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UTRGV School of Medicine 
 
Abstract 
 
Introduction: Spinal Cord Injuries (SCI) are catastrophic injury to spinal neurons that cause a 
tremendous socioeconomic and public health burden on individuals globally. The role of fatty 
acids in treatment of SCI is not well understood and poorly standardized across treatment 
provision. This review seeks to explore the role of fatty acids in neurorecovery and propose 
emerging themes in SCI treatment with fatty acids. 
 
Methods: A PICO was designed and online databases were searched for relevant articles. A 
total of 55 studies were deemed appropriate for the review and summarized into thematic 
elements including ) Cellular Transport 2) Neuroprotection 3) SCI Treatment. 
 
Results: Polyunsaturated Fatty Acids (PUFAs) were the primary treatment of interest and 
demonstrated overall beneficial effect on neuroregeneration and SCI recovery. No consensus 
was found between selection, dosing, and measurement of SCI treatment outcomes in studies 
between 1982 and 2023. 
 
Discussion: Publication biases were substantiated in systematic review of studies pertaining to 
PUFAs and SCI; further research is needed to understand the role of fatty acids and SCI 
treatment. 
 
Introduction 
 
Spinal Cord Injury (SCI) is defined as debilitating injury to spinal neurons causing sensation and 
motor impairment at and below the level of injury1. SCI remains a prominent cause of severe 
economic and social debility, with a prevalence ranging from 15 per 1,000,000 cases in Western 
Europe to 39 per 1,000,000 cases in North America2. SCI are estimated to cost between $1 
million to $5 million USD per case over the lifetime of the individual. Deficits may range from 
mild motor or sensory impairment to profound loss of all neurological function based upon the 
extent of the neuronal loss. Considerably, every SCI is unique in clinical presentation and 
approach to rehabilitation, thus necessitating a broad range of treatment strategies. 
Administration of various fatty acids in setting of SCI in rodent studies have demonstrated 
promising findings in neuronal regeneration, return to ambulation, and functional 
improvements3; however, comprehensive review of current literature shows inconsistency in 
type of fatty acid administration, dosing, and length of treatment optimal for recovery 
parameters after SCI. This review aims to disseminate current literature exploring the usage of 
fatty acids in treatment of SCI and implications for clinical practice. 
 
Methods 
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The research question, “What are the current pharmacological treatments for SCI?” was 
formulated via the PICO (Population, Intervention, Comparison, Outcome)  method4 as follows: 
1) Human and animal subjects with acute and chronic SCI 2) Fatty acid administration 3) No 
treatment 4) Neurological function. Online databases were searched based upon access key 
words derived from PICO. The databases selected, terms queried, and results utilized from each 
search are seen in Table 1. 
 
Table 1. Overview of Identified and Screened Articles 

Search Terms Results Database 

Oleic Acid and Albumin 1338 PubMed 

Oleic Acid and Neuron 337 PubMed 

Oleic Acid and Spinal Cord Injury 2 PubMed 

2-hydroxyoleic Acid 33 PubMed 

Fatty Acid and Spinal Cord Injury 898 PubMed 

Omega 3 and Spinal Cord Injury 84 PubMed 

Omega 9 and Spinal Cord Injury 17 PubMed 

Alpha-linoleic Acid and Spinal Cord Injury 7 PubMed 

Palmitoylethanolamide and Spinal Cord Injury 31 PubMed 

Fatty Acid and Spinal Cord Injury 49 CINAHL 

Fatty Acid and Spinal Cord Injury 0 PEDro 

 
 
Results 
 
55 studies were selected after final filtering based upon relevance to PICO and grouped in to 
the following thematic analysis categories: 1) Cellular Transport 2) Neuroprotection 3) SCI 
Treatment. 
 
Fatty Acids and Cellular Transport 
 
Rhoads et al. (1982) presented the earliest recorded evidence uncovering the role of albumin in 
cellular synaptosomal uptake of polar amino acids in the presence of unsaturated fatty acids5. 
Albumin was later shown to be a promising, multi-modular protein capable of delivering 
complex drug moieties via crystallography performed by Bhattacharya et al. in 2000. The study 
analyzed the extent of albumin’s binding affinity for fatty acids, notably supporting the 
discovery of drug-binding domain IIIA, showing high-affinity preference for long-chain fatty 
acids6. In 1992, DeWille et al. demonstrated in rodents that immediate post-natal ingestion of 
coconut oil (30% oleic acid by weight) increased the proteolipid protein and myeline basic 
protein mRNA synthesis in myelin; within the same year, Thiés et al. reported esterification of 
unsaturated 2-acyl-lysophosphatidylcholine was more efficiently incorporated in central 
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nervous system (CNS) neurons when bound to albumin in the newborn rat7,8. Together, these 
studies indicated that albumin may be a key component of the delivery of fatty acids into the 
developing CNS neuron. Oleic acid and arachidonic acid were shown to inhibit gap junction 
permeability in astrocytes, leading to increased astrocyte glucose uptake, while albumin was 
linked to oleic acid production in the CNS9,10. These findings began establishing the role of oleic 
acid as a neurotrophic factor. Further support was demonstrated by electron microscopy of 
albumin endocytosis through a megalin and caveolin-mediated uptake mechanism in 
astrocytes11, inhibition of fatty acid transport proteins in blood-brain barrier microvessel 
endothelial cells12, and induction of axonal growth marker growth-associated protein 43 (GAP-
43)13. Oleic acid has also been shown to induce synaptogenesis and synapse arrangement via 
interaction with synapse-associated proteins synaptotgamin and postsynaptic density protein 
(PDS-95) in astrocytes14. 
 
Fatty Acids and Neuroprotection 
 
With growing evidence of the role of albumin-fatty acid binding in neurons, the neuro-
protective effects of polyunsaturated acids (PUFAs) became more evident through observation 
of GAP-43 induction in rodent astrocytes through synergistic protein kinase c and neurotrophin 
3-4/5-dependent mechanisms15-17. Later studies indicated neuron preservation was mediated 
by PUFAs through their effects on terminal synaptic differentiation via transcription factor 
NeuroD2, inhibition of pro-apoptotic factor S100B in setting of cellular ischemia, and exposure 
to recombinant human erythropoietin (rhEPO)18-21.  
 
Systemic and localized cellular inflammation is a known contributor to neuron dysfunction in 
SCI1. The molecular mechanisms of inflammation and their interaction with fatty acids is 
complex and thought to be mediated by a number of known markers of inflammation, including 
reactive oxygen species (ROS), p38 MAPK, and Akt/IKK/NF-kappaB signaling pathways in LPS-
stimulated BV2 microglia22,52. Hirakawa et al. exposed medium-chain fatty acids (MCFA) to 2-
decenoic acid ethyl ester (DAEE) after spinal neuron hemisection and observed improved 
functional recovery, decreased lesion size, increased activation of ERK1/2, and enhanced 
expression of bcl-2 and brain-derived neurotrophic factor (BDNF) mRNA in the injury site of the 
spinal cord23. Metabolically-active transcription factors PPARα and LXRβ have also been 
observed in injured white matter neurons, with decreased levels of PPARα noted in ependymal 
cells treated with oleic acid24. 
 
The neurolipidome was first discussed by Han et al. in 2007 as mass spectrometry was applied 
to the experimental observation of lipid movement25. The neurolipidome concept was 
expanded for therapeutic interventions in SCI with the dietary application of omega-3 PUFAs, 
primarily docosahexaenoic acid (DHA) and omega-6 PUFAs; the former of which was thought to 
partially confer metabolic neuronal resilience in SCI26. Later studies demonstrated significant 
benefits of metabolic homeostasis and increased antioxidant defenses after administration of 
omega-3 PUFAs, including influence upon neuron apoptosis after SCI, inflammasome mediation 
via NLRP3 modulation, and oxidative stress reduction in ischemic SCI27-30. Notably, the 
administration of omega-6 PUFAs were shown to be detrimental in the return to ambulatory 
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function after SCI and the ratio of omega-3 to omega-6 PUFAs was crucial in synaptogenesis 
and neurolipidomic composition31.  
 
SCI Treatment 
 
Omega-3 fatty acids were amongst the first PUFAs to be studied and have been shown to 
significantly improve a number of functional and biochemical markers of SCI recovery, including 
increased locomotor performance, decreased neural lipid, protein, and mRNA oxidization, and 
increased neuroplasticity32-41. Of the known PUFAs benefitting neuron recovery in SCI, DHA is 
the most well-studied, with results supporting role of DHA administration in acute SCI and a 
significant white matter neuroprotective effect42-44. Arima et al. demonstrated administration 
of IL-6 inhibitor MR16-1in acute SCI reduced blockade of phosphatidylcholine binding to DHA in 
glial fibrillary acidic protein (GFAP) positive neurons, suggesting DHA’s role in modulation of 
neuroregeneration after acute SCI and interaction with astrocytes45. Fatty acid binding protein 
5 (FABP5) is another important neural protein thought to mediate cellular transport, uptake, 
and metabolism of DHA in GFAP positive neurons when genetically upregulated in the presence 
of PUFAs46. Eicosapentanoic acid, alpha-lipoic acid, and alpha-linoleic acid were other PUFAs 
observed to play a role in prevention of axonal disruption and neuron survival after SCI, with 
eicosapentanoic acid administered in conjunction with DHA to measure outcomes of SCI 
recovery in two studies reviewed47-50. Hydroxylinoleic acid-albumin treatment in rodents with 
experimentally-inflicted T9 SCI showed significant recovery in locomotor function and 
significant overexpression of growth factors with reduced prostaglandin and phospholipase 
expression51. Ingestion of safflower seed oil, containing primarily oleic and palmitic acids, was 
shown to increase embryonic stem cell proliferation and differentiation in the presence of 
significant upregulation of signaling factor mRNAs of notch1, hes1, and Ki-67, while increasing 
the number of oligodendrocytes, astrocytes, and β-III tubulin-positive neurons53.  
 
Discussion 
 
In the four decades during which PUFAs have been studied for their role in SCI treatment, no 
consensus has been drawn on the most effective singular fatty acid in light of a wealth of 
studies that support the benefits of PUFAs after neuronal insult. MacIntosh-Smith et al. 
discussed the relative efficacy of PUFAs in SCI treatment and found although administration of 
PUFAs significantly impacted gross locomotor function and neuroregeneration after SCI, no 
known secondary benefits (analgesia and lesion volume) were significantly different. Notably, a 
moderate publication bias was discovered, indicating many of the studies may not as strongly 
substantiate the claims of PUFA administration in light of primary neurorecovery parameters54. 
None of the articles reviewed strictly detail the most efficacious dosing and ratios of PUFAs in 
SCI treatment—in addition to all being rodent studies—leaving further questions of appropriate 
pharmacological utility in humans. As modern biotechnologies progress in their versatility of 
cellular manipulation, techniques such as membrane lipid therapy promise to continue a path 
forward in experimental validation of plausible treatments for SCI55. Given the enormous 
complexity of the human nervous system and the socioeconomic impact of SCI, future research 
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is warranted to understand the role of fatty acids in neuronal proliferation, differentiation, and 
regeneration.   
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