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Comparing Life-cycle Dynamics of Li-Ion Batteries (LIBs)
Clustered by Operating Conditions with SINDy

Kristen L. Hallasa, Md Shahriar Forhada, Tamer Orabya, Benjamin Petersa, and Jianzhi Lia

aUniversity of Texas Rio Grande Valley, 1201 W University Drive, Edinburg, United States

ABSTRACT

Lithium-ion batteries (LIBs) play a big part in the vision of a net-zero emission economy, yet it is commonly
reported that only a small percentage of LIBs are recycled worldwide. An outstanding barrier to making recycling
LIBs economical throughout the supply chain pertains to the uncertainty surrounding their remaining useful life
(RUL). How do operating conditions impact initial useful life of the battery? We applied sparse identification of
nonlinear dynamics method (SINDy) to understand the life-cycle dynamics of LIBs with respect to sensor data
observed for current, voltage, internal resistance and temperature. A dataset of 124 commercial lithium iron
phosphate/graphite (LFP) batteries have been charged and cycled to failure under 72 unique policies. Charging
policies were standardized, reduced to PC scores, and clustered by a k-means algorithm. Sensor data from the
first cycle was averaged within clusters, characterizing a ”good as new” state. SINDy method was applied to
discover dynamics of this state and compared amongst clusters. This work contributes to the effort of defining
a model that can predict the remaining useful life (RUL) of LIBs during degradation.

Keywords: sparse regression, nonlinear dynamics, model discovery, degradation modeling, deep learning

1. INTRODUCTION

The Bipartisan Infrastructure Deal introduced by the White House in 2021, has the goal to reduce emissions by
50% by 2030 and become net-zero by 2050. Greenhouse gas emissions from transportation accounted for 28%
of total U.S. greenhouse gas emissions in 2022 by economic sector, making it the largest contributor of U.S.
greenhouse gas emissions.1 The electric vehicle (EV) is one solution to lowering U.S. greenhouse gases. There is
advancement in all areas of STEM to make EVs sustainable. Yet, what currently powers an EV, the lithium-ion
(Li-Ion) battery, also contributes greatly to emissions.

An ideal model of treating retired end-of-life Li-Ion batteries (LIBs), proposed in 2021, suggests to reuse,
recycle, then dispose of LIBs.2 Reusing the LIBs for leftover energy capacity requires remanufacturing the
LIBs via repairing and/or refurbishing or repurposing them for second-life purposes, such as in grid-connected
storage, backup supplies, or electrical tools. Reusing LIBs involves tasks similar to the pre-treatment phase
of the recycling process, such as inspection, disassembly and testing. Primary recycling methods for LIBs are
ineffective at preserving lithium and alternatives are not yet effectively scalable for large-scale production. These
factors contribute to the reason why, in practice, global recycling rates of LIBs are less than 5%. Compared to
emissions from recycling techniques, the use of new lithium cobalt oxide (LCO) material for LIBs contributes
significantly to carbon emissions.3 Improper recycling of LIBs has other, severe environmental consequences,
resulting in fires in solid waste systems, irreversible damage to residential recycling systems, and heavy metals
like cobalt, copper, nickel and aluminum into soils, adversely affecting both the land and human health.4 For
EVs to be environmentally viable, alternative approaches to recycling LIBs must be developed and implemented.

Lead-acid batteries, one of the most successful examples of a circular economy, work because recycling is
economical for the supply chain.5 Incorporating recycling into the model of LIB manufacturing requires an
understanding of the current state of recycling: how recycling takes place, how frequently it takes place, and
how profitable it is. Different recycling methods may have different percent yields, depending on the LIB state-
of-health (SOH). Consequently, the degradation of LIBs must be understood with more certainty.
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To contribute to this boundary of knowledge, a model of battery degradation under different charging condi-
tions would clarify which performance indicators of LIBs correlate to higher percent yield of recovered lithium
material. Moreover, governing equations that describe how different battery characteristics interact with each
other over the life cycle of a battery, could greatly inform under what conditions such indicators could be max-
imized. With that said, determining the exact governing equations can be incredibly challenging. Likewise,
obtaining the precise measurements for well-defined equations can be impractical, if not impossible to achieve,
with traditional measurement instruments. Employing the sparse identification of nonlinear dynamics (SINDy)
method,6 we derive governing equations using the sequentially thresholded least squares (STLS) algorithm. We
apply the algorithm to the measurement data of 124 lithium iron phosphate/graphite (LFP) batteries,7 where
each battery was charged and cycled to failure under 72 unique policies, defined by three variables. Cycle life
ranged from 150 cycles to 2000+ cycles.

An outline of this work is as follows. Methodology related to dynamical systems will be presented as it relates
to this application area, emphasizing the formulation of the SINDy method. An outline of data set details will
be provided. Analysis was conducted in MATLAB, including the pre-processing, clustering of data policies and
application of SINDy. Resulting models for various combination of LIB metrics with this methods will be shared
and compared between clusters. The conclusion will remark on observations discovered during the parameter
optimization as well as future research directions involving other types of methodology, including extensible
versions of the SINDy method. A code appendix will be linked at the end, which is written in the MATLAB
programming language, as well as relevant references.

2. REVIEW OF METHODS

Dynamical systems and the partial differential equations (PDE) that govern them describe physical phenomena
in nearly every discipline.8 Governing equations of dynamical systems specify exact interactions among each
relevant quantity, as well as how these quantities and their interactions evolve over time. Many dynamics to
systems are already well known, such as in classical mechanical systems, electrical circuits and turbulent fluids.
In other fields, such as climate science, neuroscience, and epidemiology, the dynamics are difficult to determine.

Some dynamical systems with unknown governing equations, such as understanding cognition from neural
recordings, or inferring patterns in climate, are inherently data-driven problems. With an excess of data and com-
putational power, there have been several advances in automating the discovery of these governing equations for
dynamical systems. Schmidt and Lipson successfully found an algorithm to identify Hamiltonians, Lagrangians,
and other momentum conservation laws from observation data.9 Given a set of experimental data points from a
physical system, one may calculate the partial derivatives between variables from the data. Candidate symbolic
functions are randomly generated in an exhaustive search to describe the physical invariance between observed
variables. To measure how well a given equation describes an invariance, the same partial derivatives can be
derived symbolically and compared with the observed data to select the most parsimonious equations.

Interestingly, this discovery process could determine the previous laws of simpler systems and employ them
to explain more complex dynamics; however, this method had a computationally expensive solution convergence,
even after parallelization. This algorithm for symbolic regression cost exponential time based on the complexity
of the expression and quadratic time based on the number of variables in the system. Though this approach did
not scale well to larger systems, it served to motivate another method of discovering system dynamics.

2.1 Finding dynamics via Spare Identification of Nonlinear Dynamics (SINDy)

In their work, Brunton and Kutz re-imagine the dynamical system discovery problem using recent advances
in sparse regression and compressed sensing.6 By considering the fact that most physical systems use only a
few terms to define dynamics, one can assume that governing equations must be sparse in a high-dimensional
nonlinear function space. Through a demonstration via the Lorenz system, the authors demonstrate how the
governing equations that underlie a physical system can be derived, based on data that may be realistically
collected in simulations or experiments. Sparse regression can determine which right hand side terms are non-
zero, without performing a computationally intractable, combinatorial brute-force search. The resulting solution
to identify a nonlinear model inherently balances the model complexity with accuracy. The sparse regression
formulation requires a penalization of the number of terms in the dynamics that scales well to large problems.
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This is a general process for SINDy, as outlined by Brunton and Kutz.6 First, let the governing equation for
a physical system be defined as:

d

dt
x = f(x)

For solving sparse regression formulation with the SINDy method, one approximates f in the above equation
by the following generalized linear model:

y = f(x) ≈
p∑

k=1

θk(x) ξk = Θ(x) ξk

Here, we assume measurements y ∈ Rm are a linear combination of columns from a feature library Θ(x) ∈ Rm×p.
A linear combination of active functions in the feature library can be expressed by vector ξ ∈ Rp. For a sparse
solution, the objective is to solve for which terms of ξ are active in the dynamics via sparse regression, minimizing
the terms ξk such that model parsimony is maintained.

First, to build the x matrix, construct the data matrix from observed, time series data such that:

X =
[
x (t1) x (t2) . . . x (tm)

]T
Ẋ =

[
ẋ (t1) ẋ (t2) . . . ẋ (tm)

]T
With this construction, one can compute ẋ directly from data in x. The total-variation regularized derivative is
numerically robust for noisy data. From this formulation, it follows that:

d

dt
x = f(x) yields Ẋ = Θ(X) Ξ

Here Θ(X) represents the library of candidate nonlinear functions. These can be a combination f polynomial
functions of the observed variables of x, interactions between observed variables of x, trigonometric functions,
logarithm functions, and other nonlinear functions. To find a model with as few terms as possible in Ξ, calculate:

ξk = argmin of ξ′k

(∥∥∥Ẋk −Θ(X) ξ′k

∥∥∥
2
+ λ ∥ξ′k∥1

)
In this expression, Ẋk is the kth column of Ẋ, whereas λ is a hyperparameter to optimize sparsity in the model.
Above, the Sequential Thresholded Least-Squares (STLS) algorithm has been applied to minimize ξk. Other
convex convergence algorithms can be selected, such as the Least Absolute Shrinkage and Selection Operator
(LASSO).10 A solution to this optimization problem yields the solution, a set of expressions for the change in
each given measurement variable. The one dimensional case may be expressed as:

ẋk = Θ(x) ξk

Here, ẋk is the derivative of xk which is k-th element of x, Θ(x) is the row vector of symbolic functions of x,
and ξk is a vector of scalars. Selecting a convex convergence algorithm is critical to scale the process well with
large data. Likewise, one must take discretion in considering a dataset for this method. Measurement error and
numerical round-off can lead to every library term being included in the algorithm, resulting in an optimized
expression with no sparsity.

Since λ is a sparsity-promoting knob, it can be modified to arrive at a more parsimonious solution. As
λ → ∞, a trivial solution ẋ = 0 is yielded, whereas λ = 0 is a simple least-squares solution, considering
all terms in the candidate library. To find the best expression, one may consider different λ values via an
optimization algorithm such as trial-and-error, grid or random search, gradient-based or Bayesian optimization,
or metaheuristic algorithms.11 Pareto-efficient solutions can be selected, evaluated against number of active
terms of the solution and a model assessment statistic, such as Adjusted R2 or Mallow’s Cp, The latter metric
is an alternative to the AIC (Akaike Information Criterion), suitable for Gaussian linear regression.12
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For nonlinear SINDy methods, since general rational functions are not sparse linear combinations of basis
functions, one can reformulate the dynamics as implicit ordinary differential equations. Though this formulation
is nonconvex and sensitive to noise, recent algorithms have been proposed to scale solutions for high-dimensional
systems,13 as well as an application to partial differential equations (PDEs).14 Likewise, there have been many
advances to modify SINDy algorithms for control,15 parallelism,16 sensitivity analysis,17 bagging,18 mixed integer
optimization,14 and uncertainty quantification.19

2.2 Finding dynamics: alternative approaches

There are other methods to discover dynamics from measurement data, such as Neural Ordinary Differential
Equation (ODE) and Physics Informed Neural Networks (PINNs). These will be briefly presented in connection
to future work. Feed forward neural networks have input nodes, hidden layers, output nodes, and a loss function.
Recurrent neural networks (RNN) have hidden states, instead of hidden layers, to better understand changes
over time. Some examples of RNN include long-short term memory networks and residual networks.

ht+1 = ht + f(ht, θt), where t ∈ {0, . . . , T} and ht ∈ RD

Neural ODE is an alternative approach to model discovery,20 taking the architecture of a residual network and
considering a Euler discretization of continuous transformation. By adding more layers with smaller step sizes,
continuous dynamics can be parametrized with an ODE specified by a neural network. The output layer is a
solution to the initial value problem (IVP) at some time T , in essence, creating a black box ODE solver.

dh(t)

dt
= f(h(t), t, θ)

Neural ODEs have been shown to fit and extrapolate time series data.20 Likewise, PINNs21 is another alter-
native approach to model discovery. Physics Informed Neural Networks (PINNs), which are rapidly growing in
popularity, are another supervised learning method that exists to discover solutions of nonlinear PDEs. They
can consider either continuous time or discrete time formulations, which approach a solution via spatio-temporal
function approximators or implicit Runge-Kutta time stepper schemes,20 respectively. To discover the dynamics
from measurement data, one can embed the entirety of measurement data into the PINNs loss function, then
employ regularization techniques with a threshold that drops out insigificant terms from the model.

PINNs works well by embed the residual of the PDE in the loss function of the network. With that said, this is
not a one-size-fits-all model to solving all nonlinear PDEs. For example, the operators of fractional PDEs cannot
be automatically differentiated. Likewise, symmetries are not easily discovered, such as in the 1D nonlinear
Schrödinger (NLS) problem.21 Since the boundary conditions of PDEs are difficult to implement and manage,
especially over time, this leads to a higher error rate. Thus, for PDEs with solutions that are multiscale, chaotic,
and turbulent, alternative approaches may be necessary.

One possible alternative is to create a hybrid neural network,22 which combines one or more different types
of deep learning structures. This hybrid topology is capable of achieving accurate results with reduced com-
putational time when optimizing the parameters of PDEs, such as the diffusion equation. One motivation for
the combination of neural network architecture lies in the fact that each neural network subtype has its own
benefits. For example, the Autoencoder (AE) Neural Network is an effective nonlinear extension of principal
component analysis (PCA). In contrast, the Convolutional Neural Network (CNN) has strengths in its construc-
tion consisting of sparse interactions, where the output units only interacts with a subset of inputs. Likewise,
the parameter-sharing in the CNN means that same kernels used for different parts of the inputs, reducing com-
putations. The Long Short-Term Memory (LSTM) Neural Network, a subset of the Recurrent Neural Network
(RNN), can easily detect short and long-term dependencies in time series data. This strategy has been employed
in similar engineering problems, such as to estimate remaining life of components for predictive maintenance.22

Ultimately, the CNN-LSTM architecture could optimize dynamical systems parameters for governing PDEs
with a spatial-temporal representation, and particularly well for nonlinear PDEs. This architecture is one
possibility beyond PINNs for applying the dynamics of a system to optimize a solution. By modelling some
dynamical system as a stream of changing images, one could solve for the dynamical system parameters with
hybrid neural network architecture. The most important factor is identifying the correct governing equation.
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One more interesting idea is to specify temporal degradation as Brownian motion process to describe the
degradation of lithium-ion batteries (LIBs),23.24 Identifying a theoretical governing equation and comparing it
to equations discovered by SINDy, or a variant of SINDy with uncertainty quantification,19 could given a specific
band range in which data is obtained. Both these equations could be fed into some sort of hybrid neural network
architecture and optimized in this way to determine a model of LIB salvagability. Furthermore, these equations
can be validated through the neural ODE and PINNs approach.

This paper focuses on preliminary results of obtaining governing equations from a vanilla SINDy method.
Due to the size and variability of the application data set, care must be taken to ensure that results adequately
express the dynamics of the LIB life cycle, on average, with respect to differences in charging policies.

3. RESULTS

We seek to understand the dynamics of LIBs during their life cycle, characterizing the initial state and studying
how it evolves over time. The dataset7 used consists of 124 LIBs that have been cycled to failure under various
fast-charging conditions. Experiments were done in 3 batches, which took place from May 2017 to April 2018.
The lithium-ion phosphate (LFP)/graphite cells were commercially available, and manufactured by A123 Systems
(APR18650M1A). Cells have a nominal capacity of 1.1 Ah and a nominal voltage of 3.3 V.

All LIBs were charged with a one-step or two-step fast-charging policy. Data owners provided the formatting
“C1(Q1)-C2”, which denotes C1 and C2 as first and second constant-current steps respectively, and Q1 value
serving as the state-of-charge percentage for which the currents switch. The second current step ends at 80%
state-of-charge (SOC), and then the cells charge at 1C constant current, constant voltage. To stay consistent
with manufacturer, upper and lower cutoff potentials are 3.6 V and 2.0 V, respectively. All cells discharge at
4C. The method of CC-CV charging regulates the current and voltage for charging, supplying constant electric
current at a specified ampere, and charging at a set voltage to maintain constancy.

Batteries were cycled in horizontal cylindrical fixtures on a 48-channel Arbin LBT potentiostat. The temper-
ature chamber with forced convection was set to 86°F. Internal resistance measurements were collected during
charging at 80% state-of-charge by averaging 10 pulses of ±3.6C with a pulse width of 30 ms or 33 ms, depending
on the time of the experiment. Temperature metrics were captured by stripping a portion of the battery plastic
insulation and attaching a Type-T thermocouple with thermal epoxy and Kapton tape to the exposed cell can.
Since contact between the thermocouple and the cell can vary, and since the thermocouple may lose contact
during cycling, temperature measurements cannot be considered perfectly reliable.7

For each battery, the following measurement data was observed:

• Voltage: difference in charge between two points

• Current: rate at which charge is flowing

• Internal Resistance: value of how current is resisted

• Temperature: temperature of the cell

• Discharge Capacity: the charge that is capable of coming out of the cell

• Charge Capacity: the charge that is capable of going into the cell

Each of these sensors sampled data roughly 1000 times per cycle, though an exact sampling rate varied
between observations. Cycles for batteries ranged from 150 to over 2000 cycles. In applying SINDy to this data,
we begin by importing the measurement data for the variables. Clustering of the various policies was performed,
followed by an application of SINDy, which is presented in the remaining sections of this work.
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3.1 Clustering

In this data set,7 cells were charged and discharged with 72 unique fast-charging policies. The manufacturer
provided a recommended protocol of 3.6C, constant current-constant voltage (CC-CV). The first step applied
C1 over the given state-of-charge rate specified by Q1. Once the state-of-charge Q1 was reached, the second step
C2 was applied to a constant state-of-charge 80% for all battery cells. Likewise, all cells were discharged with
a CC-CV discharge at 4C to 2.0V. To give an example, a policy of C1=4.65, Q1=69%, and C2=6 means that
the cell was a 4.65C charging step from 0% to 69% state-of-charge (SOC), then a 6C charging step from 69% to
80& SOC, then a 1C charging step to 100% SOC.

Principal component analysis (PCA)25 was performed on three variables, the C1, Q1, and C2 values, after
standardization, to better understand the variance between charging policies. The sum of the sample variances
of all individual variables was used to obtain a fraction of variance explained by each principal component. The
fraction of variance explained by the first PC score was 52.88%, and by the second PC score was 35.93%. Thus,
the first two PC scores explained 88.81% of the variance of the charging policies.

The first two PC scores were utilized to cluster policies into groups by a k-means algorithm. Optimal k values
were scanned from k = 2 to k = ceil(

√
140) = 12, where 140 is the number of observations in the data set. The

elbow method26 and gap statistic27 verified an optimal k = 10 clusters. The evaluation metrics were plotted for
each k and can be seen in Figure 1 for each method.

Figure 1. Combining the elbow method and gap statistic, an optimal k = 10 clusters was identified.

Plotting the PC scores on a scatter plot in Figure 2, one can see a clear boundary between each cluster.

Figure 2. Each set of policies are contained within a boundary, identified with a k-means algorithm for k = 10.
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A distribution of the cycle life of the cells in each cluster can be seen in Figure 3.

Figure 3. Differences between LIB life cycle can be seen across clusters, ranging from median cycle length 300 to 1078.

Clustering was further validated by plotting the initial current for all cells in the cluster - see Figure 4. Each
cell was sampled approximately 1000 times, without a standardized sampling rate. For this reason, there was
a lack of perfect overlap in some clusters. Though phenomenon was more notable in the clusters with larger
sample sizes, other clusters, such as cluster 3, had a near perfect overlap of current behavior.

Figure 4. Some clusters have a nearly perfect overlap of current behavior. Cluster 10 had just one cell, thus was excluded.
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From each cluster, we found the cell closest to the median as given by the box plot in Figure 3. We note the
cell representing the policy cluster in Table 1, presented below.

Cluster # C1 Value Q1 Value C2 Value Cycle Length Batch #
1 4.65 69% 6 527 2
2 8 25% 3.6 702 1
3 6 60% 3 757 1
4 3.6 30% 6 511 2
5 4.8 80% 4.8 1078 3
6 5.6 19% 4.6 816 3
7 2 7% 5.5 335 2
8 5.4 50% 3.6 902 1
9 4.65 19% 4.85 489 3
10 1 4% 6 300 2

Table 1. One battery was selected from each cluster to serve as a representative of the charging policy and median cycle
length within that cluster. Batch 1 of the experimental data was represented in 3 clusters, batch 2 was represented in 4
clusters, and batch 3 was represented in 3 clusters. Note that cluster 10 consists of a single observation.

Moreover, we observe that in the data set,7 there were three batches of experimental data. The experiment
number is also displayed in Table 1, showing an adequate representation of all experimental data. Each batch
has various notes associated with the experimental procedure data collection. Most notably, batch 1 did not
have data for cycle 1, so any current profiles from that batch were for cycle 2, which is another potential reason
for lack of overlap within some clusters. For example, cluster 5 with 25 cells had 8 cells from batch 1, whereas
cluster 3 had a majority of cells, 16 out of 24, from batch 1 of the experiment.

For each cluster, we will now model multivariate sensor profiles using the equations discovered by SINDy. We
applied SINDy to a state dimension = 4, consisting of the measurements for capacity discharge, voltage, current,
and temperature. In the candidate library, we considered polynomial terms of measurements and interaction
terms between measurements. Results are presented in the next section, first considering only the 1st cycle of
data, then considering the data over all cycles of the representative cell.

3.2 Sparse regression: 1st cycle

To assess battery state-of-health, we seek to first characterize the initial state of the battery, as degradation
can be viewed as deviation from this state. However, this is not trivial since batteries that are identically
manufactured may still be subjected to various charging conditions. Therefore, we begin by investigating the
effect of charging conditions on the initial state of LIBs. Again, time steps varied for each cluster based on the
variation in sensor measurement sampling rates for each observation.

For each variable, derivative was calculated using the gradient function in MATLAB. SINDy is applied as a
sparse regression, applying the Sequential Thresholded Least-Squares (STLS) algorithm. SINDy was performed
in 4 state dimensions, and inter-cluster analysis is provided below. For notation sake, we will use the following

• Qd: capacity discharge

• v: voltage

• c: current

• T : temp

Because of Ohm’s law,28 voltage = current · internal resistance, internal resistance was excluded from the model
to prevent confounding effects. Polynomial terms and interactions went up to degree 2. For the initial analysis,
additional functions in the candidate library were excluded from the model. To consider the initial state, sparse
regression was performed for only the 1st cycle of each cell. The hyper-parameter, sparsity-promoting knob λ,
was initiated at 0.025 and modified on an as-needed basis to arrive at the most parsimonious solution.
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We now present the dynamics of the first life cycle of each representative battery:

ċ1 = 2.4927− 1.3485Qd − 1.4084v − 0.1568Q2
d − 0.391Qdv − 0.1977v2 − 0.0390vT

ċ2 = −7.9467 + 1.3948Qd + 2.3285v + 0.2571T + 0.2896Q2
d − 0.2999Qdv − 0.0767v2 − 0.0754vT

ċ3 = 0.3139− 0.0674Qd − 0.0940v

ċ4 = 1.9641− 1.0403Qd − 1.1003v − 0.1090Q2
d − 0.3029Qdv + 0.1528v2

ċ5 = −44.5046 + 10.9731Qd − 0.3594c+ 13.333v + 1.4053T + 1.6127Q2
d + 0.1393Qdc+ 1.3933Qdv − 0.4982QdT

+0.1082cv − 0.0989v2 − 0.4105vT

ċ6 = −7.0566 + 1.0322Qd + 1.5413v + 0.2709T + 0.2467Q2
d + 0.4537Qdv − 0.078QdT + 0.1392v2 − 0.078vT

ċ7 = 0.2405− 0.071v − 0.0582d, Ṫ7 = 0.5830− 0.3923Qd − 0.3926v + 0.1533Qdv + 0.0646v2

ċ8 = 0.342− 0.1965Qd − 0.1029v2 + 0.0496Qdv,

Ṫ8 = 4.5569− 1.6739Qd − 1.4309v − 0.1285T − 0.1285T − 0.2159Q2
d + 0.0556QdT + 0.0351v2 + 0.0369vT

ċ9 = −4.0168 + 0.6953v + 0.1874T + 0.2927Q2
d + 0.4668Qdv − 0.052QdT + 0.1377v2 − 0.0547vT,

Ṫ9 = −0.1568Qd + 0.0638Qdv

ċ10 = −4.5651 + 0.3491Qd + 1.5677v + 0.1367T − 0.0941Q2
d − 0.1012Qdv − 0.0766v2 − 0.0390vT

Equations discovered by SINDy render an expression with respect to the change in current expressed as a change
in discharge capacity, voltage, and temperature. Subscript of the PDE represent the cluster number associated
with the expression. Most expressions were expressed simply as ċ though active terms and signs/magnitudes to
the coefficient varied for each policy. This indicated a difference in the dynamics across clusters. Moreover, some
policies were expressed as a combination of ċ and Ṫ .

We can plot the gradient of actual measurement data against the solution of the differential equation generated
by SINDy, to check the results of the discovered equation. An example of this can be seen in Figure 5.

Figure 5. Results of SINDy applied to the single observation in cluster 10 to express the current behavior for cycle 1. On
the left is the ground truth, based on the computed gradient for current. On the right is a plot of the expression derived
by SINDy. Though magnitudes differ, peaks and valleys of ground truth mirror the SINDy plot in early time steps.

This indicates that the λ value could need some tweaking in order to arrive at a parsimonious model with
respect to the overall accuracy of understanding the change in the observed variable.
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3.3 Sparse regression: all cycles

Using the MATLAB gradient() function, we compute the derivative for each variable. From there, we build the
library of candidate functions, considering polynomials up to various orders. Again, the hyper-parameter lambda
was primarily set to 0.025 and modified on an as needed basis, depending on the sparsity of the solution.

To process a sparse regression for all cycle data, one must observe the profile data for the entire cycle life
dynamics of the battery representative of each cluster. To start, we flatten the observations per cycle to a vector
consisting of the entirety of cycle data, each sampling the sensor data about 1000 times per cycle. For each cycle,
points were sampled a certain amount of time, and this time is the same for each sensor for that cycle. For the
next cycle, more points may have been sampled, but the number of sampling points are the same for each sensor
within the cycle.

We now present the dynamics of the entire life cycle of each representative battery.

ċ1 = 0.3543− 0.2112Qd − 0.1038v + 0.0453Qdv, Ṫ1 = −0.1649Qd + 0.0685Qdv

ċ2 = 0.4903− 0.466Qd − 0.1461v ++0.0796Q2
d0.1086Qdv, Ṫ2 = −0.0855Qd − 0.0517Q2

d + 0.0586Qdv

ċ3 = 0.6969− 0.42Qd − 0.3317v + 0.044Q2
d + 0.1144Qdv + 0.0363v2, Ṫ3 = −0.0899Q2

d + 0.0378Qdv

ċ4 = 1.1438− 0.6596Qd − 0.6336v + 0.0908Q2
d + 0.1852Qdv + 0.087v2,

Q̇d4 = −0.2886 + 0.2135 + 0.1721v − 0.0568Q2
d − 0.0561Qdv − 0.0256v2

ċ5 = 1.2816− 0.5354Qd − 0.7046v + 0.1686Qdv + 0.0947v2, Ṫ5 = −0.1453Qd + 0.0617Qdv

ċ6 = 2.0138− 1.0774Qd − 1.1256v + 0.1101Q2
d + 0.3178Qdv + 0.1551v2, Ṫ6 = −0.1994Qd + 0.0853Qdv

ċ7 = 0.1949− 0.0563Qd − 0.0569v, Ṫ7 = −0.1335Q2
d + 0.0503Qdv

ċ8 = 0.6822− 0.3097Qd − 0.3396v + 0.0919Qdv + 0.0399v2 Ṫ7 = −0.1058Qd − 0.0337Q2
d + 0.0589Qdv

ċ9 = 0.4089− 0.3757Qd − 0.1199v + 0.0688Q2
d + 0.081Qdv,

Ṫ9 = 0.5461− 0.3913Qd − 0.3457v + 0.149Qdv + 0.054v2

ċ10 = −0.1183 + 0.0494Qd + 0.1464v − 0.0366Qdv − 0.0325v2, Ṫ10 = −0.0697Qd + 0.0290Qdv

Again, these equations discovered by SINDy render an expression with respect to the change in current
expressed as a change in discharge capacity, voltage, and temperature. A second governing equation was yielded
as either a change in the discharge capacity Qd or temperature T . There are distinct differences between clusters.

4. FUTURE WORK

This paper has investigated the effect of charging conditions on the initial state and life cycle of LIBs. By
clustering features from the battery current profile, we identified 10 core clusters of policy types. Selecting a
representative for each cluster, we modeled multivariate sensor profiles using differential equations, discovered by
the SINDy method. The preliminary results show potential statistically significant differences between charging
conditions. With that said, the sparse equations yielded can be made more accurate. Additional tuning of the
hyper-parameter λ, which can be done in a myriad of ways,11 may afford a more accurate model. Moreover,
it may be necessary to consider additional functions within the candidate library, such as trigonometric or
nonlinear functions. Another possibility for converging to a more parsimonious solution may be to change
convergence algorithms for the sparse regression, such as to LASSO.10 Once an adequate expression has been
discovered, additional methods can be utilized to compare results, such as neural ODE or PINNs. discovering a
representative equation of the dynamics.

Though there are extreme resource costs for LIB recycling, the benefits will greatly outweigh them over time,
due to the improved environmental quality, the resulting economic prosperity, and the continual striving for social
equity. LIB manufacturing requires the mining of metals like cobalt and nickel, which requires scare resources
and presents environmental concerns. A barrier to the economic viability of LIB recycling is the uncertainty
surrounding the lifetime of LIBs; recycling an LIB too early results in a loss of useful battery life whereas a
completely failed LIB may not be salvageable. Thus, an accurate and parsimonious characterization of the
state-of-health of an LIB is paramount for making decisions regarding LIB recyclability.
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