, 2014), and Mexico City (Guerra & Millard-Ball, 2017; Lyons, Lozano, 

Granados, & Guzman, 2017). 

The main difference across policy variants, especially between one-day-per-week and odd-

even-day, lies in traffic restriction strength. Being the most stringent, odd-even-day traffic 

restriction is generally not welcomed by drivers, some of whom may even risk violating the policy 

(Z. Y. Liu et al., 2018). At a steep cost, its marginal benefit is not very convincing either: the traffic 
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volume in Beijing only increased by 8.74% when it was replaced by one-day-per-week after the 

2008 Olympic Games (Z. Y. Liu et al., 2018). One goal of this study, therefore, is to explore the 

relationship between traffic restriction strength and consumer surplus. 

All traffic restriction policies are more effective in the short term than in the long term 

(Huang, Fu, & Qi, 2017; Yang et al., 2018). To bypass the restriction, for example, many 

commuters buy a second car (Y. X. Liu, Hong, & Liu, 2016). Even worse, some commuters choose 

to drive “illegally” on prohibited days (Z. Liu, Li, Wang, & Shang, 2020). Others would rather 

change their travel plans than switching to public transport as per policy intent (Guerra & Millard-

Ball, 2017). For most drivers, therefore, the use of BEV is preferred if they are exempted from 

traffic restrictions (Klungboonkrong, Jaensirisak, & Satirnnam, 2017). To gradually phase out CV 

in big cities, China exempted NEV, dominantly BEV, from traffic restriction in 2017 as “a 

combination of traffic restriction policy and green technology” (NDRC, 2017). It is estimated that 

replacing CV with BEV can cut more than half of the carbon emission from transportation (Mro 

& Lonza, 2018). 

The effectiveness of traffic restriction is usually evaluated in terms of how it enhances 

traffic and environmental conditions, such as the increase of average speed (Z. Y. Liu et al., 2018) 

and the improvement of air quality (Fernandes et al., 2016; Lyons et al., 2017; Pu et al., 2015). 

Policy-makers often put more weight on the environment than the traffic as evidenced by the fact 

that many cities deploying one-day-per-week switch to temporary odd-even-day in response to 

smog (MEEC, 2018; SMG, 2018). Therefore, this study pays special attention to the effect of 

traffic restriction on emission control. 

2.2 Pigovian Taxation 

In countries like China (Hao, Ou, Du, Wang, & Ouyang, 2016) and Norway (Bjerkan, 

Nørbech, & Nordtømme, 2016), waiving vehicle purchase tax for BEV is one critical move to 

promote their diffusion (Mersky, Sprei, Samaras, & Qian, 2016). This kind of Pigovian taxation 
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serves as a negative incentive that “persuades” people to switch from CV to BEV. It is considered 

an effective green policy that reduces the total carbon emission from transportation in the long run 

(Fridstrøm & Østli, 2017).  

Meanwhile, applying fuel surcharge for CV is an alternative to waiving vehicle purchase 

tax for BEV in terms of emission control: purchase tax reduces the number of CV while fuel 

surcharge limits their use (Y. Liu & Cirillo, 2015). Adding an extra burden on consumers, however, 

the fuel surcharge is not very popular in countries like the USA and China where people still rely 

heavily on CV (Hsu, Walters, & Purgas, 2008). As another option for emission control, carbon tax 

is levied directly on automakers and largely avoids consumer complaints (Aldy, 2019). Therefore, 

this study examines the effects of BEV-exempted traffic restriction under two Pigovian taxation 

approaches: vehicle purchase tax (waived for BEV) and carbon tax. 

2.3 BEV Incentive Programs 

Either direct or indirect in nature, incentive programs play essential roles in BEV diffusion. 

Direct incentives such as price subsidies and tax breaks motivate consumers to purchase BEV in 

many countries (Sierzchula, Bakker, Maat, & van Wee, 2014). Another direct incentive 

implemented in China, free vehicle license (worth 106,144 RMB on average), also stimulates BEV 

sales (Qian, Grisolia, & Soopramanien, 2019). Nevertheless, the impact of such customer-side 

subsidies on the expansion of China's BEV market is not as strong as expected, considering 

alternative policies that support its continuous growth (L. Li et al., 2020). For instance, R&D 

subsidization is effective in promoting BEV adoption and environment protection (Yan, 2018). 

Although there are debates on financial incentives, it is generally agreed upon that public 

expenditure and regulatory measures play important roles in NEV diffusion (Berkeley, Jarvis, & 

Jones, 2018; Biresselioglu, Kaplan, & Yilmaz, 2018; L. Li et al., 2020; Lin & Wu, 2018), such as 

the construction of BEV charging infrastructure to ease consumers’ range concerns (Kim, Oh, Park, 

& Joo, 2018; Neves, Marques, & Fuinhas, 2019). As indirect incentives, supportive policies like 
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toll waiver, free parking, and special lane access (e.g., HOV/carpool and bus lanes) increase 

people’s incorporation of BEV in daily routines and consequently their purchase intention 

(Hardman, 2019).  

Like direct incentives, indirect incentives come with a cost. For instance, toll waiver leads 

to a sizable loss of toll revenue despite its promotion of BEV adoption in Norway (Aasness & 

Odeck, 2015). Attractive to potential BEV buyers in Netherlands (Wolbertus, Kroesen, van den 

Hoed, & Chorus, 2018), USA (Krause, Carley, Lane, & Graham, 2013), Japan (Khan, Yamamoto, 

& Sato, 2020) and China (Ning Wang, Tang, & Pan, 2017), free parking also causes a fall in the 

parking revenue, sometimes making a difference between surplus and deficit for local 

administrations (Bakker & Trip, 2013). In places where detached dwellings allow more consumers 

to charge at home (e.g., USA, Switzerland), parking incentives do not stimulate BEV sales as much 

as home ownership (Bruckmann, Willibald, & Blanco, 2021). 

Though special lane access for BEV imposes little burden on the government budget, it is 

not problem-free either. For instance, granting BEV the access to a bus lane may slow down or 

even congest the traffic there and void its original purpose. Therefore, bus lane access is not very 

attractive to potential BEV buyers who generally care about public welfare (Y. Zhang, Qian, Sprei, 

& Li, 2016). Removing the carpool requirement of high-occupancy vehicle (HOV) lanes for BEV 

drivers only promotes purchase intentions in those megacities where the highway infrastructure 

allows such lane dedications (Hackbarth & Madlener, 2013; Krause et al., 2013).  

The impacts of HOV and bus lane access on BEV sales depend on traffic congestion levels 

in the regions where they are deployed (Hardman, 2019). Though they may increase the likelihood 

of repeated purchases, most first-time BEV buyers pay more attention to technology, environment 

and performance (Hardman, Chandan, Tal, & Turrentine, 2017). Even in the USA, HOV lane 

access is found an insignificant predictor of BEV sales due to limited HOV lane accessibility per 

capita (Wee, Coffman, & La Croix, 2018). Similarly in Canada, China, and the Netherlands, HOV 

and bus lane access have no significant effects on BEV adoption (W. Jia & Chen, 2021). 
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Compared with the above indirect incentives, restrictive policies (i.e., registration limit and 

traffic restriction) on traditional vehicles promote NEV adoption far more effectively (Lu, Yao, Jin, 

& Pan, 2020). The policy to limit the number of new vehicle registrations significantly increased 

the sales of NEVs in major Chinese cities, for instance, by 73.4%, 87.5%, 87% and 65.5% 

respectively in Tianjin, Hangzhou, Shenzhen and Haikou (Chi, Wang, & Xu, 2021). The similar 

license plate lottery program implemented in the Netherlands also outperforms the subsidy policy 

(Peters, van der Werff, & Steg, 2018). Driving restriction shows great potential as well, ranked by 

consumers in China as the third important factor next to registration limit and bus lane access, 

surpassing charging convenience, purchase subsidy, vehicle use subsidy and other factors (Lu et 

al., 2020). NEV drivers appreciate both registration limit waiver and traffic restriction exemption 

as they supplement each other: the former reduces ownership cost and the latter increases usage 

value (Ning Wang et al., 2017). 

As subsidy policies encounter diminishing marginal returns, it is logical for regulatory 

policies to step in (X. Liu, Xie, Wang, & Xue, 2021). In addition to those on the consumer side, 

there are regulatory policies on the manufacturer side as well. China’s dual-credit mechanism on 

automakers comprises the credit from NEV production and the credit based on the average fuel 

consumption level of CV manufactured (to be discussed in more details later). With such a 

mechanism, BEV sales are likely to increase by over 2 million units annually (Ou et al., 2018), 

and the total carbon emission from passenger vehicles is expected to peak in 2032 (He et al., 2020). 

In the USA, various federal and state regulations promote BEV diffusion, such as “greenhouse gas 

(GHG) emissions and fuel economy standards for light-duty vehicles” and “corporate average fuel 

economy (CAFE) standards” at the national level (Sen, Noori, & Tatari, 2017), and California’s 

“zero-emission vehicle (ZEV) program” (Sykes & Axsen, 2017) and “low carbon fuel standard 

(LCFS)” (Lepitzki & Axsen, 2018).  
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2.4 Research Gap 

Extant studies predict BEV sales with traffic restriction exemption along with other 

variables such as charging infrastructure, price subsidy, tax break and registration limit waiver, and 

the results based on official or non-governmental data support its relatively strong influence (Ma, 

Fan, & Feng, 2017; Morton, Lovelace, & Anable, 2017; N. Wang et al., 2017). To further 

understand how traffic restriction exemption affects people’s intention to purchase and use BEV, 

researchers collected survey and experiment observations from consumers, and the findings also 

suggested that such a policy effectively boosts up people’s willingness to purchase BEV (Ning 

Wang et al., 2017; Z. Wang, Zhao, Yin, & Zhang, 2017). Nevertheless, researchers and 

practitioners are yet to find out how traffic restriction policies and other incentive programs 

together make differences in the decisions of consumers and automakers, the understanding of 

which is critical for holistic policy-making. 

So far, only one publication examined the effectiveness of incentive programs on BEV 

diffusion with trade-off scenarios (Ning Wang, Tang, Zhang, & Guo, 2019). The results of system 

dynamics modeling suggest that registration limit waiver, price subsidy, and traffic restriction 

exemption have stronger effects on BEV sales than the reductions in parking fee, road toll, 

insurance charge, and vehicle and vessel (V&V) tax. However, the study did not consider how the 

competition between BEV and CV manufacturers influences consumer behavior. Rather, it 

compared the scenarios in which each policy is enacted or not. For instance, the abrogation of the 

BEV subsidy is expected to result in a sharp decline of market share by 42%. 

When a person chooses between BEV and CV options, the decision is based on their 

relative pros and cons in context. The comparison is embedded in different incentive programs that 

distinguish the utilities of BEV and CV to consumers. In addition to traffic restriction exemption 

that lifts BEV usage value, people consider financial incentives at the time of purchase. As a 

negative incentive in contrast to price subsidy, Pigovian taxation on CV manufacturers or buyers 
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makes BEV more market-competitive.  

The modeling of CV and BEV as competitive alternatives makes it possible to 

accommodate both Pigovian taxation and traffic restriction exemption. Rooted in the same 

environmental consideration, they are synergistic in shaping BEV purchase decisions regarding 

one-time investment and life-time usage, respectively. The examination of how traffic restriction 

and Pigovian taxation interact with each other helps policy-makers identify the best practices that 

are environment-friendly as well as acceptable to both automakers and consumers. 

3. Methods 

This study attempts to fill in the research gap with game theory modeling, as the 

competition between a BEV manufacturer and a CV manufacturer for the same market is basically 

a Cournot game in which they make decisions independently. Describing how consumers choose 

between BEV and CV and how vehicle manufacturers price their products to maximize 

profitability, the benchmark model provides the basis for further evaluating different traffic 

restriction policies and taxation approaches. Table 2 summarizes model notations. 

Table 2. Model Notations 

Notation Definition 

𝑖 ∈ {𝐵𝐸𝑉, 𝐶𝑉} Vehicle type subscript: BEV stands for “battery electric 

vehicles”, and CV stands for “conventional vehicles”. 

𝑃𝑖 Retail price 

𝐶𝑖 Marginal cost 

𝑂𝑖 Operating cost 

𝑣 Consumer valuation of CV 

𝛽𝑣 Consumer valuation of BEV, 0 < 𝛽 ≤ 1 

𝑟𝑉𝑃𝑇 Vehicle purchase tax rate 
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𝑠 Price subsidy on BEV 

𝑙 Loss of consumer surplus (which reflects the strength of 

traffic restriction) 

𝑈𝑖 Surplus utility 

𝑞𝑖 Vehicle Sales 

𝜋𝑖 Manufacturer profit 

𝑒𝑖 Carbon emission 

𝑐𝑒𝑖 Carbon tax 

𝑗 ∈ {𝑁𝑅, 𝐶𝑉𝑅, 𝐵𝑅} Traffic restriction superscript: NR stands for “no 

restriction”, CVR stands for “CV restricted” (i.e., BEV-

exempted restriction), and BR stands for “both CV and 

BEV restricted” (i.e., uniform restriction). 

𝑇𝐶𝐸𝑗 Total carbon emission 

3.1 Consumer Behavior 

When purchasing vehicles, consumers have two options, BEV or CV. Most BEV use 

lithium batteries to store energy, making them pricier than CV (𝑃𝐵𝐸𝑉 > 𝑃𝐶𝑉). To promote BEV 

diffusion, there is a price subsidy 𝑠 on BEV. In addition, consumers need to pay vehicle purchase 

tax for CV, which is waived for BEV. The rate of vehicle purchase tax is 𝑟𝑉𝑃𝑇 for CV, and 0 for 

BEV.  

Operating cost mainly includes transportation cost and maintenance cost. In terms of 

transportation cost, BEV are more economical (as electricity is relatively affordable and can be 

obtained from new energy sources like solar and wind) than CV. The average fuel consumption of 

CV in China in 2017 was 6.76 L/100km (CATRC, 2018), and the goal set by the State Council of 

China is to reach 5L/100km by 2020 (SCC, 2016a). The average gasoline price in China is 5-7 

RMB/L, and the transportation cost of CV is about 25-35RMB/100km. Meanwhile, BEV currently 
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consume 14.7 kWh/100km on average, which is expected to be lowered to 11.5 kWh/100km by 

2025 (ACNPMCCS, 2017). The electricity rate is 0.5-1 RMB/kWh in China, leading to the 

transportation cost of 5.75-14.7 RMB/100km. Compared with CV, BEV are also less expensive to 

maintain due to fewer mechanical parts. For instance, the five-year maintenance cost of a Nissan 

Leaf was about $3,920, in comparison to $4,268 for its CV equivalent of a Toyota Corolla (Breetz 

& Salon, 2018). The gaps in transportation and maintenance costs are expected to widen as the 

BEV market becomes more mature. Therefore, the operating cost of BEV is set lower than that of 

CV: 𝑂𝐵𝐸𝑉 < 𝑂𝐶𝑉.  

To maximize the surplus utility, strategic consumers compare different vehicle options 

based on the valuation of cars. Due to technological bottlenecks (e.g., relatively short range, fast 

decay of battery, and time-consuming recharging) and insufficient recognition, consumers’ 

valuation of BEV is generally lower than that of CV. The ratio of valuation between BEV and CV 

is 𝛽, and 0 < 𝛽 < 1. The surplus utility is formulated below: 

𝑈𝐵𝐸𝑉 = 𝛽𝑣 − 𝑃𝐵𝐸𝑉 − 𝑂𝐵𝐸𝑉 + 𝑠, (1) 

𝑈𝐶𝑉 = 𝑣 − (1 + 𝑟𝑉𝑃𝑇)𝑃𝐶𝑉 − 𝑂𝐶𝑉. (2) 

Consumers may purchase neither BEV nor CV if both options provide negative surplus 

utility. When at least one option provides positive surplus utility, they will choose the one of higher 

surplus utility. Heterogeneous consumers are evenly distributed between 0 and 1. The 

identification of the indifferent consumer’s location yields the functional relationship between 

sales and retail price, as formulated below: 

𝑞𝐵𝐸𝑉 =
(1 + 𝑟𝑉𝑃𝑇)𝑃𝐶𝑉 − 𝑃𝐵𝐸𝑉 + 𝑂𝐶𝑉 − 𝑂𝐵𝐸𝑉 + 𝑠

1 − 𝛽
−
𝑃𝐵𝐸𝑉 + 𝑂𝐵𝐸𝑉 − 𝑠

𝛽
, (3) 

𝑞𝐶𝑉 = 1 −
(1 + 𝑟𝑉𝑃𝑇)𝑃𝐶𝑉 − 𝑃𝐵𝐸𝑉 + 𝑂𝐶𝑉 − 𝑂𝐵𝐸𝑉 + 𝑠

1 − 𝛽
. (4) 

3.2 Manufacturer Decisions 

There are two manufacturers that make BEV and CV, respectively. Pursuing profitability, 
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they decide the retail prices of their own products independently. The two types of vehicles are 

produced at different marginal costs. At the present, batteries are still relatively expensive, raising 

the marginal cost of BEV above that of CV: 𝐶𝐵𝐸𝑉 > 𝐶𝐶𝑉. A higher retail price is needed to make 

the BEV manufacturer profitable. In the foreseeable future, the difference in production scales 

between BEV and CV will sustain the price gap. 

In addition to marginal cost and retail price, the profitability of automakers is also subject 

to environmental regulations. In China, the NEV credit mechanism awards NEV production with 

a positive credit 𝐶𝑅𝑁𝐸𝑉
+  of up to 6 points per vehicle, but penalizes CV production with a negative 

credit 𝐶𝑅𝑁𝐸𝑉
−  of -0.12 point per vehicle (as per the most recent values in 2020). Based on such 

“NEV credit proportion requirement”, the BEV manufacturer obtains the positive credit 

𝐶𝑅𝑁𝐸𝑉
+ 𝑞𝐵𝐸𝑉, whereas the CV manufacturer accrues the negative credit 𝐶𝑅𝑁𝐸𝑉

− 𝑞𝐶𝑉. An automaker 

may purchase credit at the unit price of 𝑃𝐶𝑅 to offset negative points, or pay a fine at the rate 

of 𝑓𝑖𝑛𝑒𝐶𝑅. To encourage corporate participation in NEV credit trading, 𝑓𝑖𝑛𝑒𝐶𝑅 is set higher than 

𝑃𝐶𝑅, or all the automakers that accrue negative points will choose to pay fines.  

Considering the NEV credit mechanism, the profit of manufacturer i can be formulated as: 

𝜋𝑖 = 𝑃𝑖𝑞𝑖 − 𝐶𝑖𝑞𝑖 + 𝑇𝐶𝑅𝑖, (5) 

where 𝑖 ∈ {𝐵𝐸𝑉, 𝐶𝑉} , corresponding to BEV and CV manufacturers respectively, and 𝑇𝐶𝑅𝑖 

stands for credit trading income or expense. In particular, the BEV manufacturer profits from 

selling credit points: 𝑇𝐶𝑅𝐵𝐸𝑉 = 𝑚𝑖𝑛{𝐶𝑅𝑁𝐸𝑉
+ 𝑞𝐵𝐸𝑉 , 𝐶𝑅𝑁𝐸𝑉

− 𝑞𝐶𝑉}𝑃𝐶𝑅, and the CV manufacturer pays 

for credit points: 𝑇𝐶𝑅𝐶𝑉 = −𝑚𝑖𝑛{𝐶𝑅𝑁𝐸𝑉
+ 𝑞𝐵𝐸𝑉, 𝐶𝑅𝑁𝐸𝑉

− 𝑞𝐶𝑉}𝑃𝐶𝑅 . This study first focuses on the 

scenario 𝐶𝑅𝑁𝐸𝑉
+ 𝑞𝐵𝐸𝑉 > 𝐶𝑅𝑁𝐸𝑉

− 𝑞𝐶𝑉, in which the NEV credit for transaction totals 𝐶𝑅𝑁𝐸𝑉
− 𝑞𝐶𝑉. In 

the case 𝐶𝑅𝑁𝐸𝑉
+ 𝑞𝐵𝐸𝑉 < 𝐶𝑅𝑁𝐸𝑉

− 𝑞𝐶𝑉, the CV manufacturer needs to pay an additional fine, which 

will be discussed in Section 4.4.4. 

3.3 Total Carbon Emission 

The life-cycle assessment of total carbon emission considers the direct carbon emission 
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from CV as well as the indirect emission of BEV from electricity generation (Onn et al., 2018). In 

a grid with the carbon intensity of electricity lower than 700g/kWh, BEV leave a smaller carbon 

footprint than CV at the same usage (IEA, 2016; Wu et al., 2018). The average carbon intensity of 

electricity in the world is 340g/kWh (IEA, 2019), and China’s coal powerplants must meet the 

550g/kWh standard or get phased out by 2020 (SCC, 2016b). For the same expected lifespan 

mileage (e.g., 300,000km), therefore, BEV yield less carbon emission than CV on average: 

𝑒𝐵𝐸𝑉 < 𝑒𝐶𝑉. The total carbon emission (TCE) for all vehicles is: 

𝑇𝐶𝐸 = ∑ 𝑒𝑖𝑞𝑖
𝑖=𝐵𝐸𝑉,𝐶𝑉

. (6) 

In the case of carbon tax, the unit amount is calculated based on the lifecycle emission of 

each vehicle produced: 

𝑐𝑒𝐵𝐸𝑉 = 𝑐𝑎𝑟𝑏𝑜𝑛 𝑡𝑎𝑥 𝑟𝑎𝑡𝑒 · 𝑒𝐵𝐸𝑉, (7) 

𝑐𝑒𝐶𝑉 = 𝑐𝑎𝑟𝑏𝑜𝑛 𝑡𝑎𝑥 𝑟𝑎𝑡𝑒 · 𝑒𝐶𝑉. (8) 

3.4 Consumer Surplus 

The sum of surplus utility formulated previously is denoted as consumer surplus (CS). 

Under the ad hoc policy of no traffic restriction, a density function 𝑓(𝑣) can be specified based 

on Equations (1), (2), and Lemma 1: 

𝑓(𝑣) = {

0 , 𝑚𝑎𝑥{𝑈𝐵𝐸𝑉(𝑣), 𝑈𝐶𝑉(𝑣)} < 0

𝑈𝐵𝐸𝑉(𝑣) , 𝑈𝐵𝐸𝑉(𝑣) > 𝑈𝐶𝑉(𝑣) 𝑎𝑛𝑑 𝑈𝐵𝐸𝑉(𝑣) > 0

𝑈𝐶𝑉(𝑣) , 𝑈𝐵𝐸𝑉(𝑣) < 𝑈𝐶𝑉(𝑣) 𝑎𝑛𝑑 𝑈𝐶𝑉(𝑣) > 0

, (9) 

The integral of the density function 𝑓(𝑣) yields the value of CS: 

𝐶𝑆 = ∫𝑓(𝑣)𝑑𝑣

1

0

. (10) 
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4. Results 

Based on the model setup above, Section 4.1 reports the equilibrium results under different 

restriction-taxation scenarios. The comparisons of these equilibria yield the optimal traffic 

restriction strategy in Section 4.2 and the optimal taxation approach in Section 4.3, respectively. 

In order to assess model robustness, Section 4.4 considers four extensions by relaxing relevant 

assumptions. 

4.1 Optimal Pricing 

This section derives the optimal pricing decisions made by the two manufacturers under 

three traffic restriction policies:  

NR: No restriction policy; 

CVR: BEV-exempted policy with only CV restricted; 

BR: Uniform policy with both BEV and CV restricted. 

In addition, two Pigovian taxation approaches are considered. The first is vehicle purchase 

tax (waived for BEV), which has been implemented in China and Norway. The second is carbon 

tax, a climate policy worldwide. 

4.1.1 No Traffic Restriction Scenario  

Two manufacturers price their vehicles independently. Consumers make purchase 

decisions based on the retail prices of BEV and CV. The backward induction is used to solve this 

game, and optimal solutions are summarized in Lemma 1. 

Lemma 1. Where there is no traffic restriction, the optimal retail prices, sales volumes, and 

manufacturer profits are: 

𝑃𝐵𝐸𝑉
𝑁𝑅 =

𝛽(𝐾1 + 1 − 𝛽) + 2𝐾2
4 − 𝛽

− 𝑂𝐵𝐸𝑉 + 𝑠, (11) 
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𝑞𝐵𝐸𝑉
𝑁𝑅 =

𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2
(4 − 𝛽)(1 − 𝛽)𝛽

, (12) 

𝜋𝐵𝐸𝑉
𝑁𝑅 =

[𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2]
2

(4 − 𝛽)2(1 − 𝛽)𝛽
        

+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅

2 + 𝛽 − 2𝐾1 − 𝐾2
4 − 𝛽

, (13)

 

𝑃𝐶𝑉
𝑁𝑅 =

2(𝐾1 + 1 − 𝛽) + 𝐾2
(4 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)

−
𝑂𝐶𝑉

1 + 𝑟𝑉𝑃𝑇
, (14) 

𝑞𝐶𝑉
𝑁𝑅 = 1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽) − 𝐾2
(4 − 𝛽)(1 − 𝛽)

, (15) 

𝜋𝐶𝑉
𝑁𝑅 =

[2(1 − 𝛽) − (2 − 𝛽)𝐾1 + 𝐾2]
2

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
. (16) 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅) + 𝑂𝐶𝑉  and 𝐾2 = 𝐶𝐵𝐸𝑉 + 𝛽𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 +

𝑂𝐵𝐸𝑉 − 𝑠. 

Proof: See Appendix A. 

Table 3 summarizes how sales volumes, retail prices, manufacturer profits, consumer 

surplus, and total carbon emission vary with parameter values under vehicle purchase tax when 

there is no traffic restriction. The results are analytical, and Appendix B1 gives the derivatives. 

 

Table 3. Sensitivity analysis for no traffic restriction under vehicle purchase tax 

 𝑞𝐵𝐸𝑉
𝑁𝑅  𝑞𝐶𝑉

𝑁𝑅 𝑃𝐵𝐸𝑉
𝑁𝑅  𝑃𝐶𝑉

𝑁𝑅 𝜋𝐵𝐸𝑉
𝑁𝑅  𝜋𝐶𝑉

𝑁𝑅 𝐶𝑆𝑁𝑅 𝑇𝐶𝐸𝑁𝑅 

𝑟𝑉𝑃𝑇 ＋ － ＋ － Note 2 － － － 

𝑂𝐵𝐸𝑉 － ＋ － ＋ － ＋ － Note 1 

𝑂𝐶𝑉 ＋ － ＋ － Note 2 － － － 

𝛽 ＋ ＋ ＋ － ＋ － ＋ ＋ 

Note 1. When 𝑐𝑒𝐵𝐸𝑉 >
𝛽

2−𝛽
𝑐𝑒𝐶𝑉, it is “＋”; otherwise, it is “－”; Note 2. When Λ1 − (4 − 𝛽)(1 − 𝛽)𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 > 0, it is 

“＋”; otherwise, it is “－”. 

 

Corollary 1 gives the optimal solutions under carbon tax when there is no traffic restriction: 
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Corollary 1. When there is no traffic restriction, the optimal retail prices, sales volumes, 

and manufacturer profits under carbon tax are: 

�̃�𝐵𝐸𝑉
𝑁𝑅 =

𝛽(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉) + 2(𝐾2 + 𝑐𝑒𝐵𝐸𝑉)

4 − 𝛽
− 𝑂𝐵𝐸𝑉 + 𝑠, (17) 

�̃�𝐵𝐸𝑉
𝑁𝑅 =

𝛽(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑐𝑒𝐵𝐸𝑉)

(4 − 𝛽)(1 − 𝛽)𝛽
, (18) 

�̃�𝐵𝐸𝑉
𝑁𝑅 = CRNEV

− 𝑃𝐶𝑅
2 + 𝛽 − 2(�̃�1 + 𝑐𝑒𝐶𝑉) − 𝐾2 − 𝑐𝑒𝐵𝐸𝑉

4 − 𝛽

+
[𝛽(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑐𝑒𝐵𝐸𝑉)]

2

(4 − 𝛽)2(1 − 𝛽)𝛽
, (19)

 

�̃�𝐶𝑉
𝑁𝑅 =

2(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉) + 𝐾2 + 𝑐𝑒𝐵𝐸𝑉
4 − 𝛽

− 𝑂𝐶𝑉, (20) 

�̃�𝐶𝑉
𝑁𝑅 = 1 −

(2 − 𝛽)(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉) − (𝐾2 + 𝑐𝑒𝐵𝐸𝑉)

(4 − 𝛽)(1 − 𝛽)
, (21) 

�̃�𝐶𝑉
𝑁𝑅 =

[2(1 − 𝛽) − (2 − 𝛽)(�̃�1 + 𝑐𝑒𝐶𝑉) + 𝐾2 + 𝑐𝑒𝐵𝐸𝑉]
2

(4 − 𝛽)2(1 − 𝛽)
. (22) 

Note: �̃�1 = 𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅 + 𝑂𝐶𝑉 and 𝐾2 = 𝐶𝐵𝐸𝑉 + 𝛽𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 + 𝑂𝐵𝐸𝑉 − 𝑠. 

Proof: See Appendix A. 

Table 4 summarizes how sales volumes, retail prices, manufacturer profits, consumer 

surplus and total carbon emission vary with parameter values under carbon tax when there is no 

traffic restriction. The results are analytical, and Appendix B2 gives the derivatives. 

 

Table 4. Sensitivity analysis for no traffic restriction under carbon tax 

 �̃�𝐵𝐸𝑉
𝑁𝑅  �̃�𝐶𝑉

𝑁𝑅 �̃�𝐵𝐸𝑉
𝑁𝑅  �̃�𝐶𝑉

𝑁𝑅 �̃�𝐵𝐸𝑉
𝑁𝑅  �̃�𝐶𝑉

𝑁𝑅 𝐶�̃�𝑁𝑅 𝑇𝐶�̃�𝑁𝑅 

𝑂𝐵𝐸𝑉 － ＋ － ＋ － ＋ － Note 1 

𝑂𝐶𝑉 ＋ － ＋ － Note 4 － － － 

𝑐𝑒𝐵𝐸𝑉 － ＋ ＋ ＋ － ＋ － Note 2 

𝑐𝑒𝐶𝑉 ＋ － ＋ ＋ Note 4 － － Note 3 

𝛽 ＋ － ＋ － ＋ － ＋ ＋/－ 
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Note 1. When 𝑐𝑒𝐵𝐸𝑉 >
𝛽

2−𝛽
𝑐𝑒𝐶𝑉 , it is “－”; otherwise, it is “＋”. Note 2. When 

(2−𝛽)𝑐𝑒𝐵𝐸𝑉+𝛽𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)𝛽
+ �̃�𝐵𝐸𝑉

𝑁𝑅 > 0 , it is “＋”; 

otherwise, it is “－”. Note 3. When 
𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
+ �̃�𝐶𝑉

𝑁𝑅 > 0 , it is “＋”; otherwise, it is “－”. Note 4. When Λ̃1 −

(4 − 𝛽)(1 − 𝛽)𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅 > 0, it is “＋”; otherwise, it is “－”. 

 

Several conclusions can be drawn from the sensitivity analyses in Table 3 and Table 4. First, 

reducing vehicle operating costs enables a manufacturer to sell more cars at a higher retail price 

and make more profit. Second, the decrease in operating costs leads to more consumer surplus. 

Third, increasing the operating cost of CV reduces total carbon emission, but lowering the 

operating cost of BEV may not. When BEV are undervalued or the emission advantage is weak 

(𝑐𝑒𝐵𝐸𝑉 >
𝛽

2−𝛽
𝑐𝑒𝐶𝑉), reducing their operating cost actually increases total carbon emission. Only 

when BEV have a relatively high valuation or big emission advantage (𝑐𝑒𝐵𝐸𝑉 <
𝛽

2−𝛽
𝑐𝑒𝐶𝑉) does 

their lower operating cost lead to less total carbon emission, as shown in Fig. 1. 

 

Fig.1. BEV operating cost and total carbon emission under BEV recognition and emission advantage 

 

BEV recognition (β) 

BEV emission advantage (𝑐𝑒𝐶𝑉 𝑐𝑒𝐵𝐸𝑉Τ ) 

Total carbon emission decreases 

with BEV operating cost 

Total carbon emission increases 

with BEV operating cost 
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Nevertheless, reducing the operating cost of BEV promotes their diffusion and industry 

development, as well as consumer surplus. One way to reduce the operating cost of BEV is to 

facilitate their charging, such as by constructing more public charging stations. Yet such an effort 

is not very effective until the BEV industry is mature enough 𝑐𝑒𝐵𝐸𝑉 >
𝛽

2−𝛽
𝑐𝑒𝐶𝑉 . Before that, 

increasing the operating cost of CV (e.g., with fuel surcharge) is more viable for reducing their 

environmental impacts. 

The two Pigovian taxation approaches perform differently. Vehicle purchase tax has almost 

no effect on the BEV market but makes differences in CV retail price and manufacturer profit. 

Carbon tax, however, affects the whole market by raising the retail prices of both BEV and CV. In 

other words, a consumer pays for the expected lifecycle emission of a vehicle through its 

manufacturer. 

Although the derivatives of BEV recognition β are analytical, the expressions are very long 

and complicated, which renders qualitative insights nearly impossible. Therefore, Fig.2 and Fig.3 

numerically illustrate different trends under vehicle purchase tax (VPT) and carbon tax (CT) based 

on the parameters below. 𝑟𝑉𝑃𝑇 = 0.1, 𝑙 = 0.05, 𝑂𝐵𝐸𝑉 = 0.15, 𝑂𝐶𝑉 = 0.2, 𝐶𝐵𝐸𝑉 = 0.25, 𝐶𝐶𝑉 =

0.2, 𝑐𝑒𝐵𝐸𝑉 = 0.05, 𝑐𝑒𝐶𝑉 = 0.1, 𝑠 = 0.02, 𝐶𝑅𝑁𝐸𝑉
− = 0.1, 𝑃𝐶𝑅 = 0.005. 
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Fig.2. (a) The impacts of BEV recognition on BEV sales, retail price and manufacturer profit 

 

Fig.2. (b) The impacts of BEV recognition on CV sales, retail price and manufacturer profit 
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Fig. 3. The impacts of BEV recognition on consumer surplus and total carbon emission 

 

Compared with vehicle purchase tax, carbon tax works in favor of BEV over CV. The 

increase of β enables the BEV manufacturer to capture more sales at a higher retail price and make 

more profit, all at the cost of the CV manufacturer. In addition, the increase in β will promote 

consumer surplus. Moving beyond 0.9 (when consumers value BEV and CV nearly equally), β is 

also negatively correlated with total carbon emission. 

When vehicle purchase tax is levied instead, BEV that enjoy the waiver actually lose some 

ground to CV. The rise of β induces price competition, which benefits consumers. However, this 

increases total carbon emission due to the sales of more vehicles. Compared with carbon tax, 

therefore, vehicle purchase tax makes the emission advantage of BEV obscure. The contrast 

between the two taxation approaches becomes even bigger at a higher BEV recognition level. 

Compared with carbon tax, vehicle purchase tax narrows the consumer surplus gap between CV 

and BEV and lengthens their substitution process. 
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4.1.2 BEV-exempted Traffic Restriction Scenario  

With traffic restriction, commuters cannot access the road all the time, which brings them 

a loss, denoted 𝑙. When BEV are exempted, this loss only applies to CV commuters. Strategic 

consumers consider the BEV-exempted traffic restriction when making vehicle purchasing 

decisions. The surplus utility derived from purchasing CV can be reformulated as: 

𝑈𝐶𝑉 = 𝑣 − (1 + 𝑟𝑉𝑃𝑇)𝑃𝐶𝑉 −𝑂𝐶𝑉 − 𝑙. (23) 

Solving the indifferent consumer’s location yields the demand function: 

𝑞𝐵𝐸𝑉 =
(1 + 𝑟𝑉𝑃𝑇)𝑃𝐶𝑉 − 𝑃𝐵𝐸𝑉 + 𝑙 + 𝑂𝐶𝑉 − 𝑂𝐵𝐸𝑉 + 𝑠

1 − 𝛽
−
𝑃𝐵𝐸𝑉 + 𝑂𝐵𝐸𝑉 − 𝑠

𝛽
, (24) 

𝑞𝐶𝑉 = 1 −
(1 + 𝑟𝑉𝑃𝑇)𝑃𝐶𝑉 − 𝑃𝐵𝐸𝑉 + 𝑙 + 𝑂𝐶𝑉 − 𝑂𝐵𝐸𝑉 + 𝑠

1 − 𝛽
. (25) 

The game sequence remains the same, and optimal solutions are summarized in Lemma 2. 

Lemma 2. When CV rather than BEV are subject to traffic restriction, optimal retail prices, 

sales volumes, and manufacturer profits are: 

𝑃𝐵𝐸𝑉
𝐶𝑉𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) + 2𝐾2
4 − 𝛽

− 𝑂𝐵𝐸𝑉 + 𝑠, (26) 

𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2
(4 − 𝛽)(1 − 𝛽)𝛽

, (27) 

𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 = CRNEV

− 𝑃𝐶𝑅
2 + 𝛽 − 2𝐾1 − 2𝑙 − 𝐾2

4 − 𝛽

+
[𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2]

2

(4 − 𝛽)2(1 − 𝛽)𝛽
, (28)

 

𝑃𝐶𝑉
𝐶𝑉𝑅 =

2(𝐾1 + 1 − 𝛽 + 𝑙) + 𝐾2
(4 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)

−
𝑂𝐶𝑉 + 𝑙

1 + 𝑟𝑉𝑃𝑇
, (29) 

𝑞𝐶𝑉
𝐶𝑉𝑅 = 1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2
(4 − 𝛽)(1 − 𝛽)

, (30) 

𝜋𝐶𝑉
𝐶𝑉𝑅 =

[2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2]
2

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
. (31) 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅) + 𝑂𝐶𝑉  and 𝐾2 = 𝐶𝐵𝐸𝑉 + 𝛽𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 +

𝑂𝐵𝐸𝑉 − 𝑠. 

Proof: See Appendix A. 



23 

 

Table 5 summarizes how retail prices, sales volumes, manufacturer profits, consumer 

surplus, and total carbon emission vary with parameter values under vehicle purchase tax when 

BEV are exempted from traffic restriction. The results are analytical, and Appendix B3 gives the 

derivatives. 

 

Table 5. Sensitivity analysis for BEV-exempted traffic restriction under vehicle purchase tax 

 𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 𝑞𝐶𝑉

𝐶𝑉𝑅 𝑃𝐵𝐸𝑉
𝐶𝑉𝑅 𝑃𝐶𝑉

𝐶𝑉𝑅 𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 𝜋𝐶𝑉

𝐶𝑉𝑅 𝐶𝑆𝐶𝑉𝑅 𝑇𝐶𝐸𝐶𝑉𝑅 

l ＋ － ＋ － Note 2 － － － 

𝑟𝑉𝑃𝑇 ＋ － ＋ － Note 2 － － － 

𝑂𝐵𝐸𝑉 － ＋ － ＋ － ＋ － Note 1 

𝑂𝐶𝑉 ＋ － ＋ － Note 2 － － － 

𝛽 ＋ － ＋ － ＋ － ＋ ＋/－ 

Note 1. When 𝑐𝑒𝐵𝐸𝑉 >
𝛽

2−𝛽
𝑐𝑒𝐶𝑉, it is “－”; otherwise, it is “＋”. Note 2. When Λ2 − (4 − 𝛽)(1 − 𝛽)𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 > 0, it is 

“＋”; otherwise, it is “－”. 

 

Corollary 2 gives the optimal solutions under carbon tax when BEV are exempted from 

travel restriction: 

Corollary 2. When only CV are subject to travel restriction, optimal retail prices, sales 

volumes, and manufacturer profits under carbon tax are: 

�̃�𝐵𝐸𝑉
𝐶𝑉𝑅 =

𝛽(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) + 2(𝐾2 + 𝑐𝑒𝐵𝐸𝑉)

4 − 𝛽
− 𝑂𝐵𝐸𝑉 + 𝑠, (32) 

�̃�𝐵𝐸𝑉
𝐶𝑉𝑅 =

𝛽(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑐𝑒𝐵𝐸𝑉)

(4 − 𝛽)(1 − 𝛽)𝛽
, (33) 

�̃�𝐵𝐸𝑉
𝐶𝑉𝑅 = CRNEV

− 𝑃𝐶𝑅
2 + 𝛽 − 2(�̃�1 + 𝑙 + 𝑐𝑒𝐶𝑉) − 𝐾2 − 𝑐𝑒𝐵𝐸𝑉

4 − 𝛽

+
[𝛽(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑐𝑒𝐵𝐸𝑉)]

2

(4 − 𝛽)2(1 − 𝛽)𝛽
, (34)
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�̃�𝐶𝑉
𝐶𝑉𝑅 =

2(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) + 𝐾2 + 𝑐𝑒𝐵𝐸𝑉
4 − 𝛽

− (𝑂𝐶𝑉 + 𝑙), (35) 

�̃�𝐶𝑉
𝐶𝑉𝑅 = 1 −

(2 − 𝛽)(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) − (𝐾2 + 𝑐𝑒𝐵𝐸𝑉)

(4 − 𝛽)(1 − 𝛽)
, (36) 

�̃�𝐶𝑉
𝐶𝑉𝑅 =

[2(1 − 𝛽) − (2 − 𝛽)(�̃�1 + 𝑙 + 𝑐𝑒𝐶𝑉) + 𝐾2 + 𝑐𝑒𝐵𝐸𝑉]
2

(4 − 𝛽)2(1 − 𝛽)
. (37) 

Note: �̃�1 = 𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅 + 𝑂𝐶𝑉 and 𝐾2 = 𝐶𝐵𝐸𝑉 + 𝛽𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 + 𝑂𝐵𝐸𝑉 − 𝑠. 

Proof: See Appendix A. 

Table 6 summarizes how retail prices, sales volumes, manufacturer profits, consumer 

surplus, and total carbon emission vary with parameter values under carbon tax when BEV are 

exempted from traffic restriction. The results are analytical, and Appendix B4 gives the derivatives.  

Table 6. Sensitivity analysis for BEV-exempted traffic restriction under carbon tax 

 �̃�𝐵𝐸𝑉
𝐶𝑉𝑅 �̃�𝐶𝑉

𝐶𝑉𝑅 �̃�𝐵𝐸𝑉
𝐶𝑉𝑅 �̃�𝐶𝑉

𝐶𝑉𝑅 �̃�𝐵𝐸𝑉
𝐶𝑉𝑅 �̃�𝐶𝑉

𝐶𝑉𝑅 𝐶�̃�𝐶𝑉𝑅 𝑇𝐶�̃�𝐶𝑉𝑅 

l ＋ － ＋ － Note 4 － － － 

𝑂𝐵𝐸𝑉 － ＋ － ＋ － ＋ － Note 1 

𝑂𝐶𝑉 ＋ － ＋ － Note 4 － － － 

𝑐𝑒𝐵𝐸𝑉 － ＋ ＋ ＋ － ＋ － Note 2 

𝑐𝑒𝐶𝑉 ＋ － ＋ ＋ ＋ － － Note 3 

𝛽 ＋ － ＋ － ＋ － ＋ ＋/－ 

Note 1. When 𝑐𝑒𝐵𝐸𝑉 >
𝛽

2−𝛽
𝑐𝑒𝐶𝑉 , it is “－”; otherwise, it is “＋”. Note 2. When 

(2−𝛽)𝑐𝑒𝐵𝐸𝑉+𝛽𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)𝛽
+ 𝑞𝐵𝐸𝑉 > 0 , it is “＋”; 

otherwise, it is “－”. Note 3. When 
𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
+ 𝑞𝐶𝑉 > 0 , it is “＋”; otherwise, it is “－”. Note 4. When Λ̃2 −

(4 − 𝛽)(1 − 𝛽)𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅 > 0, it is “＋”; otherwise, it is “－” 

 

The results in Table 5 and Table 6 indicate that the BEV manufacturer benefits from BEV-

exempted traffic restriction. First, increasing the loss of consumer surplus l through strengthening 

traffic restriction enables the BEV manufacturer to increase sales at a higher price and make more 
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profit. In contrast, the sales and price of CV fall, ruining the CV manufacturer’s profitability. As 

expected, the BEV manufacturer favors BEV-exempted traffic restriction, but the CV manufacturer 

dislikes it. Second, increasing l reduces total carbon emission, albeit at the cost of consumer surplus: 

CV consumers suffer traffic restriction, and BEV consumers need to pay for a higher retail price. 

In addition, the insights on how operating cost and Pigovian taxation interact with each other in 

Section 4.1.1 still hold here. 

Reflected by the loss of consumer surplus, the strength of traffic restriction makes 

differences in traffic condition and air quality. Thus, many cities are in the process of further 

increasing the strength of traffic restriction, such as “four days on road and four days off” 

implemented in Guangzhou. However, is it always a good idea to strengthen traffic restriction? To 

answer this question, a set of numerical experiments were conducted using the parameters in 

section 4.1.1. Fig. 4 shows that the negative impacts of vehicle purchase tax (waived for BEV) and 

carbon tax on consumer surplus stabilizes and weakens, respectively, as traffic restriction 

strengthens. 

 

Fig. 4. The impacts of traffic restriction strength on consumer surplus under different taxations 
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The results in Fig. 5 and Fig. 6 suggest that BEV outperform CV under both taxation 

approaches. While higher BEV recognition enhances consumer surplus, and total carbon emission 

first increases slowly but then decreases quickly. Consistent with the finding in Section 4.1.1, BEV-

exempted traffic restriction positively interacts with BEV adoption. 

 

Fig. 5. (a) The impacts of BEV recognition on BEV sales, retail price, and manufacturer profit 

 

Fig. 5. (b) The impacts of BEV recognition on CV sales, retail price, and manufacturer profit 



27 

 

 

 

Fig. 6. The impacts of BEV recognition on consumer surplus and total carbon emission. 

4.1.3 Uniform Traffic Restriction Scenario 

In most countries, BEV are treated the same as CV when traffic restriction is implemented. 

This subsection focuses on such a uniform policy that applies to both CV and BEV. When 

consumers evaluate the BEV option, the surplus utility derived from the purchase can be 

reformulated as: 

𝑈𝐵𝐸𝑉 = 𝛽𝑣 − 𝑃𝐵𝐸𝑉 − 𝑂𝐵𝐸𝑉 + 𝑠 − 𝑙. (38) 

By solving the indifferent consumer’s location, the demand function is derived. The game 

sequence remains the same, and optimal solutions are summarized in Lemma 3. 

Lemma 3. When both BEV and CV are subject to traffic restriction, the optimal retail prices, 

sales volumes, and manufacturer profits are given below: 

𝑃𝐵𝐸𝑉
𝐵𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) + 2(𝐾2 + 𝑙)

4 − 𝛽
− 𝑂𝐵𝐸𝑉 − 𝑙 + 𝑠, (39) 

𝑞𝐵𝐸𝑉
𝐵𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙)

(4 − 𝛽)(1 − 𝛽)𝛽
, (40) 



28 

 

𝜋𝐵𝐸𝑉
𝐵𝑅 = CRNEV

− 𝑃𝐶𝑅
2 + 𝛽 − 2𝐾1 − 𝐾2 − 3𝑙

4 − 𝛽

+
[𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙)]

2

(4 − 𝛽)2(1 − 𝛽)𝛽
, (41)

 

𝑃𝐶𝑉
𝐵𝑅 =

2(𝐾1 + 1 − 𝛽 + 𝑙) + 𝐾2 + 𝑙

(4 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
−
𝑂𝐶𝑉 + 𝑙

1 + 𝑟𝑉𝑃𝑇
, (42) 

𝑞𝐶𝑉
𝐵𝑅 = 1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2 − 𝑙

(4 − 𝛽)(1 − 𝛽)
, (43) 

𝜋𝐶𝑉
𝐵𝑅 =

[2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2 + 𝑙]
2

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
. (44) 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅) + 𝑂𝐶𝑉  and 𝐾2 = 𝐶𝐵𝐸𝑉 + 𝛽𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 +

𝑂𝐵𝐸𝑉 − 𝑠. 

Proof: See Appendix A. 

Table 7 summarizes how retail prices, sales volumes, manufacturer profits, consumer 

surplus, and total carbon emission vary with parameter values under vehicle purchase tax when 

both BEV and CV are subject to traffic restriction (i.e., uniform restriction). The results are 

analytical, and Appendix B5 gives the derivatives. 

 

Table 7. Sensitivity analysis for uniform traffic restriction under vehicle purchase tax 

 𝑞𝐵𝐸𝑉
𝐵𝑅  𝑞𝐶𝑉

𝐵𝑅 𝑃𝐵𝐸𝑉
𝐵𝑅  𝑃𝐶𝑉

𝐵𝑅 𝜋𝐵𝐸𝑉
𝐵𝑅  𝜋𝐶𝑉

𝐵𝑅 𝐶𝑆𝐵𝑅 𝑇𝐶𝐸𝐵𝑅 

l ＋ － ＋ － Note 2 － － － 

𝑟𝑉𝑃𝑇 ＋ － ＋ － Note 2 － － － 

𝑂𝐵𝐸𝑉 － ＋ － ＋ － ＋ － Note 1 

𝑂𝐶𝑉 ＋ － ＋ － Note 2 － － － 

𝛽 ＋ ＋ ＋ － ＋ － ＋ ＋ 

Note 1. When 𝑐𝑒𝐵𝐸𝑉 >
𝛽

2−𝛽
𝑐𝑒𝐶𝑉, it is “－”; otherwise, it is “＋”; Note 2. When Λ3 − (4 − 𝛽)(1 − 𝛽)𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 > 0, it is 

“＋”; otherwise, it is “－”. 

 

Corollary 3 gives the optimal solutions under carbon tax when both BEV and CV are 
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subject to traffic restriction (i.e., uniform restriction): 

Corollary 3. When both BEV and CV are subject to traffic restriction, optimal retail prices, 

sales volumes, and manufacturer profits under carbon tax are: 

�̃�𝐵𝐸𝑉
𝐵𝑅 =

𝛽(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) + 2(𝐾2 + 𝑙 + 𝑐𝑒𝐵𝐸𝑉)

4 − 𝛽
− 𝑂𝐵𝐸𝑉 − 𝑙 + 𝑠, (45) 

�̃�𝐵𝐸𝑉
𝐵𝑅 =

𝛽(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑙 + 𝑐𝑒𝐵𝐸𝑉)

(4 − 𝛽)(1 − 𝛽)𝛽
, (46) 

�̃�𝐵𝐸𝑉
𝐵𝑅 = CRNEV

− 𝑃𝐶𝑅
2 + 𝛽 − 2(�̃�1 + 𝑙 + 𝑐𝑒𝐶𝑉) − 𝐾2 − 𝑐𝑒𝐵𝐸𝑉 − 𝑙

4 − 𝛽

+
[𝛽(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑙 + 𝑐𝑒𝐵𝐸𝑉)]

2

(4 − 𝛽)2(1 − 𝛽)𝛽
, (47)

 

�̃�𝐶𝑉
𝐵𝑅 =

2(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) + 𝐾2 + 𝑙 + 𝑐𝑒𝐵𝐸𝑉
4 − 𝛽

− (𝑂𝐶𝑉 + 𝑙), (48) 

�̃�𝐶𝑉
𝐵𝑅 = 1 −

(2 − 𝛽)(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) − 𝐾2 − 𝑙 − 𝑐𝑒𝐵𝐸𝑉
(4 − 𝛽)(1 − 𝛽)

, (49) 

�̃�𝐶𝑉
𝐵𝑅 =

[2(1 − 𝛽) − (2 − 𝛽)(�̃�1 + 𝑙 + 𝑐𝑒𝐶𝑉) + 𝐾2 + 𝑙 + 𝑐𝑒𝐵𝐸𝑉]
2

(4 − 𝛽)2(1 − 𝛽)
. (50) 

Note: �̃�1 = 𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅 + 𝑂𝐶𝑉 and 𝐾2 = 𝐶𝐵𝐸𝑉 + 𝛽𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 + 𝑂𝐵𝐸𝑉 − 𝑠. 

Proof: See Appendix A. 

Table 8 summarizes how retail prices, sales volumes, enterprise profits, consumer surplus, 

and total carbon emission vary with parameter values under carbon tax when both BEV and CV 

are subject to traffic restriction (i.e., uniform restriction). The results are analytical, and Appendix 

B6 gives the derivatives. 

 

Table 8. Sensitivity analysis for uniform traffic restriction under carbon tax 

 �̃�𝐵𝐸𝑉
𝐵𝑅  �̃�𝐶𝑉

𝐵𝑅 �̃�𝐵𝐸𝑉
𝐵𝑅  �̃�𝐶𝑉

𝐵𝑅 �̃�𝐵𝐸𝑉
𝐵𝑅  �̃�𝐶𝑉

𝐵𝑅 𝐶�̃�𝐵𝑅 𝑇𝐶�̃�𝐵𝑅 

l ＋ － ＋ － Note 4 － － － 

𝑂𝐵𝐸𝑉 － ＋ － ＋ － ＋ － Note 1 

𝑂𝐶𝑉 ＋ － ＋ － Note 4 － － － 
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𝑐𝑒𝐵𝐸𝑉 － ＋ ＋ ＋ － ＋ － Note 2 

𝑐𝑒𝐶𝑉 ＋ － ＋ ＋ ＋ － － Note 3 

𝛽 ＋ － ＋ － ＋ － ＋ ＋/－ 

Note 1. When 𝑐𝑒𝐵𝐸𝑉 >
𝛽

2−𝛽
𝑐𝑒𝐶𝑉 , it is “－”; otherwise, it is “＋”. Note 2. When 

(2−𝛽)𝑐𝑒𝐵𝐸𝑉+𝛽𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)𝛽
+ 𝑞𝐵𝐸𝑉 > 0 , it is “＋”; 

otherwise, it is “－”. Note 3. When 
𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
+ 𝑞𝐶𝑉 > 0 , it is “＋”; otherwise, it is “－”. Note 4. When Λ̃3 −

(4 − 𝛽)(1 − 𝛽)𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅 > 0, it is “＋”; otherwise, it is “－”. 

 

The results in Table 7 and Table 8 corroborate those in Section 4.1.1 and Section 4.1.2. 

Fig.7 shows that when traffic restriction strength 𝑙  increases, its negative impact on 

consumer surplus stabilizes, no matter which taxation approach is employed. Under the uniform 

traffic restriction, the difference in consumer surplus narrows as l increases, which is different from 

the pattern in Section 4.1.2 under the BEV-exempted traffic restriction. 

 

 

Fig. 7. The impacts of traffic restriction strength on consumer surplus under different taxations 
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The results in Fig. 8 and Fig. 9 are consistent with those in Section 4.1.1. When the vehicle 

purchase tax is levied, there will be price competition as well. If carbon tax is levied, BEV 

outperforms CV quickly. The conclusion in Section 4.1.1 is verified: carbon tax highlights the 

emission advantage of BEV, and BEV recognition magnifies this advantage. 

 

Fig. 8 (a). The impacts of BEV recognition on BEV sales, retail price and manufacturer profit 

 

Fig. 8 (b). The impacts of BEV recognition on CV sales, retail price and manufacturer profit. 
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Fig. 9. The impacts of BEV recognition on consumer surplus and total carbon emission 

 

4.2 Optimal Traffic Restriction Policy 

For more insights on policy-making that typically involves different measures, this section 

compares three traffic restriction policies under the scenarios of vehicle purchase tax and carbon 

tax in Sections 4.2.1 and 4.2.2, respectively.  

4.2.1 Vehicle Purchase Tax Scenario 

Under vehicle purchase tax (waived for BEV), three traffic restriction policies, namely no 

restriction, BEV-exempted restriction, and uniform restriction, lead to different results from 

manufacturer, consumer, and environment perspectives. Proposition 1, Proposition 2, and 

Proposition 3 summarize the comparisons based on Lemma 1, Lemma 2, and Lemma 3, 

respectively. 
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Proposition 1. The BEV manufacturer favors BEV-exempted traffic restriction, but the CV 

manufacturer favors no traffic restriction. 

(a) The retail price, sales volume of the BEV manufacturer are the highest under BEV-

exempted traffic restriction, followed by no traffic restriction, but the lowest under uniform 

traffic restriction. The enterprise profit of the BEV manufacturer is the lowest under 

uniform traffic restriction, and the profit is highest under BEV-exempted traffic restriction 

if and only if the restricting ratio is relatively high 
𝑙

2𝛽
> 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅(4 − 𝛽)(1 − 𝛽) − Λ1, 

where Λ1 = 𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2. 

(b) The retail price, sales volume, and manufacturer profit of the CV manufacturer are 

highest under no traffic restriction, followed by uniform traffic restriction, but the lowest 

under BEV-exempted traffic restriction. 

Proof: See Appendix A. 

Whereas Proposition 1 focuses on the profitability of automakers, Proposition 2 compares 

total carbon emission across three traffic restriction policies. 

Proposition 2. 

(a) BEV-exempted traffic restriction and uniform traffic restriction lead to less emission 

than no traffic restriction. 

(b) Uniform traffic restriction does not always make the least emission. If 𝑒𝐵𝐸𝑉 <

𝛽

2−𝛽
𝑒𝐶𝑉, BEV-exempted traffic restriction leads to less emission. 

Proof: See Appendix A. 
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Fig. 10. Environmental effectiveness of traffic restriction policies with vehicle purchase tax 

 

Fig. 10 confirms that uniform traffic restriction does not always make the least emission. 

When BEV have a strong advantage over CV in emission, or BEV recognition is high (𝑒𝐵𝐸𝑉 <

𝛽

2−𝛽
𝑒𝐶𝑉), BEV-exempted traffic restriction leads to less emission than uniform traffic restriction.  

Proposition 3 compares consumer surplus across different traffic restriction policies. 

Proposition 3. Traffic restrictions reduce consumer surplus, but BEV-exempted traffic 

restriction is more moderate than uniform traffic restriction. 

Proof: See Appendix A. 

As explained in Appendix A, the comparison of consumer surplus is based on function 

𝑓(𝑣). Fig.11 plots the function for each traffic restriction policy. 

 

BEV recognition (β) 

BEV emission advantage (𝑒𝐶𝑉 𝑒𝐵𝐸𝑉Τ ) 

Greener when only 

CV are restricted 

Greener when both CV 

and BEV are restricted 
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Fig. 11. Consumer surplus across different traffic restriction policies under vehicle purchase tax 

 

Fig. 11 shows that consumer surplus decreases when traffic restriction applies to more 

vehicles, which verifies Proposition 3. Compared with no traffic restriction and uniform traffic 

restriction, BEV-exempted traffic restriction promotes environment protection (as well as public 

health) while not hurting consumer surplus too much.  

4.2.2 Carbon Tax Scenario 

Under carbon tax, three traffic restriction policies are also compared from manufacturer, 

consumer and environment perspectives. Proposition 4, Proposition 5, and Proposition 6 

summarize the comparisons based on Corollary 1, Corollary 2, and Corollary 3, respectively. 

Propositions 4, 5 and 6 under carbon tax are consistent with Propositions 1, 2, and 3 under vehicle 

purchase tax (waived for BEV), respectively, except for the condition of Proposition 4 (a). 

Proposition 4. Under carbon tax, the BEV manufacturer favors BEV-exempted traffic 

restriction, but the CV manufacturer favors no traffic restriction. 

(a) The retail price, sales volume of the BEV manufacturer are the highest under BEV-

exempted traffic restriction, followed by no traffic restriction, but the lowest under uniform 

traffic restriction. The enterprise profit of the BEV manufacturer is the lowest under 
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uniform traffic restriction, and the profit is highest under BEV-exempted traffic restriction 

if and only if the restricting ratio is relatively high 
𝑙

2𝛽
> 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅(4 − 𝛽)(1 − 𝛽) − Λ̃1, 

where Λ̃1 = 𝛽(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑐𝑒𝐵𝐸𝑉) 

(b) The retail price, sales volume, and manufacturer profit of the CV manufacturer are 

highest under no traffic restriction, followed by uniform traffic restriction, but the lowest 

under BEV-exempted traffic restriction. 

Proof: See Appendix A. 

Under carbon tax, therefore, strengthening traffic restriction while exempting BEV will 

expedite CV phaseout once BEV are well recognized by consumers. 

Proposition 5. Under carbon tax,  

(a) BEV-exempted traffic restriction and uniform traffic restriction lead to less emission 

than no traffic restriction. 

(b) Uniform traffic restriction does not always make the least emission. If 𝑒𝐵𝐸𝑉 <

𝛽

2−𝛽
𝑒𝐶𝑉, BEV-exempted traffic restriction leads to less emission. 

Proof: See Appendix A. 

Under carbon tax, BEV-exempted traffic restriction outperforms uniform traffic restriction 

in terms of total carbon emission when BEV have clear emission advantage over CV. In this sense, 

BEV-exempted traffic restriction provides a viable environmental solution in the long term. 

Proposition 6. Under carbon tax, traffic restrictions reduce consumer surplus, but BEV-

exempted traffic restriction is more moderate than uniform traffic restriction. 

Proof: See Appendix A. 

Under carbon tax, consumer surplus remains the lowest when both BEV and CV are subject 

to traffic restriction (i.e., uniform restriction) but the highest when there is no traffic restriction. 

Meanwhile, BEV-exempted traffic restriction strikes a balance between benefits and costs. 
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4.3 Optimal Taxation Approach 

Finally, two taxation approaches are directly compared from manufacturer, consumer and 

environment perspectives. Proposition 7, Proposition 8, and Proposition 9 summarize the 

comparisons based on Lemma 1, Lemma 2, Lemma 3, Corollary 1, Corollary 2, and Corollary 3. 

Proposition 7. Under carbon tax, BEV sales are higher than under vehicle purchase tax if 

and only if 𝑐𝑒𝐵𝐸𝑉 <
𝛽

2−𝛽
[𝑐𝑒𝐶𝑉 − 𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)], and CV sales are lower if and only if 

𝑐𝑒𝐵𝐸𝑉 < (2 − 𝛽)[𝑐𝑒𝐶𝑉 − 𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)]. 

Proof: See Appendix A. 

Proposition 8. Carbon tax leads to less emission than vehicle purchase tax if and only if 

𝑐𝑒𝐵𝐸𝑉 <
(2−𝛽)𝑒𝐶𝑉−𝑒𝐵𝐸𝑉

𝛽𝑒𝐶𝑉−(2−𝛽)𝑒𝐵𝐸𝑉
𝛽[𝑐𝑒𝐶𝑉 − 𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)]. 

Proof: See Appendix A. 

Proposition 9. Under carbon tax, consumers pay more than half of it indirectly, and 

consumer surplus is lower than under vehicle purchase tax. 

Proof: See Appendix A. 

Under carbon tax, automakers raise car prices to let consumers pay for the majority of it, 

which is understandable as drivers are ultimately responsible for the carbon emission from their 

vehicles. Whereas vehicle purchase tax (waived for BEV) is preferred when the BEV industry is 

in its infancy, carbon tax is more favorable when the industry becomes mature enough. 

4.4 Robustness Analyses 

The aforementioned modeling is based on several assumptions that are not always true in 

the real world. This section relaxes some major assumptions to assess the robustness of findings. 
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4.4.1 Higher BEV Valuation 

It is assumed that consumers have a lower valuation of BEV than CV in previous analyses. 

However, some consumers who care about environmental impact and driving experience (smooth 

and quiet driving) may hold a higher valuation of BEV than CV. In places where the charging 

infrastructure is well established, people’s range anxiety is reduced. Furthermore, the introduction 

of long-range BEV boosts up their valuation of BEV. Therefore, more and more consumers are 

expected to value BEV higher than CV.  

This subsection assumes 𝛽𝐻 > 1 to denote that BEV valuation exceeds CV valuation. As 

shown in Appendix C, consumers’ utility function remains the same, but their demand function 

changes as they are more willing to pay for BEV but hesitant to buy CV, leading to different 

outcomes. In particular, the extended analyses address how each traffic restriction policy promotes 

BEV diffusion, curbs total carbon emission, and enhances manufacturer profitability. 

First, the analysis indicates that BEV sales are highest but CV sales are lowest under BEV-

exempted traffic restriction. When consumers’ valuation of BEV exceeds that of CV, therefore, 

BEV-exempted traffic restriction will maximize BEV diffusion but suppress CV sales. In terms of 

sales, the BEV manufacturer favors BEV-exempted traffic restriction, whereas the CV 

manufacturer dislikes it the most. As for profitability, the BEV manufacturer still prefers BEV-

exempted traffic restriction to uniform traffic restriction in all circumstances, and to no traffic 

restriction only at relatively high traffic restriction strength. All the above are consistent with the 

original case in which consumers value BEV lower than CV.  

At a closer look, when consumers value CV higher than BEV, the threshold of traffic 

restriction strength within which the profit of BEV manufacturer under BEV-exempted traffic 

restriction is higher than that under no traffic restriction is: 𝑙 > 2𝛽[𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅(4 − 𝛽)(1 − 𝛽) −

Λ1] . When consumers value BEV higher than CV, this threshold becomes: 𝑙 >

2

𝛽𝐻
[𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅(4𝛽𝐻 − 1)(𝛽𝐻 − 1) − 𝛽𝐻Λ1
𝐶].  
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From the perspective of total carbon emission, there is a threshold of BEV emission under 

which BEV-exempted traffic restriction outperforms uniform traffic restriction. When consumers 

value CV higher than BEV, this threshold is: 𝑒𝐵𝐸𝑉 <
𝛽

2−𝛽
𝑒𝐶𝑉. When consumers value BEV higher 

than CV, it becomes 𝑒𝐵𝐸𝑉 <
𝛽𝐻

2𝛽𝐻−1
𝑒𝐶𝑉 . When 𝛽  falls between 0 and 1, this threshold will 

gradually increase to 𝑒𝐶𝑉; when 𝛽 moves beyond 1, this threshold will decline but remain above 

1

2
𝑒𝐶𝑉. Therefore, when BEV recognition and CV recognition differ greatly (𝛽 close to 0 or far 

above 1), BEV emission must be much lower than CV emission in order to make the total carbon 

emission under BEV-exempted traffic restriction lower than that under uniform traffic restriction. 

When the recognition levels are close, as long as BEV emission is lower than CV emission, the 

total carbon emission under BEV-exempted traffic restriction is lower than that under uniform 

traffic restriction. 

Therefore, all the results still hold qualitatively when consumers value BEV higher than 

CV. As for the case in which consumers are heterogeneous in BEV valuation (i.e., 𝛽 is randomly 

distributed between 0 to 2) due to different environmental awareness levels and driving experience 

preferences, the conclusions hold qualitatively as well. 

4.4.2 Other NEV Types 

The previous modeling is based on BEV, and this subsection further considers the other 

two types of NEV: plug-in hybrid electric vehicles (PHEV) and fuel-cell electric vehicles (FCEV). 

As per China’s new energy regulations and California’s ZEV Act, for instance, PHEV and FCEV 

enjoy almost the same treatment as BEV in terms of purchase tax breaks, purchase subsidies, traffic 

restriction exemption, and manufacturer production credit. Thus, all relevant assumptions in the 

previous modeling are still applicable.  

Compared with BEV, PHEV can use regular gasoline in addition to electricity, mitigating 

consumers’ range anxiety and concerns over charging station accessibility as well as waiting time. 
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In most situations, PHEV drivers still prefer electricity for similar benefits of BEV in terms of 

lower operating cost and carbon emission than those of CV. Enjoying the benefits, consumers are 

likely to form a higher valuation of PHEV than BEV as well as CV, which makes the analyses in 

Section 4.4.1 applicable here (just regard PHEV as more highly-valued BEV in Appendix C’s 

analyses). 

In contrast, FCEV use hydrogen as an energy source. At the present, hydrogen refueling 

stations are not as easy to find as gas stations for CV, lowering the consumer valuation of FCEV. 

Moreover, the operating cost of FCEV is relatively high in many countries. In China, for example, 

CV cost drivers 25-40RMB for every 100 kilometers, whereas FCEV cost 70-100RMB for the 

same distance. Thus, the assumption that NEV have a relatively low operating cost no longer holds 

for FCEV in those countries. For the case in which the operating cost of FCEVs exceeds that of 

CVs, the analysis in Appendix E identifies the threshold, 𝑂𝐹𝐶𝐸𝑉 =
𝛽(𝐾1+1−𝛽+𝑙)

2−𝛽
− 𝐶𝐹𝐶𝐸𝑉 −

𝛽𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅 + 𝑠 . When the operating cost of FCEVs exceeds the threshold, 𝑂𝐹𝐶𝐸𝑉 ≥ 𝑂𝐹𝐶𝐸𝑉 , 

uncompetitive FCEVs lose their market share. When the operating cost of FCEVs only exceeds 

the operating cost of CVs but not the threshold, 𝑂𝐶𝑉 ≤ 𝑂𝐹𝐶𝐸𝑉 ≤ 𝑂𝐹𝐶𝐸𝑉, all the conclusions still 

hold qualitatively.  

4.4.3 Dual-Credit Mechanism 

China’s dual-credit mechanism (mentioned in Section 2.3) comprises NEV credit and 

corporate average fuel consumption (CAFC) credit, the latter based on the actual consumption rate 

of each vehicle brand of a manufacturer and calculates the weighted average based on the 

production volume (MI&IT, 2020). When the average consumption rate exceeds the standard, 

there will be negative CAFC credit for each vehicle produced: 𝐶𝑅𝐶𝐴𝐹𝐶
− =

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 − 𝑔𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 . Otherwise, there will be positive 

CAFC credit. Negative CAFC credit can be offset by positive NEV credit, but positive CAFC 
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credit cannot be traded or used for offsetting negative NEV credit.  

In this study, the BEV manufacturer generates positive NEV credit, but the CV 

manufacturer yields negative NEV credit. As for the CAFC credit, there are two possibilities for 

the CV manufacturer. When the average fuel consumption rate is below the standard, it meets the 

CAFC requirement, and only need to purchase NEV credit from the BEV manufacturer to offset 

its negative NEV credit𝐶𝑅𝑁𝐸𝑉
− 𝑞𝐶𝑉. Otherwise, it accrues negative CAFC credit 𝐶𝑅𝐶𝐴𝐹𝐶

− 𝑞𝐶𝑉 as 

well, and need to purchase more credit (𝐶𝑅𝑁𝐸𝑉
− + 𝐶𝑅𝐶𝐴𝐹𝐶

− )𝑞𝐶𝑉. Therefore, the negative CAFC 

credit imposes an extra penalty on the CV manufacturer on top of the negative NEV credit for each 

vehicle produced. Basically, the dual-credit mechanism reinforces the production of more 

environment-friendly vehicles, and the findings still hold qualitatively. 

4.4.4 Regulatory Fine 

The previous modeling is based on the assumption that the NEV credit available for trading 

is sufficient for offsetting the negative credit accrued by the CV manufacturer: 𝐶𝑅𝑁𝐸𝑉
+ 𝑞𝐵𝐸𝑉 >

𝐶𝑅𝑁𝐸𝑉
− 𝑞𝐶𝑉. In case that the CV manufacturer cannot purchase enough NEV credit to offset its 

negative credit,   or 𝐶𝑅𝑁𝐸𝑉
+ 𝑞𝐵𝐸𝑉 < 𝐶𝑅𝑁𝐸𝑉

− 𝑞𝐶𝑉 , it has to pay for a higher regulatory fine. The 

purpose of this penalty is to ensure the continuance of credit trading. In places like California that 

enforce the ZEV regulation and alike, the penalty takes the form of a monetary fine. In China, such 

a fine rarely gets incurred as there is plenty of positive NEV credit available for trading. If a 

manufacturer did not offset its negative credit, its quota for producing high-emission vehicles 

would be restrained. 

This extended analysis employs the monetary fine that is more quantifiable: 𝑓𝑖𝑛𝑒 =

(𝐶𝑅𝑁𝐸𝑉
− 𝑞𝐶𝑉 − 𝐶𝑅𝑁𝐸𝑉

+ 𝑞𝐵𝐸𝑉) ⋅ 𝑓𝑖𝑛𝑒𝐶𝑅 . This leads to the updated profit function of the CV 

manufacturer: 𝜋𝐶𝑉 = 𝑃𝐶𝑉𝑞𝐶𝑉 − 𝐶𝐶𝑉𝑞𝐶𝑉 + 𝑇𝐶𝑅𝐶𝑉 − 𝑓𝑖𝑛𝑒. 

The results based on the updated profit function remain largely stable. First, BEV sales 

remain the highest under BEV-exempted traffic restriction, while CV sales get hurt the most as 
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expected. In terms of profitability, the BEV manufacturer is always more profitable under BEV-

exempted traffic restriction than under no traffic restriction without the need to consider the pre-

condition of traffic restriction strength 𝑙 as in the no-fine scenario. As for the CV manufacturer, 

now only when 𝑙 is low enough will it continue profiting more under no traffic restriction than 

under BEV-exempted traffic restriction and uniform traffic restriction. These changes indicate that 

the possibility to trigger the fine mechanism due to limited NEV credit supply will make the BEV 

manufacturer more inclined toward BEV-exempted traffic restriction, whereas the CV 

manufacturer will prefer uniform traffic restriction to no traffic restriction. In a market where there 

is plenty of NEV credit available for trading, both BEV and CV manufacturers may favor no traffic 

restriction. Finally, the total carbon emission remains the highest under no traffic restriction but 

the lowest under BEV-exempted traffic restriction when 𝑒𝐵𝐸𝑉 <
𝛽

2−𝛽
𝑒𝐶𝑉, or under uniform traffic 

restriction otherwise. 

5. Conclusion and Implications 

This study presents an analytical model that examines the competition between BEV and 

CV manufacturers under different traffic restriction policies and Pigovian taxation approaches. 

The modeling also incorporates the variations of major assumptions in extended analyses, such as 

the dual-credit regulatory mechanism and other types of NEV. Compared with no traffic restriction 

and uniform traffic restriction, BEV-exempted traffic restriction has the greatest potential to 

promote BEV diffusion and reduce the total carbon emission. Its effectiveness is strengthened to 

various degrees under two Pigovian taxation scenarios, vehicle purchase tax (waived for BEV) 

and carbon tax. The investigation of the interaction between traffic restriction and Pigovian 

taxation helps researchers and practitioners optimize policy-making for greener transportation.  

This study contributes to the literature with a few insights into BEV-exempted traffic 

restriction and relevant Pigovian taxation. The benchmark model corroborates the relationship 
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between traffic restriction exemption and BEV diffusion from the game theory perspective. 

Compared with existing studies that reach a similar conclusion under simplified scenarios (N. 

Wang et al., 2017; Ning Wang et al., 2017; Ning Wang et al., 2019), this study further examines 

the relationship in the context of Pigovian taxation. The findings reveal the commonality between 

vehicle purchase tax and carbon tax as well as their distinctness: the substitution of the former with 

the latter leads to increased BEV sales, higher automaker profitability, more consumer surplus, and 

lower total carbon emission in the long term.  

For policy makers and corporate managers, the findings yield some helpful implications. 

First, BEV-exempted traffic restriction is found optimal to promote BEV diffusion in all 

circumstances, which explains why it becomes a widespread policy in major cities of China. Most 

existing studies on traffic restriction apply empirical methods to show that BEV-exempted traffic 

restriction facilitates innovation diffusion (Ma et al., 2017; Morton et al., 2017; N. Wang et al., 

2017). The lack of data on both uniform traffic restriction and BEV-exempted traffic restriction in 

the same region, however, makes it difficult to directly compare two policies in terms of their 

impacts on BEV adoption. So far, only one study used the simulation approach with system 

dynamics modeling to assess their effects, and made the similar conclusion that BEV-exempted 

traffic restriction outperforms the uniform one in promoting BEV adoption (Ning Wang et al., 

2019). Based on game theory modeling, this study further takes Pigovian taxation approaches 

(especially, carbon tax) into account to examine their interactions with traffic restriction policies 

for striking a balance between consumer surplus and environmental impact. 

Second, BEV valuation must be relatively high for traffic restriction exemption to be 

effective in lowering total carbon emission beyond uniform traffic restriction. Policy makers 

cannot just rely on the fact that BEV are advantageous in leaving smaller carbon footprints, but 

need to actively advance relevant public recognition and cleaner power generation in order to 

minizine total carbon emission. Consistent with the claim of other researchers (F. Li et al., 2019), 

the findings of this study imply that reducing BEV emission in the whole life cycle (by establishing 
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the cleaner power grid, reducing production energy consumption, improving BEV efficiency, and 

recycling both batteries and vehicles) is essential to the achievement of environmental goals. 

Equally important for traffic emission reduction, the results highlight the necessity to improve 

BEV recognition, which is by far mainly achieved through the enhancement of charging 

infrastructure accessibility (Ye, Kang, Li, & Wang, 2021). This study advocates the two-legged 

approach, reducing BEV life-cycle emission while increasing BEV recognition, as it can be 

claimed either way in terms of which one comes first, like the chicken or the egg. 

Third, uniform traffic restriction always leads to a bigger loss of consumer surplus than 

BEV-exempted traffic restriction. On the end-user side, therefore, exempting BEV from traffic 

restriction strikes a balance between individual interests and public benefits. Under the conditions 

of insufficient public transport, long commuting distance, and inadequate license plate, drivers can 

be greatly affected by uniform traffic restriction and may risk driving “illegally” (Z. Liu et al., 

2020; Z. Y. Liu et al., 2018; L. L. Wang et al., 2014). BEV-exempted traffic restriction provides 

them an alternative, leading to higher consumer surplus as well as reduced traffic emission. In this 

way, the new policy guides the directions of automobile market restructuring and NEW industry 

development. 

Fourth, BEV manufacturer is more competitive under BEV-exempted traffic restriction 

than under uniform traffic restriction at relatively high restriction strength. It is known that ZEV 

regulation in California and Dual Credit regulation in China benefit automakers like Tesla and 

BYD that make profits from selling positive points. This study further recognizes the advantage 

brought by the BEV-exempted traffic restriction policy to BEV automakers through boosted 

consumer preference. After BEV diffusion reaches a critical mass, policy makers may strengthen 

traffic restriction but exempt BEV to expedite CV phaseout without hurting consumer surplus 

much. Countries that cultivate higher public recognition of BEV and establish cleaner power grids 

are readier for BEV-exempted traffic restriction to promote their diffusion and cut total carbon 

emission. 
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Finally, as for Pigovian taxation, it is recommended that policy makers replace vehicle 

purchase tax with carbon tax when the BEV industry becomes mature enough. As the public 

recognition and life-cycle emission of BEV continue their upward and downward trends beyond a 

certain point, carbon tax will outperform vehicle purchase tax in terms of BEV diffusion and total 

carbon emission. The theoretical justification for shifting from vehicle purchase tax to carbon tax 

lies in the fact that vehicle purchase tax is based on the retail prices of CV alone, but carbon tax is 

based on the life-cycle emission of all vehicles. In this sense, carbon tax is more capable of 

differentiating different types of NEV in terms of their “green” levels. For instance, BEV and 

PHEV are both waived from vehicle purchase tax, but BEV is less pollutive than PHEV. The use 

of carbon tax can tap such differences and encourages automakers and consumers to pursue cleaner 

options. As the vehicle purchase tax exemption policy becomes less efficient over time (Yan, 2018), 

this study does not suggest its immediate conversion to carbon tax. Before automakers establish 

low life-cycle emission and high recognition for BEV, the combination of vehicle purchase tax 

waiver and BEV-exempted traffic restriction is still effective for traffic emission reduction. 

Regions with cleaner power grids and higher BEV recognition may pilot carbon taxation in place 

of vehicle purchase tax exemption, and others can gradually follow suit when they are ready. 

The model development is based on a few assumptions, which are relaxed in extended 

analyses. This study initially examines the situation where consumers value BEV lower than CV, 

and further explores the case in which consumers value BEV higher than CV in Section 4.4.1. The 

major finding remains the same that BEV-exempted restriction outperforms no restriction and 

uniform restriction in promoting BEV diffusion and reducing total carbon emission. Section 4.4.2 

discusses PHEV and FCEV, the other two major types of NEV, and suggests that most conclusions 

still hold, especially for PHEV that are more closely related to BEV than FCEV. Section 4.4.3 

accommodates CAFC credit along with the NEV credit mechanism in the dual-credit mechanism, 

and Section 4.4.4 explores the possibility that the supply of positive credit is short of demand, both 

of which give the BEV manufacturer more advantage over the CV manufacturer.  
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This study has several limitations that point to future research directions. On the supply 

side, it only considers the rivalry between two automakers that produce BEV and CV respectively. 

In the real world, however, there are many BEV and CV manufacturers, and some make both BEV 

and CV. Furthermore, this study does not incorporate the ranges of different BEV into modeling. 

On the demand side, this study assumes that each consumer buys one vehicle, but it is possible for 

a commuter to purchase a second vehicle to bypass the traffic restriction. In addition, fuel surcharge 

as a consumer-end climate policy is not included in the modeling. Future research may 

accommodate such conditions on both sides to make the analyses more realistic. 
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Appendix A: Proof of Lemmas and Propositions 

Proof of Lemma 1 

Substituting 𝑞𝐵𝐸𝑉 and 𝑞𝐶𝑉 in Equation (3) and (4) into Equation (5) and using the first-order 

conditions, 𝑑𝜋𝐵𝐸𝑉 𝑑𝑃𝐵𝐸𝑉Τ = 0  and 𝑑𝜋𝐶𝑉 𝑑𝑃𝐶𝑉Τ = 0 , derive the best response functions as 

follows: 

𝑃𝐵𝐸𝑉 =
1

2
[(1 + 𝑟𝑉𝑃𝑇)𝛽𝑃𝐶𝑉 + 𝐶𝐵𝐸𝑉 − 𝑂𝐵𝐸𝑉 + 𝑂𝐶𝑉 − 𝑠] (A. 1) 

𝑃𝐶𝑉 =
1

2
(
𝑃𝐵𝐸𝑉

1 + 𝑟𝑉𝑃𝑇
+ 𝐶𝐶𝑉 +

𝑂𝐵𝐸𝑉 − 𝑂𝐶𝑉 − 𝑠 + 1 − 𝛽

1 + 𝑟𝑉𝑃𝑇
) (A. 2) 

It can be verified that the second-order derivatives are negative. Solving these two equations yields 

the equilibrium prices of 𝑃𝐵𝐸𝑉 and 𝑃𝐶𝑉 in the lemma. Substituting the equilibrium prices into 

𝑞𝐵𝐸𝑉 and 𝑞𝐶𝑉 in Equation (3) and (4) and into the profit functions in Equation (5) yields the 

equilibrium demands and equilibrium profits in the lemma. 

The equilibrium prices, demands, and profits in the Lemma 2, Lemma 3, Corollary 1, Corollary 2, 

and Corollary 3 can be obtained using similar methods. 

Proof of Proposition 1 

(a) Based on Equations (11), (26), (39), there are: 

𝑃𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑃𝐵𝐸𝑉

𝑁𝑅 = 𝑙
𝛽

4−𝛽
> 0, 𝑃𝐵𝐸𝑉

𝐵𝑅 − 𝑃𝐵𝐸𝑉
𝑁𝑅 = −2𝑙

1−𝛽

4−𝛽
< 0, 

𝑃𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑃𝐵𝐸𝑉

𝐵𝑅 = 𝑃𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑃𝐵𝐸𝑉

𝑁𝑅 − (𝑃𝐵𝐸𝑉
𝐵𝑅 − 𝑃𝐵𝐸𝑉

𝑁𝑅 ) > 0. 

Based on Equations (14), (29), (42), there are: 

𝑃𝐶𝑉
𝐶𝑉𝑅 − 𝑃𝐶𝑉

𝑁𝑅 = −𝑙
2−𝛽

(4−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0, 𝑃𝐶𝑉

𝐵𝑅 − 𝑃𝐶𝑉
𝑁𝑅 = −𝑙

1−𝛽

(4−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0,  

𝑃𝐶𝑉
𝐶𝑉𝑅 − 𝑃𝐶𝑉

𝐵𝑅 =
−𝑙

(4 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
< 0. 

(b) Based on Equations (12), (27), (40), there are: 

𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐵𝐸𝑉

𝑁𝑅 =
𝑙

(4−𝛽)(1−𝛽)
> 0, 𝑞𝐵𝐸𝑉

𝐵𝑅 − 𝑞𝐵𝐸𝑉
𝑁𝑅 =

−2𝑙

(4−𝛽)𝛽
< 0, 

𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐵𝐸𝑉

𝐵𝑅 = 𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐵𝐸𝑉

𝑁𝑅 − (𝑞𝐵𝐸𝑉
𝐵𝑅 − 𝑞𝐵𝐸𝑉

𝑁𝑅 ) > 0. 
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Based on Equations (15), (30), (43), there are: 

𝑞𝐶𝑉
𝐶𝑉𝑅 − 𝑞𝐶𝑉

𝑁𝑅 = −𝑙
2−𝛽

(4−𝛽)(1−𝛽)
< 0, 𝑞𝐶𝑉

𝐵𝑅 − 𝑞𝐶𝑉
𝑁𝑅 =

−𝑙

4−𝛽
< 0, 𝑞𝐶𝑉

𝐶𝑉𝑅 − 𝑞𝐶𝑉
𝐵𝑅 =

−𝑙

(4−𝛽)(1−𝛽)
< 0. 

(c) Based on Equations (13), (28), (41), there are: 

𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐵𝐸𝑉

𝑁𝑅 = 𝑙
Λ1 + Λ2

(4 − 𝛽)2(1 − 𝛽)
−
2𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4 − 𝛽

, 

Therefore 𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐵𝐸𝑉

𝑁𝑅 > 0 if and only if 
𝑙

2𝛽
> 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅(4 − 𝛽)(1 − 𝛽) − Λ1. 

𝜋𝐵𝐸𝑉
𝐵𝑅 − 𝜋𝐵𝐸𝑉

𝑁𝑅 = −2𝑙
Λ1 + Λ3
(4 − 𝛽)2𝛽

−
3𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4 − 𝛽

< 0, 

𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐵𝐸𝑉

𝐵𝑅 = (2 − 𝛽)𝑙
Λ2 + Λ3

(4 − 𝛽)2(1 − 𝛽)𝛽
+
𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4 − 𝛽

> 0, 

where Λ1 = 𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2 > 0 , Λ2 = 𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2 > 0 , and 

Λ3 = 𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙) > 0. 

Based on Equations (16), (31), (44), there are: 

𝜋𝐶𝑉
𝐶𝑉𝑅 − 𝜋𝐶𝑉

𝑁𝑅 = −(2 − 𝛽)𝑙
Λ4 + Λ5

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
< 0, 

𝜋𝐶𝑉
𝐵𝑅 − 𝜋𝐶𝑉

𝑁𝑅 = −𝑙
Λ4+Λ6

(4−𝛽)2(1+𝑟𝑉𝑃𝑇)
< 0, 𝜋𝐶𝑉

𝐶𝑉𝑅 − 𝜋𝐶𝑉
𝐵𝑅 = −𝑙

Λ5+Λ6

(4−𝛽)(1−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0, 

where Λ4 = 2(1 − 𝛽) − (2 − 𝛽)𝐾1 + 𝐾2 > 0 , Λ5 = 2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2 > 0 , 

and Λ6 = 2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2 + 𝑙 > 0. 

Proof of Proposition 2 

Substituting Equations (12), (15), (27), (30), (40), and (43) into Equation (6) yields the total carbon 

emission under different traffic restriction policies, as shown below 

𝑇𝐶𝐸𝑁𝑅 =
𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐵𝐸𝑉 + [1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽) − 𝐾2
(4 − 𝛽)(1 − 𝛽)

] 𝑒𝐶𝑉, (𝐴. 3) 

𝑇𝐶𝐸𝐶𝑉𝑅 =
𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐵𝐸𝑉 + [1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2
(4 − 𝛽)(1 − 𝛽)

] 𝑒𝐶𝑉, (𝐴. 4) 

𝑇𝐶𝐸𝐵𝑅 =
𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙)

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐵𝐸𝑉 + [1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2 − 𝑙

(4 − 𝛽)(1 − 𝛽)
] 𝑒𝐶𝑉, (𝐴. 5) 

Based on Equations (A.3), (A.4), and (A.5), there are: 

𝑇𝐶𝐸𝐶𝑉𝑅 − 𝑇𝐶𝐸𝑁𝑅 =
𝑙

(4 − 𝛽)(1 − 𝛽)
[𝑒𝐵𝐸𝑉 − (2 − 𝛽)𝑒𝐶𝑉] < 0, 
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𝑇𝐶𝐸𝐵𝑅 − 𝑇𝐶𝐸𝑁𝑅 =
−𝑙

(4 − 𝛽)𝛽
(2𝑒𝐵𝐸𝑉 + 𝛽𝑒𝐶𝑉) < 0, 

𝑇𝐶𝐸𝐶𝑉𝑅 − 𝑇𝐶𝐸𝐵𝑅 =
𝑙

(4 − 𝛽)(1 − 𝛽)𝛽
[(2 − 𝛽)𝑒𝐵𝐸𝑉 − 𝛽𝑒𝐶𝑉]. 

Therefore, 𝑇𝐶𝐸𝐶𝑉𝑅 < 𝑇𝐶𝐸𝐵𝑅 if and only if 𝑒𝐵𝐸𝑉 <
𝛽

2−𝛽
𝑒𝐶𝑉. 

Proof of Proposition 3 

Substituting utility surplus Equations (1), (2), (23) and (38), and optimal prices in Equations (11), 

(14), (17), (20), (26), (29), (32), (35), (39), (42), (45), and (48) into Equations (9) yields the 

consumer surplus functions under different traffic restriction policies: 

𝑓(𝑣)𝑁𝑅 =

{
 
 

 
 

0 , 0 < 𝑣 < 𝑣1
𝑁𝑅

𝛽𝑣 −
𝛽(𝐾1 + 1 − 𝛽) + 2𝐾2

4 − 𝛽
, 𝑣1

𝑁𝑅 < 𝑣 < 𝑣2
𝑁𝑅

𝑣 −
2(𝐾1 + 1 − 𝛽) + 𝐾2

4 − 𝛽
, 𝑣2

𝑁𝑅 < 𝑣 < 1

, (𝐴. 6) 

where 𝑣1
𝑁𝑅 =

𝛽(𝐾1+1−𝛽)+2𝐾2

(4−𝛽)𝛽
, and 𝑣2

𝑁𝑅 =
(2−𝛽)(𝐾1+1−𝛽)−𝐾2

(4−𝛽)(1−𝛽)
. 

𝑓(𝑣)𝐶𝑉𝑅 =

{
 
 

 
 

0 , 0 < 𝑣 < 𝑣1
𝐶𝑉𝑅

𝛽𝑣 −
𝛽(𝐾1 + 1 − 𝛽 + 𝑙) + 2𝐾2

4 − 𝛽
, 𝑣1

𝐶𝑉𝑅 < 𝑣 < 𝑣2
𝐶𝑉𝑅

𝑣 −
2(𝐾1 + 1 − 𝛽 + 𝑙) + 𝐾2

4 − 𝛽
, 𝑣2

𝐶𝑉𝑅 < 𝑣 < 1

, (𝐴. 7) 

where 𝑣1
𝐶𝑉𝑅 =

𝛽(𝐾1+1−𝛽+𝑙)+2𝐾2

(4−𝛽)𝛽
, and 𝑣2

𝐶𝑉𝑅 =
(2−𝛽)(𝐾1+1−𝛽+𝑙)−𝐾2

(4−𝛽)(1−𝛽)
. 

𝑓(𝑣)𝐵𝑅 =

{
 
 

 
 

0 , 0 < 𝑣 < 𝑣1
𝐵𝑅

𝛽𝑣 −
𝛽(𝐾1 + 1 − 𝛽 + 𝑙) + 2𝐾2 + 2𝑙

4 − 𝛽
, 𝑣1

𝐵𝑅 < 𝑣 < 𝑣2
𝐵𝑅

𝑣 −
2(𝐾1 + 1 − 𝛽 + 𝑙) + 𝐾2 + 𝑙

4 − 𝛽
, 𝑣2

𝐵𝑅 < 𝑣 < 1

, (𝐴. 8) 

where 𝑣1
𝐵𝑅 =

𝛽(𝐾1+1−𝛽+𝑙)+2𝐾2+2𝑙

(4−𝛽)𝛽
, and 𝑣2

𝐵𝑅 =
(2−𝛽)(𝐾1+1−𝛽+𝑙)−𝐾2−𝑙

(4−𝛽)(1−𝛽)
. 

It can be verified that curve  𝑓(𝑣)𝑁𝑅  is above curve 𝑓(𝑣)𝐶𝑉𝑅 , and curve 𝑓(𝑣)𝐶𝑉𝑅  is above 

𝑓(𝑣)𝐵𝑅. Consumer surplus is the integral of the curve 𝑓(𝑣) between 0 and 1, or the area between 

the curve 𝑓(𝑣) and the x-axis. Through the curve position relationship shown in Figure 9, the 

relationship of consumer surplus in each traffic restriction policy can be determined, as 
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summarized in Proposition 3. 

 

Proof of Proposition 4 

(a) Based on Equations (17), (32), and (45), there are: 

�̃�𝐵𝐸𝑉
𝐶𝑉𝑅 − �̃�𝐵𝐸𝑉

𝑁𝑅 = 𝑙
𝛽

4−𝛽
> 0, �̃�𝐵𝐸𝑉

𝐵𝑅 − �̃�𝐵𝐸𝑉
𝑁𝑅 = −2𝑙

1−𝛽

4−𝛽
< 0, 

�̃�𝐵𝐸𝑉
𝐶𝑉𝑅 − �̃�𝐵𝐸𝑉

𝐵𝑅 = �̃�𝐵𝐸𝑉
𝐶𝑉𝑅 − �̃�𝐵𝐸𝑉

𝑁𝑅 − (�̃�𝐵𝐸𝑉
𝐵𝑅 − �̃�𝐵𝐸𝑉

𝑁𝑅 ) > 0. 

Based on Equations (20), (35), and (48), there are: 

�̃�𝐶𝑉
𝐶𝑉𝑅 − �̃�𝐶𝑉

𝑁𝑅 = −𝑙
2−𝛽

4−𝛽
< 0, �̃�𝐶𝑉

𝐵𝑅 − �̃�𝐶𝑉
𝑁𝑅 = −𝑙

1−𝛽

4−𝛽
< 0, �̃�𝐶𝑉

𝐶𝑉𝑅 − �̃�𝐶𝑉
𝐵𝑅 =

−𝑙

4−𝛽
< 0. 

(b) Based on Equations (18), (33), and (46), there are: 

�̃�𝐵𝐸𝑉
𝐶𝑉𝑅 − �̃�𝐵𝐸𝑉

𝑁𝑅 =
𝑙

(4−𝛽)(1−𝛽)
> 0, �̃�𝐵𝐸𝑉

𝐵𝑅 − �̃�𝐵𝐸𝑉
𝑁𝑅 =

−𝑙

(4−𝛽)𝛽
< 0, 

�̃�𝐵𝐸𝑉
𝐶𝑉𝑅 − �̃�𝐵𝐸𝑉

𝐵𝑅 = �̃�𝐵𝐸𝑉
𝐶𝑉𝑅 − �̃�𝐵𝐸𝑉

𝑁𝑅 − (�̃�𝐵𝐸𝑉
𝐵𝑅 − �̃�𝐵𝐸𝑉

𝑁𝑅 ) > 0. 

Based on Equations (21), (36), and (49), there are: 

�̃�𝐶𝑉
𝐶𝑉𝑅 − �̃�𝐶𝑉

𝑁𝑅 = −𝑙
2−𝛽

(4−𝛽)(1−𝛽)
< 0, �̃�𝐶𝑉

𝐵𝑅 − �̃�𝐶𝑉
𝑁𝑅 =

−𝑙

4−𝛽
< 0, �̃�𝐶𝑉

𝐶𝑉𝑅 − �̃�𝐶𝑉
𝐵𝑅 =

−𝑙

(4−𝛽)(1−𝛽)
< 0. 

(c) Based on Equations (19), (34), and (47), there are: 

�̃�𝐵𝐸𝑉
𝐶𝑉𝑅 − �̃�𝐵𝐸𝑉

𝑁𝑅 = 𝑙
Λ̃1 + Λ̃2

(4 − 𝛽)2(1 − 𝛽)
−
2𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4 − 𝛽

, 

Therefore �̃�𝐵𝐸𝑉
𝐶𝑉𝑅 − �̃�𝐵𝐸𝑉

𝑁𝑅 > 0 if and only if 
𝑙

2𝛽
> 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅(4 − 𝛽)(1 − 𝛽) − Λ̃1 

�̃�𝐵𝐸𝑉
𝐵𝑅 − �̃�𝐵𝐸𝑉

𝑁𝑅 = −2𝑙
Λ̃1 + Λ̃3
(4 − 𝛽)2𝛽

−
3𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4 − 𝛽

< 0, 

�̃�𝐵𝐸𝑉
𝐶𝑉𝑅 − �̃�𝐵𝐸𝑉

𝐵𝑅 = (2 − 𝛽)𝑙
Λ̃2 + Λ̃3
(4 − 𝛽)2𝛽

+
𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4 − 𝛽

> 0, 

where Λ̃1 = 𝛽(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑐𝑒𝐵𝐸𝑉) > 0 , Λ̃2 = 𝛽(�̃�1 + 1 − 𝛽 + 𝑙 +

𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑐𝑒𝐵𝐸𝑉) > 0 , and Λ̃3 = 𝛽(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑙 +

𝑐𝑒𝐵𝐸𝑉) > 0. 

Based on Equations (24), (37), and (50), there are: 

�̃�𝐶𝑉
𝐶𝑉𝑅 − �̃�𝐶𝑉

𝑁𝑅 = −(2 − 𝛽)𝑙
Λ̃4 + Λ̃5

(4 − 𝛽)2(1 − 𝛽)
< 0, 
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�̃�𝐶𝑉
𝐵𝑅 − �̃�𝐶𝑉

𝑁𝑅 = −𝑙
Λ̃4+Λ̃6

(4−𝛽)2
< 0, �̃�𝐶𝑉

𝐶𝑉𝑅 − �̃�𝐶𝑉
𝐵𝑅 = −𝑙

Λ̃5+Λ̃6

(4−𝛽)(1−𝛽)
< 0, 

where Λ̃4 = 2(1 − 𝛽) − (2 − 𝛽)(�̃�1 + 𝑐𝑒𝐶𝑉) + 𝐾2 + 𝑐𝑒𝐵𝐸𝑉 > 0 , Λ̃5 = 2(1 − 𝛽) − (2 −

𝛽)(�̃�1 + 𝑐𝑒𝐶𝑉 + 𝑙) + 𝐾2 + 𝑐𝑒𝐵𝐸𝑉 > 0 , and Λ̃6 = 2(1 − 𝛽) − (2 − 𝛽)(�̃�1 + 𝑙 + 𝑐𝑒𝐶𝑉) + 𝐾2 +

𝑐𝑒𝐵𝐸𝑉 + 𝑙 > 0. 

Proof of Proposition 5 

Substituting Equations (18), (21), (33), (36), (46), and (49) into Equation (6) yields the total 

economic cost of emissions under different traffic restriction policies: 

𝑇𝐶�̃�𝑁𝑅 =
𝛽(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑐𝑒𝐵𝐸𝑉)

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐵𝐸𝑉

+[1 −
(2 − 𝛽)(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉) − 𝐾2 − 𝑐𝑒𝐵𝐸𝑉

(4 − 𝛽)(1 − 𝛽)
] 𝑒𝐶𝑉, (𝐴. 9)

 

𝑇𝐶�̃�𝐶𝑉𝑅 =
𝛽(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑐𝑒𝐵𝐸𝑉)

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐵𝐸𝑉

+ [1 −
(2 − 𝛽)(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) − 𝐾2 − 𝑐𝑒𝐵𝐸𝑉

(4 − 𝛽)(1 − 𝛽)
] 𝑒𝐶𝑉, (𝐴. 10)

 

𝑇𝐶�̃�𝐵𝑅 =
𝛽(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) − (2 − 𝛽)(𝐾2 + 𝑙 + 𝑐𝑒𝐵𝐸𝑉)

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐵𝐸𝑉

+ [1 −
(2 − 𝛽)(�̃�1 + 1 − 𝛽 + 𝑙 + 𝑐𝑒𝐶𝑉) − 𝐾2 − 𝑙 − 𝑐𝑒𝐵𝐸𝑉

(4 − 𝛽)(1 − 𝛽)
] 𝑒𝐶𝑉, (𝐴. 11)

 

Based on Equations (A.9), (A.10), and (A.11), there are: 

𝑇𝐶�̃�𝐶𝑉𝑅 − 𝑇𝐶�̃�𝑁𝑅 =
𝑙

(4 − 𝛽)(1 − 𝛽)
[𝑒𝐵𝐸𝑉 − (2 − 𝛽)𝑒𝐶𝑉] < 0, 

𝑇𝐶�̃�𝐵𝑅 − 𝑇𝐶�̃�𝑁𝑅 =
−𝑙

(4 − 𝛽)𝛽
(2𝑒𝐵𝐸𝑉 + 𝛽𝑒𝐶𝑉) < 0, 

𝑇𝐶�̃�𝐶𝑉𝑅 − 𝑇𝐶�̃�𝐵𝑅 =
𝑙

(4 − 𝛽)(1 − 𝛽)𝛽
[(2 − 𝛽)𝑒𝐵𝐸𝑉 − 𝛽𝑒𝐶𝑉]. 

Therefore, 𝑇𝐶�̃�𝐶𝑉𝑅 < 𝑇𝐶�̃�𝐵𝑅 if and only if 𝑒𝐵𝐸𝑉 <
𝛽

2−𝛽
𝑒𝐶𝑉. 

Proof of Proposition 6 

Proposition 6 can be obtained using the method similar to the proof of Proposition 3, based on the 
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following 𝑓(𝑣)̃𝐵𝑅, 𝑓(𝑣)̃𝐶𝑉𝑅, and 𝑓(𝑣)̃𝑁𝑅. 

𝑓(𝑣)̃𝑁𝑅 =

{
 
 

 
 

0 , 0 < 𝑣 < �̃�1
𝑁𝑅

𝛽𝑣 −
𝛽(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉) + 2(𝐾2 + 𝑐𝑒𝐵𝐸𝑉)

4 − 𝛽
, �̃�1

𝑁𝑅 < 𝑣 < �̃�2
𝑁𝑅

𝑣 −
2(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉) + 𝐾2 + 𝑐𝑒𝐵𝐸𝑉

4 − 𝛽
, �̃�2

𝑁𝑅 < 𝑣 < 1

, (𝐴. 12) 

where �̃�1
𝑁𝑅 =

𝛽(�̃�1+1−𝛽+𝑐𝑒𝐶𝑉)+2(𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)𝛽
, and �̃�2

𝑁𝑅 =
(2−𝛽)(�̃�1+1−𝛽+𝑐𝑒𝐶𝑉)−𝐾2−𝑐𝑒𝐵𝐸𝑉

(4−𝛽)(1−𝛽)
. 

𝑓(𝑣)̃𝐶𝑉𝑅 =

{
 
 

 
 

0 , 0 < 𝑣 < �̃�1
𝐶𝑉𝑅

𝛽𝑣 −
𝛽(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉 + 𝑙) + 2(𝐾2 + 𝑐𝑒𝐵𝐸𝑉)

4 − 𝛽
, �̃�1

𝐶𝑉𝑅 < 𝑣 < �̃�2
𝐶𝑉𝑅

𝑣 −
2(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉 + 𝑙) + 𝐾2 + 𝑐𝑒𝐵𝐸𝑉

4 − 𝛽
, �̃�2

𝐶𝑉𝑅 < 𝑣 < 1

, (𝐴. 13) 

where �̃�1
𝐶𝑉𝑅 =

𝛽(�̃�1+1−𝛽+𝑐𝑒𝐶𝑉+𝑙)+2(𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)𝛽
, and �̃�2

𝐶𝑉𝑅 =
(2−𝛽)(�̃�1+1−𝛽+𝑐𝑒𝐶𝑉+𝑙)−𝐾2−𝑐𝑒𝐵𝐸𝑉

(4−𝛽)(1−𝛽)
. 

𝑓(𝑣)̃𝐵𝑅 =

{
 
 

 
 

0 , 0 < 𝑣 < �̃�1
𝐵𝑅

𝛽𝑣 −
𝛽(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉 + 𝑙) + 2(𝐾2 + 𝑐𝑒𝐵𝐸𝑉 + 𝑙)

4 − 𝛽
, �̃�1

𝐵𝑅 < 𝑣 < �̃�2
𝐵𝑅

𝑣 −
2(�̃�1 + 1 − 𝛽 + 𝑐𝑒𝐶𝑉 + 𝑙) + 𝐾2 + 𝑐𝑒𝐵𝐸𝑉 + 𝑙

4 − 𝛽
, �̃�2

𝐵𝑅 < 𝑣 < 1

, (𝐴. 14) 

where �̃�1
𝐵𝑅 =

𝛽(�̃�1+1−𝛽+𝑐𝑒𝐶𝑉+𝑙)+2(𝐾2+𝑐𝑒𝐵𝐸𝑉+𝑙)

(4−𝛽)𝛽
, and �̃�2

𝐵𝑅 =
(2−𝛽)(�̃�1+1−𝛽+𝑐𝑒𝐶𝑉+𝑙)−𝐾2−𝑐𝑒𝐵𝐸𝑉−𝑙

(4−𝛽)(1−𝛽)
. 

Proof of Proposition 7 

Based on Equations (12), (18), (27), (33), (40), and (46), there are: 

�̃�𝐵𝐸𝑉
𝑁𝑅 − 𝑞𝐵𝐸𝑉

𝑁𝑅 =
𝛽𝑐𝑒𝐶𝑉 − (2 − 𝛽)𝑐𝑒𝐵𝐸𝑉 − 𝛽𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)

(4 − 𝛽)(1 − 𝛽)𝛽
, 

�̃�𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐵𝐸𝑉

𝐶𝑉𝑅 =
𝛽𝑐𝑒𝐶𝑉 − (2 − 𝛽)𝑐𝑒𝐵𝐸𝑉 − 𝛽𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)

(4 − 𝛽)(1 − 𝛽)𝛽
, 

�̃�𝐵𝐸𝑉
𝐵𝑅 − 𝑞𝐵𝐸𝑉

𝐵𝑅 =
𝛽𝑐𝑒𝐶𝑉 − (2 − 𝛽)𝑐𝑒𝐵𝐸𝑉 − 𝛽𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)

(4 − 𝛽)(1 − 𝛽)𝛽
. 

Therefore, �̃�𝐵𝐸𝑉
𝑁𝑅 − 𝑞𝐵𝐸𝑉

𝑁𝑅 > 0, �̃�𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐵𝐸𝑉

𝐶𝑉𝑅 > 0, and �̃�𝐵𝐸𝑉
𝐵𝑅 − 𝑞𝐵𝐸𝑉

𝐵𝑅 > 0, if and only if  

𝑐𝑒𝐵𝐸𝑉 <
𝛽

2 − 𝛽
[𝑐𝑒𝐶𝑉 − 𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)]. 

Based on Equations (15), (21), (30), (36), (43), and (49), there are: 
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�̃�𝐶𝑉
𝑁𝑅 − 𝑞𝐶𝑉

𝑁𝑅 =
𝑐𝑒𝐵𝐸𝑉 − (2 − 𝛽)𝑐𝑒𝐶𝑉 + (2 − 𝛽)𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)

(4 − 𝛽)(1 − 𝛽)
, 

�̃�𝐶𝑉
𝐶𝑉𝑅 − 𝑞𝐶𝑉

𝐶𝑉𝑅 =
𝑐𝑒𝐵𝐸𝑉 − (2 − 𝛽)𝑐𝑒𝐶𝑉 + (2 − 𝛽)𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)

(4 − 𝛽)(1 − 𝛽)
, 

�̃�𝐶𝑉
𝐵𝑅 − 𝑞𝐶𝑉

𝐵𝑅 =
𝑐𝑒𝐵𝐸𝑉 − (2 − 𝛽)𝑐𝑒𝐶𝑉 + (2 − 𝛽)𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)

(4 − 𝛽)(1 − 𝛽)
. 

Therefore, �̃�𝐶𝑉
𝑁𝑅 − 𝑞𝐶𝑉

𝑁𝑅 < 0, �̃�𝐶𝑉
𝐶𝑉𝑅 − 𝑞𝐶𝑉

𝐶𝑉𝑅 < 0, �̃�𝐶𝑉
𝐵𝑅 − 𝑞𝐶𝑉

𝐵𝑅 < 0 if and only if  

𝑐𝑒𝐵𝐸𝑉 < (2 − 𝛽)[𝑐𝑒𝐶𝑉 − (𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)]. 

Proof of Proposition 8 

Based on Equations (A.3), (A.4), (A.5), (A.9), (A.10), and (A.11), there are: 

𝑇𝐶�̃�𝑁𝑅 − 𝑇𝐶𝐸𝑁𝑅 =
[𝑐𝑒𝐵𝐸𝑉 − (2 − 𝛽)𝑐𝑒𝐶𝑉 + (2 − 𝛽)𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)]𝛽𝑒𝐶𝑉
(4 − 𝛽)(1 − 𝛽)𝛽

+
[𝛽𝑐𝑒𝐶𝑉 − (2 − 𝛽)𝑐𝑒𝐵𝐸𝑉 − 𝛽𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)]𝑒𝐵𝐸𝑉
(4 − 𝛽)(1 − 𝛽)𝛽

,

 

𝑇𝐶�̃�𝐵𝑅 − 𝑇𝐶𝐸𝐵𝑅 =
[𝑐𝑒𝐵𝐸𝑉 − (2 − 𝛽)𝑐𝑒𝐶𝑉 + (2 − 𝛽)𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)]𝛽𝑒𝐶𝑉
(4 − 𝛽)(1 − 𝛽)𝛽

+
[𝛽𝑐𝑒𝐶𝑉 − (2 − 𝛽)𝑐𝑒𝐵𝐸𝑉 − 𝛽𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)]𝑒𝐵𝐸𝑉
(4 − 𝛽)(1 − 𝛽)𝛽

,

 

𝑇𝐶�̃�𝐶𝑉𝑅 − 𝑇𝐶𝐸𝐶𝑉𝑅 =
[𝑐𝑒𝐵𝐸𝑉 − (2 − 𝛽)𝑐𝑒𝐶𝑉 + (2 − 𝛽)𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)]𝛽𝑒𝐶𝑉
(4 − 𝛽)(1 − 𝛽)𝛽

+
[𝛽𝑐𝑒𝐶𝑉 − (2 − 𝛽)𝑐𝑒𝐵𝐸𝑉 − 𝛽𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)]𝑒𝐵𝐸𝑉
(4 − 𝛽)(1 − 𝛽)𝛽

.

 

Therefore, 𝑇𝐶�̃�𝑁𝑅 − 𝑇𝐶𝐸𝑁𝑅 > 0 , 𝑇𝐶�̃�𝐵𝑅 − 𝑇𝐶𝐸𝐵𝑅 > 0 , and 𝑇𝐶�̃�𝐶𝑉𝑅 − 𝑇𝐶𝐸𝐶𝑉𝑅 > 0  if and 

only if 𝑐𝑒𝐵𝐸𝑉 <
(2−𝛽)𝑒𝐶𝑉−𝑒𝐵𝐸𝑉

𝛽𝑒𝐶𝑉−(2−𝛽)𝑒𝐵𝐸𝑉
𝛽[𝑐𝑒𝐶𝑉 − 𝑟𝑉𝑃𝑇(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)]. 

Proof of Proposition 9 

Based on Equations (A.6), (A.7), (A.8), (A.12), (A.13), and (A.14), using the method similar to 

the Proof of Proposition 3, yields the relationship of consumers surplus when different taxes are 

levied, as summarized in Proposition 9. 
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Appendix B: Explicit Expressions 

Appendix B1 

The explicit expressions of the derivatives are as follow: 

𝜕𝑞𝐵𝐸𝑉
𝑁𝑅

𝜕𝑟𝑉𝑃𝑇
=

𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅

(4−𝛽)(1−𝛽)
> 0 , 

𝜕𝑞𝐶𝑉
𝑁𝑅

𝜕𝑟𝑉𝑃𝑇
= −(2 − 𝛽)

𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅

(4−𝛽)(1−𝛽)
< 0,  

𝜕𝑇𝐶𝐸𝑁𝑅

𝜕𝑟𝑉𝑃𝑇
= −

𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅

(4−𝛽)
< 0 , 

𝜕𝑃𝐵𝐸𝑉
𝑁𝑅

𝜕𝑟𝑉𝑃𝑇
=

𝛽

4−𝛽
(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅) > 0, 
𝜕𝜋𝐵𝐸𝑉

𝑁𝑅

𝜕𝑟𝑉𝑃𝑇
=

2(𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)[Λ1−(4−𝛽)(1−𝛽)𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅]

(4−𝛽)2(1−𝛽)
,  

𝜕𝑃𝐶𝑉
𝑁𝑅

𝜕𝑟𝑉𝑃𝑇
= −

𝐾2−(2−𝛽)𝑂𝐶𝑉+2(1−𝛽)

(4−𝛽)(1+𝑟𝑉𝑃𝑇)2
= −

1

1+𝑟𝑉𝑃𝑇
[𝑃𝐶𝑉 −

2

4−𝛽
(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)] < 0,  

𝜕𝜋𝐶𝑉
𝑁𝑅

𝜕𝑟𝑉𝑃𝑇
= −

Λ4[2(2−𝛽)(1+𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)+Λ4]

(4−𝛽)2(1−𝛽)(1+𝑟𝑉𝑃𝑇)2
< 0,  where Λ1 = 𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2, 

Λ4 = 2(1 − 𝛽) − (2 − 𝛽)𝐾1 + 𝐾2 > 0. 

𝜕𝑞𝐵𝐸𝑉
𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)𝛽
< 0,  

𝜕𝑞𝐶𝑉
𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

(4−𝛽)(1−𝛽)
> 0,  

𝜕𝑃𝐵𝐸𝑉
𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

4−𝛽
< 0,  

𝜕𝑃𝐶𝑉
𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

(4−𝛽)(1+𝑟𝑉𝑃𝑇)
>

0,  
𝜕𝜋𝐵𝐸𝑉

𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
= −(2 − 𝛽)

2(𝛽(𝐾1+1−𝛽)−(2−𝛽)𝐾2)

(4−𝛽)2(1−𝛽)𝛽
−
𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
< 0,  

𝜕𝜋𝐶𝑉
𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
=

2(2(1−𝛽)−(2−𝛽)𝐾1+𝐾2)

(4−𝛽)2(1−𝛽)(1+𝑟𝑉𝑃𝑇)
> 0 . 

𝜕𝑞𝐵𝐸𝑉
𝑁𝑅

𝜕𝑂𝐶𝑉
=

1

(4−𝛽)(1−𝛽)𝛽
> 0,  

𝜕𝑞𝐶𝑉
𝑁𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0,  

𝜕𝑃𝐵𝐸𝑉
𝑁𝑅

𝜕𝑂𝐶𝑉
=

𝛽

4−𝛽
> 0,  

𝜕𝑃𝐶𝑉
𝑁𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

(4−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0, 

𝜕𝜋𝐵𝐸𝑉
𝑁𝑅

𝜕𝑂𝐶𝑉
=

2(𝛽(𝐾1+1−𝛽)−(2−𝛽)𝐾2)

(4−𝛽)2(1−𝛽)
−
2𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
, 
𝜕𝜋𝐶𝑉

𝑁𝑅

𝜕𝑂𝐶𝑉
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)𝐾1+𝐾2)

(4−𝛽)2(1−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0. 

𝜕𝐶𝑆𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
=

∆𝐶𝑆𝑁𝑅−𝐶𝑆𝑁𝑅

∆𝑂𝐵𝐸𝑉
, where ∆𝐶𝑆𝑁𝑅 represents an increment. 

By comparing 𝑓(𝑣)𝑁𝑅 and ∆𝑓(𝑣)𝑁𝑅, ∆𝐶𝑆𝑁𝑅 − 𝐶𝑆𝑁𝑅 can be determined. 

∆𝑓(𝑣)𝑁𝑅 =

{
 
 

 
 

0 , 0 < 𝑣 < ∆𝑣1
𝑁𝑅

𝛽𝑣 −
𝛽(𝐾1 + 1 − 𝛽) + 2𝐾2 + 2∆𝑂𝐵𝐸𝑉

4 − 𝛽
, ∆𝑣1

𝑁𝑅 < 𝑣 < ∆𝑣2
𝑁𝑅

𝑣 −
2(𝐾1 + 1 − 𝛽) + 𝐾2 + ∆𝑂𝐵𝐸𝑉

4 − 𝛽
, ∆𝑣2

𝑁𝑅 < 𝑣 < 1

, (𝐴. 15) 

where ∆𝑣1
𝑁𝑅 =

𝛽(𝐾1+1−𝛽)+2𝐾2

(4−𝛽)𝛽
, and ∆𝑣2

𝑁𝑅 =
(2−𝛽)(𝐾1+1−𝛽)−𝐾2

(4−𝛽)(1−𝛽)
. 

Based on (A.3) and (A.15), there are: ∆𝐶𝑆𝑁𝑅 − 𝐶𝑆𝑁𝑅 < 0, and 
𝜕𝐶𝑆𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
< 0. 

All derivatives with respect to CS in Appendices B1, B2, B3, B4, B5, and B6 can be obtained in 

the same way. 
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Appendix B2 

The explicit expressions of the derivatives are as follow: 

𝜕�̃�𝐶𝑉
𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

(4−𝛽)(1−𝛽)
> 0,  

𝜕�̃�𝐶𝑉
𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

4−𝛽
> 0,  

𝜕�̃�𝐶𝑉
𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
=

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
> 0, 

𝜕�̃�𝐵𝐸𝑉
𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)𝛽
< 0, 

𝜕�̃�𝐵𝐸𝑉
𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

4−𝛽
< 0, 

𝜕�̃�𝐵𝐸𝑉
𝑁𝑅

𝜕𝑂𝐵𝐸𝑉
= −(2 − 𝛽)

2(𝛽(�̃�1+1−𝛽+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)𝛽
−
𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
< 0.  

𝜕�̃�𝐵𝐸𝑉
𝑁𝑅

𝜕𝑂𝐶𝑉
=

1

(4−𝛽)(1−𝛽)𝛽
> 0, 

𝜕�̃�𝐵𝐸𝑉
𝑁𝑅

𝜕𝑂𝐶𝑉
=

2(𝛽(�̃�1+1−𝛽+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)
−
2𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
,  

𝜕�̃�𝐶𝑉
𝑁𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0, 

𝜕�̃�𝐶𝑉
𝑁𝑅

𝜕𝑂𝐶𝑉
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
< 0,  

𝜕�̃�𝐵𝐸𝑉
𝑁𝑅

𝜕𝑂𝐶𝑉
=

𝛽

4−𝛽
> 0, 

𝜕�̃�𝐶𝑉
𝑁𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

4−𝛽
< 0.  

𝜕�̃�𝐵𝐸𝑉
𝑁𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝑁𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

1

(4−𝛽)(1−𝛽)
> 0,  

𝜕�̃�𝐵𝐸𝑉
𝑁𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

2

4−𝛽
> 0,  

𝜕�̃�𝐶𝑉
𝑁𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

1

4−𝛽
> 0, 

𝜕�̃�𝐵𝐸𝑉
𝑁𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
= −(2 − 𝛽)

2(𝛽(�̃�1+1−𝛽+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)𝛽
−
𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝑁𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
> 0, 

𝜕𝑇𝐶�̃�𝑁𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

(2−𝛽)𝑐𝑒𝐵𝐸𝑉+𝛽𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)𝛽
+ �̃�𝐵𝐸𝑉

𝑁𝑅 .  

𝜕�̃�𝐵𝐸𝑉
𝑁𝑅

𝜕𝑐𝑒𝐶𝑉
=

1

(4−𝛽)(1−𝛽)𝛽
> 0,  

𝜕�̃�𝐶𝑉
𝑁𝑅

𝜕𝑐𝑒𝐶𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0,  

𝜕�̃�𝐵𝐸𝑉
𝑁𝑅

𝜕𝑐𝑒𝐶𝑉
=

𝛽

4−𝛽
> 0,  

𝜕�̃�𝐶𝑉
𝑁

𝜕𝑐𝑒𝐶𝑉
=

2

4−𝛽
> 0,  

𝜕�̃�𝐵𝐸𝑉
𝑁

𝜕𝑐𝑒𝐶𝑉
=

2(𝛽(�̃�1+1−𝛽+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)
−
2𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
,  

𝜕�̃�𝐶𝑉
𝑁𝑅

𝜕𝑐𝑒𝐶𝑉
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
< 0, 

𝜕𝑇𝐶�̃�𝑁𝑅

𝜕𝑐𝑒𝐶𝑉
=

𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
+ �̃�𝐶𝑉

𝑁𝑅. 

Appendix B3 

The explicit expressions of the derivatives are as follow: 

𝜕𝑞𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑙
=

1

(4−𝛽)(1−𝛽)
> 0,  

𝜕𝑞𝐶𝑉
𝐶𝑉𝑅

𝜕𝑙
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0,  

𝜕𝑃𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑙
=

𝛽

4−𝛽
> 0,  

𝜕𝑃𝐶𝑉
𝐶𝑉𝑅

𝜕𝑙
=

𝛽−2

(4−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0, 

𝜕𝜋𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑙
=

2(𝛽(𝐾1+1−𝛽+𝑙)−(2−𝛽)𝐾2)

(4−𝛽)2(1−𝛽)
−
2𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
,  

𝜕𝜋𝐶𝑉
𝐶𝑉𝑅

𝜕𝑙
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(𝐾1+𝑙)+𝐾2)

(4−𝛽)2(1−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0, 

𝜕𝑇𝐶𝐸𝐶𝑉𝑅

𝜕𝑙
=

𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
< 0.  
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𝜕𝑞𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑟𝑉𝑃𝑇
=

𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅

(4−𝛽)(1−𝛽)
> 0,  

𝜕𝑞𝐶𝑉
𝐶𝑉𝑅

𝜕𝑟𝑉𝑃𝑇
=

(𝛽−2)(𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)

(4−𝛽)(1−𝛽)
< 0,  

𝜕𝑃𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑟𝑉𝑃𝑇
=

𝛽(𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)

4−𝛽
> 0, 

𝜕𝑇𝐶𝐸𝐶𝑉𝑅

𝜕𝑟𝑉𝑃𝑇
= −

𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅

(4−𝛽)
< 0, 

𝜕𝜋𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑟𝑉𝑃𝑇
=

2(𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)[Λ2−(4−𝛽)(1−𝛽)𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅]

(4−𝛽)2(1−𝛽)
,  

𝜕𝑃𝐶𝑉
𝐶𝑉𝑅

𝜕𝑟𝑉𝑃𝑇
= −

𝐾2−(2−𝛽)(𝑂𝐶𝑉+𝑙)+2(1−𝛽)

(4−𝛽)(1+𝑟𝑉𝑃𝑇)2
= −

1

1+𝑟𝑉𝑃𝑇
[𝑃𝐶𝑉 −

2

4−𝛽
(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)] < 0,  

𝜕𝜋𝐶𝑉
𝐶𝑉𝑅

𝜕𝑟𝑉𝑃𝑇
= −

Λ5[2(2−𝛽)(1+𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)+Λ5]

(4−𝛽)2(1−𝛽)(1+𝑟𝑉𝑃𝑇)2
< 0,  where Λ2 = 𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 −

𝛽)𝐾2, Λ5 = 2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2.  

𝜕𝑞𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)𝛽
< 0, 

𝜕𝑞𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

(4−𝛽)(1−𝛽)
> 0, 

𝜕𝑃𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

4−𝛽
< 0,  

𝜕𝑃𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

(4−𝛽)(1+𝑟𝑉𝑃𝑇)
> 0,  

𝜕𝜋𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
= −(2 − 𝛽)

2(𝛽(𝐾1+1−𝛽+𝑙)−(2−𝛽)𝐾2)

(4−𝛽)2(1−𝛽)𝛽
−
𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
< 0,  

𝜕𝜋𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

2(2(1−𝛽)−(2−𝛽)(𝐾1+𝑙)+𝐾2)

(4−𝛽)2(1−𝛽)(1+𝑟𝑉𝑃𝑇)
> 0, 

𝜕𝑇𝐶𝐸𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽𝑐𝑒𝐶𝑉−(2−𝛽)𝑐𝑒𝐵𝐸𝑉

(4−𝛽)(1−𝛽)𝛽
.  

𝜕𝑞𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=

1

(4−𝛽)(1−𝛽)𝛽
> 0, 

𝜕𝑞𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0, 

𝜕𝑃𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=

𝛽

4−𝛽
> 0,  

𝜕𝑃𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

(4−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0, 

𝜕𝜋𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=

2(𝛽(𝐾1+1−𝛽+𝑙)−(2−𝛽)𝐾2)

(4−𝛽)2(1−𝛽)
−
2𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
,  

𝜕𝜋𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(𝐾1+𝑙)+𝐾2)

(4−𝛽)2(1−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0, 

𝜕𝑇𝐶𝐸𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=

𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
< 0. 

Appendix B4 

The explicit expressions of the derivatives are as follow: 

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑙
=

1

(4−𝛽)(1−𝛽)
> 0, 

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑙
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0, 

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑙
=

𝛽

4−𝛽
> 0, 

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑙
=

𝛽−2

4−𝛽
< 0,  

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑙
=

2(𝛽(�̃�1+1−𝛽+𝑙+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)
−
2𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑡
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑙+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
< 0,  

𝜕𝑇𝐶�̃�𝐶𝑉𝑅

𝜕𝑡
=

𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
< 0. 

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

(4−𝛽)(1−𝛽)
> 0,  

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

4−𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

4−𝛽
> 0, 

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
= −(2 − 𝛽)

2(𝛽(�̃�1+1−𝛽+𝑙+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)𝛽
−
𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑙+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
> 0, 

𝜕𝑇𝐶�̃�𝐶𝑉𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽𝑐𝑒𝐶𝑉−(2−𝛽)𝑐𝑒𝐵𝐸𝑉

(4−𝛽)(1−𝛽)𝛽
.  

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=

1

(4−𝛽)(1−𝛽)𝛽
> 0,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0,  

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=

𝛽

4−𝛽
> 0,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

4−𝛽
< 0,  

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=
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2(𝛽(�̃�1+1−𝛽+𝑙+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)
−
2𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑙+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
< 0,  

𝜕𝑇𝐶�̃�𝐶𝑉𝑅

𝜕𝑂𝐶𝑉
=

𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
< 0. 

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

1

(4−𝛽)(1−𝛽)
> 0,  

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

2

4−𝛽
> 0,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

1

4−𝛽
> 0, 

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
= −(2 − 𝛽)

2(𝛽(�̃�1+1−𝛽+𝑙+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)𝛽
−
𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑙+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
> 0,  

𝜕𝑇𝐶�̃�𝐶𝑉𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

(2−𝛽)𝑐𝑒𝐵𝐸𝑉+𝛽𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)𝛽
+ �̃�𝐵𝐸𝑉

𝐶𝑉𝑅 .  
𝜕�̃�𝐵𝐸𝑉

𝐶𝑉𝑅

𝜕𝑐𝑒𝐶𝑉
=

1

(4−𝛽)(1−𝛽)𝛽
> 0,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑐𝑒𝐶𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0,  

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑐𝑒𝐶𝑉
=

𝛽

4−𝛽
> 0,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑐𝑒𝐶𝑉
=

2

4−𝛽
> 0,  

𝜕�̃�𝐵𝐸𝑉
𝐶𝑉𝑅

𝜕𝑐𝑒𝐶𝑉
=

2(𝛽(�̃�1+1−𝛽+𝑙+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)
−
2𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
,  

𝜕�̃�𝐶𝑉
𝐶𝑉𝑅

𝜕𝑐𝑒𝐶𝑉
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑙+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
< 0, 

𝜕𝑇𝐶�̃�𝐶𝑉𝑅

𝜕𝑐𝑒𝐶𝑉
=

𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
+ �̃�𝐶𝑉

𝐶𝑉𝑅. 

Appendix B5 

The explicit expressions of the derivatives are as follow: 

𝜕𝑞𝐵𝐸𝑉
𝐵𝑅

𝜕𝑙
=

1

(4−𝛽)(1−𝛽)
> 0,  

𝜕𝑞𝐶𝑉
𝐵𝑅

𝜕𝑙
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0,  

𝜕𝑃𝐵𝐸𝑉
𝐵𝑅

𝜕𝑙
=

𝛽

4−𝛽
> 0,  

𝜕𝑃𝐶𝑉
𝐵𝑅

𝜕𝑙
=

𝛽−2

(4−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0, 

𝜕𝜋𝐵𝐸𝑉
𝐵𝑅

𝜕𝑙
=

2(𝛽(𝐾1+1−𝛽+𝑙)−(2−𝛽)𝐾2)

(4−𝛽)2(1−𝛽)
, 
𝜕𝜋𝐶𝑉

𝐵𝑅

𝜕𝑙
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(𝐾1+𝑙)+𝐾2)

(4−𝛽)2(1−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0,  

𝜕𝑇𝐶𝐸𝐵𝑅

𝜕𝑙
=

𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
< 0.  

𝜕𝑞𝐵𝐸𝑉
𝐵𝑅

𝜕𝑟𝑉𝑃𝑇
=

𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅

(4−𝛽)(1−𝛽)
> 0,  

𝜕𝑞𝐶𝑉
𝐵𝑅

𝜕𝑟𝑉𝑃𝑇
=

(𝛽−2)(𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)

(4−𝛽)(1−𝛽)
< 0,  

𝜕𝑃𝐵𝐸𝑉
𝐵𝑅

𝜕𝑟𝑉𝑃𝑇
=

𝛽(𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)

4−𝛽
> 0, 

𝜕𝜋𝐵𝐸𝑉
𝐵𝑅

𝜕𝑟𝑉𝑃𝑇
=

2(𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)[Λ3−(4−𝛽)(1−𝛽)𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅]

(4−𝛽)2(1−𝛽)
, 
𝜕𝑇𝐶𝐸𝐵𝑅

𝜕𝑟𝑉𝑃𝑇
= −

𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅

(4−𝛽)
< 0,  

𝜕𝑃𝐶𝑉
𝐵𝑅

𝜕𝑟𝑉𝑃𝑇
= −

𝐾2−(2−𝛽)(𝑂𝐶𝑉+𝑙)+2(1−𝛽)

(4−𝛽)(1+𝑟𝑉𝑃𝑇)2
= −

1

1+𝑟𝑉𝑃𝑇
[𝑃𝐶𝑉 −

2

4−𝛽
(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅)] < 0,  

𝜕𝜋𝐶𝑉
𝐵𝑅

𝜕𝑟𝑉𝑃𝑇
= −

Λ6[2(2−𝛽)(1+𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅)+Λ6]

(4−𝛽)2(1−𝛽)(1+𝑟𝑉𝑃𝑇)2
< 0,  where Λ3 = 𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 −

𝛽)(𝐾2 + 𝑙), Λ6 = 2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2 + 𝑙.  

𝜕𝑞𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)𝛽
< 0, 

𝜕𝑞𝐶𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

(4−𝛽)(1−𝛽)
> 0, 

𝜕𝑃𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

4−𝛽
< 0,  

𝜕𝑃𝐶𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

(4−𝛽)(1+𝑟𝑉𝑃𝑇)
> 0,  

𝜕𝜋𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
= −(2 − 𝛽)

2(𝛽(𝐾1+1−𝛽+𝑙)−(2−𝛽)𝐾2)

(4−𝛽)2(1−𝛽)𝛽
−
𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
< 0,  

𝜕𝜋𝐶𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=
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2(2(1−𝛽)−(2−𝛽)(𝐾1+𝑙)+𝐾2)

(4−𝛽)2(1−𝛽)(1+𝑟𝑉𝑃𝑇)
> 0,  

𝜕𝑇𝐶𝐸𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽𝑐𝑒𝐶𝑉−(2−𝛽)𝑐𝑒𝐵𝐸𝑉

(4−𝛽)(1−𝛽)𝛽
.  

𝜕𝑞𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
=

1

(4−𝛽)(1−𝛽)𝛽
> 0,  

𝜕𝑞𝐶𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0, 

𝜕𝑃𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
=

𝛽

4−𝛽
> 0, 

𝜕𝑃𝐶𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

(4−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0,  

𝜕𝜋𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
=

2(𝛽(𝐾1+1−𝛽+𝑙)−(2−𝛽)𝐾2)

(4−𝛽)2(1−𝛽)
−
2𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
,  

𝜕𝜋𝐶𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(𝐾1+𝑙)+𝐾2)

(4−𝛽)2(1−𝛽)(1+𝑟𝑉𝑃𝑇)
< 0, 

𝜕𝑇𝐶𝐸𝐵𝑅

𝜕𝑂𝐶𝑉
=

𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
< 0. 

Appendix B6 

The explicit expressions of the derivatives are as follow: 

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑙
=

1

(4−𝛽)(1−𝛽)
> 0, 

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑙
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0, 

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑙
=

𝛽

4−𝛽
> 0, 

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑙
=

𝛽−2

4−𝛽
< 0,  

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑙
=

2(𝛽(�̃�1+1−𝛽+𝑙+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)
−
3𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
,  

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑙
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑙+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
< 0,  

𝜕𝑇𝐶�̃�𝐵𝑅

𝜕𝑙
=

𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
< 0. 

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

(4−𝛽)(1−𝛽)
> 0,  

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽−2

4−𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=

1

4−𝛽
> 0, 

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
= −(2 − 𝛽)

2(𝛽(�̃�1+1−𝛽+𝑙+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)𝛽
−
𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑙+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
> 0, 

𝜕𝑇𝐶�̃�𝐵𝑅

𝜕𝑂𝐵𝐸𝑉
=

𝛽𝑐𝑒𝐶𝑉−(2−𝛽)𝑐𝑒𝐵𝐸𝑉

(4−𝛽)(1−𝛽)𝛽
. 

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
=

1

(4−𝛽)(1−𝛽)𝛽
> 0, 

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0, 

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
=

𝛽

4−𝛽
> 0, 

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
=

𝛽−2

4−𝛽
< 0,  

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
=

2(𝛽(�̃�1+1−𝛽+𝑙+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)
−
2𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
,  

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑂𝐶𝑉
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑙+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
< 0,  

𝜕𝑇𝐶�̃�𝐵𝑅

𝜕𝑂𝐶𝑉
=

𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
< 0. 

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

1

(4−𝛽)(1−𝛽)
> 0,  

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

2

4−𝛽
> 0,  

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

1

4−𝛽
> 0, 

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
= −(2 − 𝛽)

2(𝛽(�̃�1+1−𝛽+𝑙+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)𝛽
−
𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
< 0,  

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑙+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
> 0, 

𝜕𝑇𝐶�̃�𝐵𝑅

𝜕𝑐𝑒𝐵𝐸𝑉
=

(2−𝛽)𝑐𝑒𝐵𝐸𝑉+𝛽𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)𝛽
+ �̃�𝐵𝐸𝑉

𝐵𝑅 .  

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑐𝑒𝐶𝑉
=

1

(4−𝛽)(1−𝛽)𝛽
> 0, 

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑐𝑒𝐶𝑉
=

𝛽−2

(4−𝛽)(1−𝛽)
< 0, 

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑐𝑒𝐶𝑉
=

𝛽

4−𝛽
> 0, 

𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑐𝑒𝐶𝑉
=

2

4−𝛽
> 0,  

𝜕�̃�𝐵𝐸𝑉
𝐵𝑅

𝜕𝑐𝑒𝐶𝑉
=

2(𝛽(�̃�1+1−𝛽+𝑙+𝑐𝑒𝐶𝑉)−(2−𝛽)(𝐾2+𝑐𝑒𝐵𝐸𝑉))

(4−𝛽)2(1−𝛽)
−
2𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅

4−𝛽
,  
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𝜕�̃�𝐶𝑉
𝐵𝑅

𝜕𝑐𝑒𝐶𝑉
= −(2 − 𝛽)

2(2(1−𝛽)−(2−𝛽)(�̃�1+𝑙+𝑐𝑒𝐶𝑉)+𝐾2+𝑐𝑒𝐵𝐸𝑉)

(4−𝛽)2(1−𝛽)
< 0, 

𝜕𝑇𝐶�̃�𝐵𝑅

𝜕𝑐𝑒𝐶𝑉
=

𝑐𝑒𝐵𝐸𝑉−(2−𝛽)𝑐𝑒𝐶𝑉

(4−𝛽)(1−𝛽)
+ �̃�𝐶𝑉

𝐵𝑅.  
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Appendix C: Higher BEV Valuation 

When consumers value BEV higher than CV, the demand functions in Lemmas 1, 2, and 3 yield 

the optimal retail prices, sales volumes, and manufacturers profits as summarized in the following 

Lemmas. 

Lemma C1: No restrictions 

𝑃𝐵𝐸𝑉
𝑁𝑅 =

𝛽(𝐾1 + 2𝛽 − 2+2𝐾2)

4𝛽 − 1
− 𝑂𝐵𝐸𝑉 + 𝑠,

𝑞𝐵𝐸𝑉
𝑁𝑅 =

𝛽(𝐾1 + 2𝛽 − 2) − (2𝛽 − 1)𝐾2
(4𝛽 − 1)(𝛽 − 1)

,

𝜋𝐵𝐸𝑉
𝑁𝑅 =

[𝛽(𝐾1 + 2𝛽 − 2) − (2𝛽 − 1)𝐾2]
2

(4𝛽 − 1)2(𝛽 − 1)

+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅

3𝛽 − 2𝐾1 − 𝐾2
4𝛽 − 1

,    

𝑃𝐶𝑉
𝑁𝑅 =

(2𝛽𝐾1 + 𝛽 − 1 + 𝐾2)

(4𝛽 − 1)(1 + 𝑟𝑉𝑃𝑇)
−

𝑂𝐶𝑉
1 + 𝑟𝑉𝑃𝑇

,

𝑞𝐶𝑉
𝑁𝑅 =

𝛽[𝛽 − 1 − (2𝛽 − 1)𝐾1 + 𝐾2]

(4𝛽 − 1)(𝛽 − 1)
,

𝜋𝐶𝑉
𝑁𝑅 =

𝛽2[2(𝛽 − 1) − (2𝛽 − 1)𝐾1 + 𝐾2]
2

(4𝛽 − 1)2(𝛽 − 1)(1 + 𝑟𝑉𝑃𝑇)
. (𝐶. 1)

 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅) + 𝑂𝐶𝑉 and 𝐾2 = 𝐶𝐵𝐸𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 + 𝑂𝐵𝐸𝑉 − 𝑠. 

Lemma C2: Restricting CV 
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𝑃𝐵𝐸𝑉
𝐶𝑉𝑅 =

𝛽(𝐾1 + 𝑙 + 2𝛽 − 2+2𝐾2)

4𝛽 − 1
− 𝑂𝐵𝐸𝑉 + 𝑠,

𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 =

𝛽(𝐾1 + 2𝛽 − 2 + 𝑙) − (2𝛽 − 1)𝐾2
(4𝛽 − 1)(𝛽 − 1)

,

𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 =

[𝛽(𝐾1 + 2𝛽 − 2 + 𝑙) − (2𝛽 − 1)𝐾2]
2

(4𝛽 − 1)2(𝛽 − 1)

+CRNEV
− 𝑃𝐶𝑅

3𝛽 − 2𝐾1 − 𝐾2 − 2𝑙

4𝛽 − 1
,

𝑃𝐶𝑉
𝐶𝑉𝑅 =

(2𝛽(𝐾1 + 𝑙) + 𝛽 − 1 + 𝐾2)

(4𝛽 − 1)(1 + 𝑟𝑉𝑃𝑇)
−
𝑂𝐶𝑉 + 𝑙

1 + 𝑟𝑉𝑃𝑇
,

𝑞𝐶𝑉
𝐶𝑉𝑅 =

𝛽[𝛽 − 1 − (2𝛽 − 1)(𝐾1 + 𝑙) + 𝐾2]

(4𝛽 − 1)(𝛽 − 1)
,

𝜋𝐶𝑉
𝐶𝑉𝑅 =

𝛽2[2(𝛽 − 1) − (2𝛽 − 1)(𝐾1 + 𝑙) + 𝐾2]
2

(4𝛽 − 1)2(𝛽 − 1)(1 + 𝑟𝑉𝑃𝑇)
. (𝐶. 2)

 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅) + 𝑂𝐶𝑉 and 𝐾2 = 𝐶𝐵𝐸𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 + 𝑂𝐵𝐸𝑉 − 𝑠. 

Lemma C3: Restricting both BEV and CV 

𝑃𝐵𝐸𝑉
𝐵𝑅 =

𝛽(𝐾1 + 3𝑙 + 2𝛽 − 2+2𝐾2)

4𝛽 − 1
− 𝑂𝐵𝐸𝑉 + 𝑠 − 𝑙,

𝑞𝐵𝐸𝑉
𝐵𝑅 =

𝛽(𝐾1 + 2𝛽 − 2 + 𝑙) − (2𝛽 − 1)(𝐾2 + 𝑙)

(4𝛽 − 1)(𝛽 − 1)
,

𝜋𝐵𝐸𝑉
𝐵𝑅 =

[𝛽(𝐾1 + 2𝛽 − 2 + 𝑙) − (2𝛽 − 1)(𝐾2 + 𝑙)]
2

(4𝛽 − 1)2(𝛽 − 1)

+CRNEV
− 𝑃𝐶𝑅

3𝛽 − 2𝐾1 − 𝐾2 − 3𝑙

4𝛽 − 1
,           

𝑃𝐶𝑉
𝐵𝑅 =

(2𝛽(𝐾1 + 𝑙) + 𝛽 − 1 + 𝐾2 + 𝑙)

(4𝛽 − 1)(1 + 𝑟𝑉𝑃𝑇)
−
𝑂𝐶𝑉 + 𝑙

1 + 𝑟𝑉𝑃𝑇
,

𝑞𝐶𝑉
𝐵𝑅 =

𝛽[𝛽 − 1 − (2𝛽 − 1)(𝐾1 + 𝑙) + 𝐾2 + 𝑙]

(4𝛽 − 1)(𝛽 − 1)
,

𝜋𝐶𝑉
𝐵𝑅 =

𝛽2[2(𝛽 − 1) − (2𝛽 − 1)(𝐾1 + 𝑙) + 𝐾2 + 𝑙]
2

(4𝛽 − 1)2(𝛽 − 1)(1 + 𝑟𝑉𝑃𝑇)
. (𝐶. 3)

 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅) + 𝑂𝐶𝑉 and 𝐾2 = 𝐶𝐵𝐸𝑉 + 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 + 𝑂𝐵𝐸𝑉 − 𝑠. 

Proposition C1 

(a) Based on Lemmas C1, C2, and C3, there are: 

𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐵𝐸𝑉

𝑁𝑅 =
𝛽𝑙

(4𝛽−1)(𝛽−1)
> 0, 𝑞𝐵𝐸𝑉

𝐵𝑅 − 𝑞𝐵𝐸𝑉
𝑁𝑅 =

−𝑙

(4−𝛽)
< 0, 

𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐵𝐸𝑉

𝐵𝑅 = 𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐵𝐸𝑉

𝑁𝑅 − (𝑞𝐵𝐸𝑉
𝐵𝑅 − 𝑞𝐵𝐸𝑉

𝑁𝑅 ) > 0. 
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Based on Lemmas C1, C2, and C3, there are: 

𝑞𝐶𝑉
𝐶𝑉𝑅 − 𝑞𝐶𝑉

𝑁𝑅 = −𝑙
(2𝛽−1)𝛽

(4𝛽−1)(𝛽−1)
< 0, 𝑞𝐶𝑉

𝐵𝑅 − 𝑞𝐶𝑉
𝑁𝑅 =

−2𝛽𝑙

4𝛽−1
< 0, 𝑞𝐶𝑉

𝐶𝑉𝑅 − 𝑞𝐶𝑉
𝐵𝑅 =

−𝛽𝑙

(4𝛽−1)(𝛽−1)
< 0. 

(b) Based on Lemmas C1, C2, and C3, there are: 

𝜋𝐵𝐸𝑉
𝐵𝑅 − 𝜋𝐵𝐸𝑉

𝑁𝑅 = −𝑙
Λ1 + Λ3
(4𝛽 − 1)2

−
3𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4𝛽 − 1

< 0, 

𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐵𝐸𝑉

𝐵𝑅 = (2𝛽 − 1)𝑙
Λ2 + Λ3

(4𝛽 − 1)2(𝛽 − 1)
+
𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4𝛽 − 1

> 0 

𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐵𝐸𝑉

𝑁𝑅 = 𝛽𝑙
Λ1 + Λ2

(4𝛽 − 1)2(𝛽 − 1)
−
2𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4𝛽 − 1

 

Therefore, 𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐵𝐸𝑉

𝑁𝑅 > 0  if and only if 
𝛽𝑙

2
> 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅(4𝛽 − 1)(𝛽 − 1) − 𝛽𝛬1 , where 

Λ1 = 𝛽(𝐾1 + 2𝛽 − 2) − (2𝛽 − 1)𝐾2 > 0 , Λ2 = 𝛽(𝐾1 + 2𝛽 − 2 + 𝑙) − (2𝛽 − 1)𝐾2 > 0 , and 

Λ3 = 𝛽(𝐾1 + 2𝛽 − 2 + 𝑙) − (2𝛽 − 1)(𝐾2 + 𝑙) > 0. 

Based on Lemmas C1, C2, and C3, there are: 

𝜋𝐶𝑉
𝐶𝑉𝑅 − 𝜋𝐶𝑉

𝑁𝑅 = −(2𝛽 − 1)𝛽2𝑙
Λ4 + Λ5

(4𝛽 − 1)2(𝛽 − 1)(1 + 𝑟𝑉𝑃𝑇)
< 0, 

𝜋𝐶𝑉
𝐵𝑅 − 𝜋𝐶𝑉

𝑁𝑅 = −𝑙2𝛽2
Λ4+Λ6

(4𝛽−1)2(1+𝑟𝑉𝑃𝑇)
< 0, 𝜋𝐶𝑉

𝐶𝑉𝑅 − 𝜋𝐶𝑉
𝐵𝑅 = −𝑙𝛽2

Λ5+Λ6

(4𝛽−1)(𝛽−1)(1+𝑟𝑉𝑃𝑇)
< 0, 

where Λ4 = 2(𝛽 − 1) − (2𝛽 − 1)𝐾1 + 𝐾2 > 0 , Λ5 = 2(𝛽 − 1) − (2𝛽 − 1)(𝐾1 + 𝑙) + 𝐾2 > 0 , 

and Λ6 = 2(𝛽 − 1) − (2𝛽 − 1)(𝐾1 + 𝑙) + 𝐾2 + 𝑙 > 0. 

(c) Substituting Demands in Lemmas C1, C2, and C3 into Equation (6) yields the total carbon 

emission under different traffic restriction policies: 

𝑇𝐶𝐸𝑁𝑅 =
𝛽(𝐾1 + 2𝛽 − 2) − (2𝛽 − 1)𝐾2

(4𝛽 − 1)(𝛽 − 1)
𝑒𝐵𝐸𝑉

+
𝛽[𝛽 − 1 − (2𝛽 − 1)𝐾1 + 𝐾2]

(4𝛽 − 1)(𝛽 − 1)
𝑒𝐶𝑉, (𝐶. 4)

 

𝑇𝐶𝐸𝐶𝑉𝑅 =
𝛽(𝐾1 + 2𝛽 − 2 + 𝑙) − (2𝛽 − 1)𝐾2

(4𝛽 − 1)(𝛽 − 1)
𝑒𝐵𝐸𝑉

+
𝛽[𝛽 − 1 − (2𝛽 − 1)(𝐾1 + 𝑙) + 𝐾2]

(4𝛽 − 1)(𝛽 − 1)
𝑒𝐶𝑉, (𝐶. 5)
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𝑇𝐶𝐸𝐵𝑅 =
𝛽(𝐾1 + 2𝛽 − 2 + 𝑙) − (2𝛽 − 1)(𝐾2 + 𝑙)

(4𝛽 − 1)(𝛽 − 1)
𝑒𝐵𝐸𝑉

+
𝛽[𝛽 − 1 − (2𝛽 − 1)(𝐾1 + 𝑙) + 𝐾2 + 𝑙]

(4𝛽 − 1)(𝛽 − 1)
𝑒𝐶𝑉, (𝐶. 6)

 

Based on Lemmas C1, C2, and C3, there are: 

𝑇𝐶𝐸𝐶𝑉𝑅 − 𝑇𝐶𝐸𝑁𝑅 =
𝑙

(4𝛽 − 1)(𝛽 − 1)
(𝛽𝑒𝐵𝐸𝑉 − (2𝛽 − 1)𝑒𝐶𝑉) < 0, 

𝑇𝐶𝐸𝐵𝑅 − 𝑇𝐶𝐸𝑁𝑅 = −
𝑙

4𝛽 − 1
(𝑒𝐵𝐸𝑉 + 2𝛽𝑒𝐶𝑉) < 0, 

𝑇𝐶𝐸𝐶𝑉𝑅 − 𝑇𝐶𝐸𝐵𝑅 =
𝑙

(4𝛽 − 1)(𝛽 − 1)
((2𝛽 − 1)𝑒𝐵𝐸𝑉 − 𝛽𝑒𝐶𝑉). 

Therefore, 𝑇𝐶𝐸𝐶𝑉𝑅 < 𝑇𝐶𝐸𝐵𝑅 if and only if 𝑒𝐵𝐸𝑉 <
𝛽

2𝛽−1
𝑒𝐶𝑉. 
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Appendix D: Regulatory Fines 

When the regulatory fines are introduced, the profit functions in Lemmas 1, 2, and 3 yield the 

optimal retail prices, sales volumes, and manufacturers profits as summarized in the following 

Lemmas. 

Lemma D1 

𝑃𝐵𝐸𝑉
𝑁𝑅 =

𝛽(𝐾1 + 1 − 𝛽) + 2𝐾2
4 − 𝛽

− 𝑂𝐵𝐸𝑉 + 𝑠,

𝑞𝐵𝐸𝑉
𝑁𝑅 =

𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2
(4 − 𝛽)(1 − 𝛽)𝛽

,

𝜋𝐵𝐸𝑉
𝑁𝑅 =

[𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2]
2

(4 − 𝛽)2(1 − 𝛽)𝛽
,

𝑃𝐶𝑉
𝑁𝑅 =

2(𝐾1 + 1 − 𝛽) + 𝐾2
(4 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)

−
𝑂𝐶𝑉

1 + 𝑟𝑉𝑃𝑇
,

𝑞𝐶𝑉
𝑁𝑅 = 1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽) − 𝐾2
(4 − 𝛽)(1 − 𝛽)

,

𝜋𝐶𝑉
𝑁𝑅 = (𝑚 − 1)𝐶𝑅𝑁𝐸𝑉

+ 𝑃𝐶𝑅
𝐾1 + 1 − 𝛽 + 2𝐾2

4 − 𝛽

+
[2(1 − 𝛽) − (2 − 𝛽)𝐾1 + 𝐾2]

2

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
.   (𝐷. 1)

 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇){𝐶𝐶𝑉 + [𝑚𝐶𝑅𝑁𝐸𝑉
− + (𝑚 − 1)𝐶𝑅𝑁𝐸𝑉

+ ]𝑃𝐶𝑅} + 𝑂𝐶𝑉  and 𝐾2 = 𝐶𝐵𝐸𝑉 −

𝐶𝑅𝑁𝐸𝑉
+ 𝑃𝐶𝑅 + 𝑂𝐵𝐸𝑉 − 𝑠. 
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Lemma D2 

𝑃𝐵𝐸𝑉
𝐶𝑉𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) + 2𝐾2
4 − 𝛽

− 𝑂𝐵𝐸𝑉 + 𝑠,

𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2
(4 − 𝛽)(1 − 𝛽)𝛽

,

𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 =

[𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2]
2

(4 − 𝛽)2(1 − 𝛽)𝛽
,

𝑃𝐶𝑉
𝐶𝑉𝑅 =

2(𝐾1 + 1 − 𝛽 + 𝑙) + 𝐾2
(4 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)

−
𝑂𝐶𝑉 + 𝑙

1 + 𝑟𝑉𝑃𝑇
,

𝑞𝐶𝑉
𝐶𝑉𝑅 = 1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2
(4 − 𝛽)(1 − 𝛽)

,

𝜋𝐶𝑉
𝐶𝑉𝑅 = (𝑚 − 1)𝐶𝑅𝑁𝐸𝑉

+ 𝑃𝐶𝑅
𝐾1 + 1 − 𝛽 + 𝑙 + 2𝐾2

4 − 𝛽
   

+
[2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2]

2

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
. (𝐷. 2)

 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇){𝐶𝐶𝑉 + [𝑚𝐶𝑅𝑁𝐸𝑉
− + (𝑚 − 1)𝐶𝑅𝑁𝐸𝑉

+ ]𝑃𝐶𝑅} + 𝑂𝐶𝑉  and 𝐾2 = 𝐶𝐵𝐸𝑉 −

𝐶𝑅𝑁𝐸𝑉
+ 𝑃𝐶𝑅 + 𝑂𝐵𝐸𝑉 − 𝑠. 

Lemma D3 

𝑃𝐵𝐸𝑉
𝐵𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) + 2(𝐾2 + 𝑙)

4 − 𝛽
− 𝑂𝐵𝐸𝑉 − 𝑙 + 𝑠,

𝑞𝐵𝐸𝑉
𝐵𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙)

(4 − 𝛽)(1 − 𝛽)𝛽
,

𝜋𝐵𝐸𝑉
𝐵𝑅 =

[𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙)]
2

(4 − 𝛽)2(1 − 𝛽)𝛽
,

𝑃𝐶𝑉
𝐵𝑅 =

2(𝐾1 + 1 − 𝛽 + 𝑙) + 𝐾2 + 𝑙

(4 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
−
𝑂𝐶𝑉 + 𝑙

1 + 𝑟𝑉𝑃𝑇
,

𝑞𝐶𝑉
𝐵𝑅 = 1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2 − 𝑙

(4 − 𝛽)(1 − 𝛽)
,

𝜋𝐶𝑉
𝐵𝑅 = (𝑚 − 1)𝐶𝑅𝑁𝐸𝑉

+ 𝑃𝐶𝑅
𝐾1 + 1 − 𝛽 + 2𝐾2 + 3𝑙

4 − 𝛽
     

+
[2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2 + 𝑙]

2

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
. (𝐷. 3)

 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇){𝐶𝐶𝑉 + [𝑚𝐶𝑅𝑁𝐸𝑉
− + (𝑚 − 1)𝐶𝑅𝑁𝐸𝑉

+ ]𝑃𝐶𝑅} + 𝑂𝐶𝑉  and 𝐾2 = 𝐶𝐵𝐸𝑉 −

𝐶𝑅𝑁𝐸𝑉
+ 𝑃𝐶𝑅 + 𝑂𝐵𝐸𝑉 − 𝑠. 

Proposition D1 
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(a) Based on Lemmas D1, D2, and D3, there are: 

𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐵𝐸𝑉

𝑁𝑅 =
𝑙

(4−𝛽)(1−𝛽)
> 0, 𝑞𝐵𝐸𝑉

𝐵𝑅 − 𝑞𝐵𝐸𝑉
𝑁𝑅 =

−2𝑙

(4−𝛽)𝛽
< 0, 

𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐵𝐸𝑉

𝐵𝑅 = 𝑞𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐵𝐸𝑉

𝑁𝑅 − (𝑞𝐵𝐸𝑉
𝐵𝑅 − 𝑞𝐵𝐸𝑉

𝑁𝑅 ) > 0. 

Based on Lemmas D1, D2, and D3, there are: 

𝑞𝐶𝑉
𝐶𝑉𝑅 − 𝑞𝐶𝑉

𝑁𝑅 = −𝑙
2−𝛽

(4−𝛽)(1−𝛽)
< 0, 𝑞𝐶𝑉

𝐵𝑅 − 𝑞𝐶𝑉
𝑁𝑅 =

−𝑙

4−𝛽
< 0, 𝑞𝐶𝑉

𝐶𝑉𝑅 − 𝑞𝐶𝑉
𝐵𝑅 =

−𝑙

(4−𝛽)(1−𝛽)
< 0. 

(b) Based on Lemmas D1, D2, and D3, there are: 

𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐵𝐸𝑉

𝑁𝑅 = 𝑙
Λ1+Λ2

(4−𝛽)2(1−𝛽)
> 0, 𝜋𝐵𝐸𝑉

𝐵𝑅 − 𝜋𝐵𝐸𝑉
𝑁𝑅 = −2𝑙

Λ1+Λ3

(4−𝛽)2𝛽
< 0, 

𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐵𝐸𝑉

𝐵𝑅 = 𝜋𝐵𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐵𝐸𝑉

𝑁𝑅 − (𝜋𝐵𝐸𝑉
𝐵𝑅 − 𝜋𝐵𝐸𝑉

𝑁𝑅 ) > 0, 

where Λ1 = 𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2 > 0 , Λ2 = 𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2 > 0 , and 

Λ3 = 𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙) > 0. 

Based on Lemmas D1, D2, and D3, there are: 

𝜋𝐶𝑉
𝐶𝑉𝑅 − 𝜋𝐶𝑉

𝑁𝑅 = −(2 − 𝛽)𝑙
Λ4 + Λ5

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
+
(𝑚 − 1)𝐶𝑅𝑁𝐸𝑉

+ 𝑃𝐶𝑅𝑙

4 − 𝛽
, 

𝜋𝐶𝑉
𝐵𝑅 − 𝜋𝐶𝑉

𝑁𝑅 = −𝑙
Λ4 + Λ6

(4 − 𝛽)2(1 + 𝑟𝑉𝑃𝑇)
+
3(𝑚 − 1)𝐶𝑅𝑁𝐸𝑉

+ 𝑃𝐶𝑅𝑙

4 − 𝛽
, 

𝜋𝐶𝑉
𝐶𝑉𝑅 − 𝜋𝐶𝑉

𝐵𝑅 = −𝑙
Λ5 + Λ6

(4 − 𝛽)(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
−
2(𝑚 − 1)𝐶𝑅𝑁𝐸𝑉

+ 𝑃𝐶𝑅𝑙

4 − 𝛽
< 0, 

where Λ4 = 2(1 − 𝛽) − (2 − 𝛽)𝐾1 + 𝐾2 > 0 , Λ5 = 2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2 > 0 , 

and Λ6 = 2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2 + 𝑙 > 0. 

(c) Substituting Equations (D.1), (D.2), and (D.3) into Equation (6) yields the total economic cost 

of emissions under different traffic restriction policies, as shown below: 

𝑇𝐶𝐸𝑁𝑅 =
𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐵𝐸𝑉

+(1 −
(2 − 𝛽)(𝐾1 + 1 − 𝛽) − 𝐾2

(4 − 𝛽)(1 − 𝛽)
) 𝑒𝐶𝑉, (𝐷. 4)

 

𝑇𝐶𝐸𝐶𝑉𝑅 =
𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐵𝐸𝑉

+(1 −
(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2

(4 − 𝛽)(1 − 𝛽)
) 𝑒𝐶𝑉, (𝐷. 5)
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𝑇𝐶𝐸𝐵𝑅 =
𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙)

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐵𝐸𝑉

+(1 −
(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2 − 𝑙

(4 − 𝛽)(1 − 𝛽)
) 𝑒𝐶𝑉, (𝐷. 6)

 

Based on Equations (D.4), (D.5), and (D.6), there are: 

𝑇𝐶𝐸𝐶𝑉𝑅 − 𝑇𝐶𝐸𝑁𝑅 =
𝑙

(4 − 𝛽)(1 − 𝛽)
(𝑒𝐵𝐸𝑉 − (2 − 𝛽)𝑒𝐶𝑉) < 0, 

𝑇𝐶𝐸𝐵𝑅 − 𝑇𝐶𝐸𝑁𝑅 =
−𝑙

(4 − 𝛽)𝛽
(2𝑒𝐵𝐸𝑉 + 𝛽𝑒𝐶𝑉) < 0, 

𝑇𝐶𝐸𝐶𝑉𝑅 − 𝑇𝐶𝐸𝐵𝑅 =
𝑙

(4 − 𝛽)(1 − 𝛽)𝛽
((2 − 𝛽)𝑒𝐵𝐸𝑉 − 𝛽𝑒𝐶𝑉). 

Therefore, 𝑇𝐶𝐸𝐶𝑉𝑅 < 𝑇𝐶𝐸𝐵𝑅 if and only if 𝑒𝐵𝐸𝑉 <
𝛽

2−𝛽
𝑒𝐶𝑉. 

𝑇𝐶�̃�𝐶𝑉𝑅 − 𝑇𝐶�̃�𝑁𝑅 =
𝑙

(4 − 𝛽)(1 − 𝛽)
(𝑒𝐵𝐸𝑉 − (2 − 𝛽)𝑒𝐶𝑉) < 0, 

𝑇𝐶�̃�𝐵𝑅 − 𝑇𝐶�̃�𝑁𝑅 =
−𝑙

(4 − 𝛽)𝛽
(2𝑒𝐵𝐸𝑉 + 𝛽𝑒𝐶𝑉) < 0, 

𝑇𝐶�̃�𝐶𝑉𝑅 − 𝑇𝐶�̃�𝐵𝑅 =
𝑙

(4 − 𝛽)(1 − 𝛽)𝛽
((2 − 𝛽)𝑒𝐵𝐸𝑉 − 𝛽𝑒𝐶𝑉). 

Therefore, 𝑇𝐶�̃�𝐶𝑉𝑅 > 𝑇𝐶�̃�𝐵𝑅 if and only if 𝑒𝐵𝐸𝑉 <
𝛽

2−𝛽
𝑒𝐶𝑉. 

Appendix E. Higher Operating Cost of Some NEV 

When the operating cost of NEV (i.e., FCEV) is higher than that of CV, 𝑂𝐹𝐶𝐸𝑉 > 𝑂𝐶𝑉, we 

recalculate and yield the optimal retail prices, sales volumes, and manufacturers profits as 

summarized in the following Lemmas. Appendix E identifies the threshold, 𝑂𝐹𝐶𝐸𝑉 =

𝛽(𝐾1+1−𝛽+𝑙)

2−𝛽
− 𝐶𝐹𝐶𝐸𝑉 − 𝛽𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 + 𝑠. When the operating cost of FCEVs exceeds the threshold, 

𝑂𝐹𝐶𝐸𝑉 ≥ 𝑂𝐹𝐶𝐸𝑉, uncompetitive FCEVs lose their market share. The extremely high operating cost 

of FCEV also explains why BEV and PHEV adoptions are promoted, while FCEV performs 

unexpectedly, when all three types of NEVs are exempted from restrictions in China. When the 

operating cost of FCEVs only exceeds the operating cost of CVs but not the threshold, 

𝑂𝐶𝑉 ≤ 𝑂𝐹𝐶𝐸𝑉 ≤ 𝑂𝐹𝐶𝐸𝑉, the analysis is summarized in the following Lemmas and Proposition.  

Lemma E1 



75 

 

𝑃𝐹𝐶𝐸𝑉
𝑁𝑅 =

𝛽(𝐾1 + 1 − 𝛽) + 2𝐾2
4 − 𝛽

− 𝑂𝐹𝐶𝐸𝑉 + 𝑠,

𝑞𝐹𝐶𝐸𝑉
𝑁𝑅 =

𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2
(4 − 𝛽)(1 − 𝛽)𝛽

,

𝜋𝐹𝐶𝐸𝑉
𝑁𝑅 =

[𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2]
2

(4 − 𝛽)2(1 − 𝛽)𝛽
        

+𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅

2 + 𝛽 − 2𝐾1 − 𝐾2
4 − 𝛽

,

𝑃𝐶𝑉
𝑁𝑅 =

2(𝐾1 + 1 − 𝛽) + 𝐾2
(4 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)

−
𝑂𝐶𝑉

1 + 𝑟𝑉𝑃𝑇
,

𝑞𝐶𝑉
𝑁𝑅 = 1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽) − 𝐾2
(4 − 𝛽)(1 − 𝛽)

,

𝜋𝐶𝑉
𝑁𝑅 =

[2(1 − 𝛽) − (2 − 𝛽)𝐾1 + 𝐾2]
2

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
. (𝐸. 1)

 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅) + 𝑂𝐶𝑉 and 𝐾2 = 𝐶𝐹𝐶𝐸𝑉 + 𝛽𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 + 𝑂𝐹𝐶𝐸𝑉 − 𝑠. 

Lemma E2 

𝑃𝐹𝐶𝐸𝑉
𝐶𝑉𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) + 2𝐾2
4 − 𝛽

− 𝑂𝐹𝐶𝐸𝑉 + 𝑠,

𝑞𝐹𝐶𝐸𝑉
𝐶𝑉𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2
(4 − 𝛽)(1 − 𝛽)𝛽

,

𝜋𝐹𝐶𝐸𝑉
𝐶𝑉𝑅 = CRNEV

− 𝑃𝐶𝑅
2 + 𝛽 − 2𝐾1 − 2𝑙 − 𝐾2

4 − 𝛽

+
[𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2]

2

(4 − 𝛽)2(1 − 𝛽)𝛽
,

𝑃𝐶𝑉
𝐶𝑉𝑅 =

2(𝐾1 + 1 − 𝛽 + 𝑙) + 𝐾2
(4 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)

−
𝑂𝐶𝑉 + 𝑙

1 + 𝑟𝑉𝑃𝑇
,

𝑞𝐶𝑉
𝐶𝑉𝑅 = 1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2
(4 − 𝛽)(1 − 𝛽)

,

𝜋𝐶𝑉
𝐶𝑉𝑅 =

[2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2]
2

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
. (𝐸. 2)

 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅) + 𝑂𝐶𝑉 and 𝐾2 = 𝐶𝐹𝐶𝐸𝑉 + 𝛽𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 + 𝑂𝐹𝐶𝐸𝑉 − 𝑠. 

Lemma E3 
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𝑃𝐹𝐶𝐸𝑉
𝐵𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) + 2(𝐾2 + 𝑙)

4 − 𝛽
− 𝑂𝐹𝐶𝐸𝑉 − 𝑙 + 𝑠,

𝑞𝐹𝐶𝐸𝑉
𝐵𝑅 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙)

(4 − 𝛽)(1 − 𝛽)𝛽
,

𝜋𝐹𝐶𝐸𝑉
𝐵𝑅 = CRNEV

− 𝑃𝐶𝑅
2 + 𝛽 − 2𝐾1 − 𝐾2 − 3𝑙

4 − 𝛽

+
[𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙)]

2

(4 − 𝛽)2(1 − 𝛽)𝛽
,

𝑃𝐶𝑉
𝐵𝑅 =

2(𝐾1 + 1 − 𝛽 + 𝑙) + 𝐾2 + 𝑙

(4 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
−
𝑂𝐶𝑉 + 𝑙

1 + 𝑟𝑉𝑃𝑇
,

𝑞𝐶𝑉
𝐵𝑅 = 1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2 − 𝑙

(4 − 𝛽)(1 − 𝛽)
,

𝜋𝐶𝑉
𝐵𝑅 =

[2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2 + 𝑙]
2

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
. (𝐸. 3)

 

Note: 𝐾1 = (1 + 𝑟𝑉𝑃𝑇)(𝐶𝐶𝑉 + 𝐶𝑅𝑁𝐸𝑉
− 𝑃𝐶𝑅) + 𝑂𝐶𝑉 and 𝐾2 = 𝐶𝐹𝐶𝐸𝑉 + 𝛽𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅 + 𝑂𝐹𝐶𝐸𝑉 − 𝑠. 

Proposition E1 

(a) According to Lemma E1, E2, E3, we have 

𝑞𝐹𝐶𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐹𝐶𝐸𝑉

𝑁𝑅 =
𝑙

(4−𝛽)(1−𝛽)
> 0, 𝑞𝐹𝐶𝐸𝑉

𝐵𝑅 − 𝑞𝐹𝐶𝐸𝑉
𝑁𝑅 =

−2𝑙

(4−𝛽)𝛽
< 0, 

𝑞𝐹𝐶𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐹𝐶𝐸𝑉

𝐵𝑅 = 𝑞𝐹𝐶𝐸𝑉
𝐶𝑉𝑅 − 𝑞𝐹𝐶𝐸𝑉

𝑁𝑅 − (𝑞𝐹𝐶𝐸𝑉
𝐵𝑅 − 𝑞𝐹𝐶𝐸𝑉

𝑁𝑅 ) > 0. 

According to Lemma E1, E2, E3, we have 

𝑞𝐶𝑉
𝐶𝑉𝑅 − 𝑞𝐶𝑉

𝑁𝑅 = −𝑙
2−𝛽

(4−𝛽)(1−𝛽)
< 0, 𝑞𝐶𝑉

𝐵𝑅 − 𝑞𝐶𝑉
𝑁𝑅 =

−𝑙

4−𝛽
< 0, 𝑞𝐶𝑉

𝐶𝑉𝑅 − 𝑞𝐶𝑉
𝐵𝑅 =

−𝑙

(4−𝛽)(1−𝛽)
< 0. 

(b) According to Lemma E1, E2, E3, we have 

𝜋𝐹𝐶𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐹𝐶𝐸𝑉

𝑁𝑅 = 𝑙
Λ1 + Λ2

(4 − 𝛽)2(1 − 𝛽)
−
2𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4 − 𝛽

, 

Therefore 𝜋𝐹𝐶𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐹𝐶𝐸𝑉

𝑁𝑅 > 0 if and only if 
𝑙

2𝛽
> 𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅(4 − 𝛽)(1 − 𝛽) − Λ1. 

𝜋𝐹𝐶𝐸𝑉
𝐵𝑅 − 𝜋𝐹𝐶𝐸𝑉

𝑁𝑅 = −2𝑙
Λ1 + Λ3
(4 − 𝛽)2𝛽

−
3𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4 − 𝛽

< 0, 

𝜋𝐹𝐶𝐸𝑉
𝐶𝑉𝑅 − 𝜋𝐹𝐶𝐸𝑉

𝐵𝑅 = (2 − 𝛽)𝑙
Λ2 + Λ3

(4 − 𝛽)2(1 − 𝛽)𝛽
+
𝑙𝐶𝑅𝑁𝐸𝑉

− 𝑃𝐶𝑅
4 − 𝛽

> 0. 

where Λ1 = 𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2 > 0 , Λ2 = 𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2 > 0 , and Λ3 =

𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙) > 0. 

According to Lemma E1, E2, E3, we have 

𝜋𝐶𝑉
𝐶𝑉𝑅 − 𝜋𝐶𝑉

𝑁𝑅 = −(2 − 𝛽)𝑙
Λ4 + Λ5

(4 − 𝛽)2(1 − 𝛽)(1 + 𝑟𝑉𝑃𝑇)
< 0, 
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𝜋𝐶𝑉
𝐵𝑅 − 𝜋𝐶𝑉

𝑁𝑅 = −𝑙
Λ4+Λ6

(4−𝛽)2(1+𝑟𝑉𝑃𝑇)
< 0, 𝜋𝐶𝑉

𝐶𝑉𝑅 − 𝜋𝐶𝑉
𝐵𝑅 = −𝑙

Λ5+Λ6
(4−𝛽)(1−𝛽)(1+𝑟𝑉𝑃𝑇)

< 0, 

where Λ4 = 2(1 − 𝛽) − (2 − 𝛽)𝐾1 + 𝐾2 > 0 , Λ5 = 2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2 > 0 , and Λ6 =

2(1 − 𝛽) − (2 − 𝛽)(𝐾1 + 𝑙) + 𝐾2 + 𝑙 > 0. 

(c) By substituting Equations (E.1), (E.2), (E.3) into Equation (6) yields the total economic cost of 

emissions under different traffic restriction policies, as shown below 

𝑇𝐶𝐸𝑁𝑅 =
𝛽(𝐾1 + 1 − 𝛽) − (2 − 𝛽)𝐾2

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐹𝐶𝐸𝑉 + [1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽) − 𝐾2
(4 − 𝛽)(1 − 𝛽)

] 𝑒𝐶𝑉 , (𝐸. 4) 

𝑇𝐶𝐸𝐶𝑉𝑅 =
𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)𝐾2

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐹𝐶𝐸𝑉 + [1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2
(4 − 𝛽)(1 − 𝛽)

] 𝑒𝐶𝑉 , (𝐸. 5) 

𝑇𝐶𝐸𝐵𝑅 =
𝛽(𝐾1 + 1 − 𝛽 + 𝑙) − (2 − 𝛽)(𝐾2 + 𝑙)

(4 − 𝛽)(1 − 𝛽)𝛽
𝑒𝐹𝐶𝐸𝑉 + [1 −

(2 − 𝛽)(𝐾1 + 1 − 𝛽 + 𝑙) − 𝐾2 − 𝑙

(4 − 𝛽)(1 − 𝛽)
] 𝑒𝐶𝑉 , (𝐸. 6) 

According to Equations (E.4), (E.5), and (E.6), we have 

𝑇𝐶𝐸𝐶𝑉𝑅 − 𝑇𝐶𝐸𝑁𝑅 =
𝑙

(4 − 𝛽)(1 − 𝛽)
[𝑒𝐹𝐶𝐸𝑉 − (2 − 𝛽)𝑒𝐶𝑉] < 0, 

𝑇𝐶𝐸𝐵𝑅 − 𝑇𝐶𝐸𝑁𝑅 =
−𝑙

(4 − 𝛽)𝛽
(2𝑒𝐹𝐶𝐸𝑉 + 𝛽𝑒𝐶𝑉) < 0, 

𝑇𝐶𝐸𝐶𝑉𝑅 − 𝑇𝐶𝐸𝐵𝑅 =
𝑙

(4 − 𝛽)(1 − 𝛽)𝛽
[(2 − 𝛽)𝑒𝐹𝐶𝐸𝑉 − 𝛽𝑒𝐶𝑉]. 

Therefore, 𝑇𝐶𝐸𝐶𝑉𝑅 < 𝑇𝐶𝐸𝐵𝑅 if and only if 𝑒𝐹𝐶𝐸𝑉 <
𝛽

2−𝛽
𝑒𝐶𝑉 . 
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