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Abstract

The human receptor-type protein-tyrosine phosphatase kappa (PTPRK) gene is highly expressed in 

human brain and is previously associated with neuropsychiatric disorders and cancer. This study 

investigated the association of 52 single nucleotide polymorphisms (SNPs) in the PTPRK with the 

risk and age at onset (AAO) of Alzheimer’s disease (AD) in 791 AD patients and 782 controls. 

Five SNPs (top SNP rs4895829 with p=0.0125) were associated with the risk of AD based on a 

multiple logistic regression (p<0.05); while 6 SNPs (top SNP rs1891150 with p=8.02×10−6) were 

associated with AAO by using a multiple linear regression analysis. Interestingly, rs2326681 was 

associated with both the risk and AAO of AD (p=4.65×10−2 and 5.18×10−3, respectively). In a 

replication study, the results from family-based association test - generalized estimating equation 

(GEE) statistics and Wilcoxon test showed that seven SNPs were associated with the risk of AD 

(top SNP rs11756545 with p=1.02×10−2) and 12 SNPs were associated with the AAO (top SNP 

rs11966128 with p=1.39×10−4), respectively. One additional sample showed that four SNPs were 

associated with risk of cancer (top SNP rs1339197 with p=4.1×10−3), 12 SNPs associated with 

LDL-cholesterol (top SNP rs4544930 with p=3.47×10−3), and 8 SNPs associated with total 

cholesterol (top SNP rs1012049 with p=6.09×10−3). In addition, the AD associated rs4895829 was 

associated with the gene expression level in the cerebellum (p=7.3×10−5). The present study is the 

first study providing evidence of several genetic variants within the PTPRK gene associated with 

the risk and AAO of AD, risk of cancer, LDL and total cholesterol levels.
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1. Introduction

Alzheimer’s disease (AD), as the most common type of dementia, is a chronic 

neurodegenerative disease that slowly destroys memory and thinking skills (Burns and Iliffe, 

2009). The irreversible and progressive course of disease possibility leads to loss of the 

ability to carry out the simplest tasks (Querfurth and LaFerla, 2010). In 2013, approximately 

5 million Americans aged 65 years or older were living with AD; while this number is 

projected to rise to 13.8 million, a nearly three-fold increase, by 2050 (Hebert et al., 2013). 

In 2010, the costs associated with AD were projected to fall between $159 and $215 billion; 

whereas these costs are estimated to be between $379 and more than $500 billion annually 

by 2040 (Hurd et al., 2013). Worldwide, the number of individuals living with AD was 26.6 

million in 2006 and this number will quadruple and 1 in 85 persons worldwide will be living 

with the disease by 2050 (Brookmeyer et al., 2007). The genetic heritability of AD ranges 

from 49% to 79% based on reviews of twin and family studies (Gatz et al., 2006). Age at 

onset (AAO) is also genetically controlled. Previous studies showed that the estimated 

heritability of 42% for AAO of AD and 57–78% of the variance of AAO was related to 

genetic effects (Daw et al., 2000; Pedersen et al., 2001; Li et al., 2002).

With advances of technology developed, a number of genes have been suggested to be 

associated with AD. In the current study, we are interested in human receptor-type protein-

tyrosine phosphatase kappa (PTPRK) gene, which is located at 6q22.2-q22.3 (Zhang et al., 

1998). The protein encoded by this gene is a member of the protein tyrosine phosphatase 

(PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular 

processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation 

(Yang et al., 1997). PTPRK is expressed in a number of tissues such as brain, spleen, 

prostate, and ovary. Some studies showed that PTPRK may play a role in the regulation of 

processes involving cell contact and adhesion (Fuchs et al., 1996). Previous genetic studies 

have shown that several single nucleotide polymorphisms (SNPs) such as rs17461290 and 

rs11753871within the PTPRK gene are associated with three adult psychiatric disorders: 

schizophrenia, major depressive disorder, and bipolar disorder (Hamshere et al., 2009; 

Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium et al., 2015). 

It has been found that there is a significant relationship between the presence of PTPRK 
mutations and short malignant glioma patient survival time (Assem et al., 2012). Another 

study suggested that there was an association between Alzheimer’s disease prevalence and 

malignant brain tumor incidence (Lehrer, 2010). In addition, it has been demonstrated that 

the PTPRK gene is a potential deletion target in primary central nervous system lymphomas 

that can present as progressive dementia (Nakamura et al., 2003). Increasing evidence 

suggests that total cholesterol levels are associated with AD and cognitive impairment 

(Ahmed et al., 2014; Giudetti et al., 2016). Thus, we hypothesize that the PRPTK genetic 

variants may play a role in cholesterol metabolism.

However, no study has focused on the relationship between of PTPRK gene and AD, 

especially AAO of AD. This study aimed to investigate the association of PTPRK gene with 

the risk and AAO of AD by using a case-control sample, followed by a replication using a 
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family-based study design. In addition, a third sample was used to examine the associations 

with risk of cancer, LDL- and total cholesterol levels.

2. Materials and Methods

2.1. Subjects

2.1.1. GenADA case-control study—Eight hundred and six patients with AD and 782 

controls with complete genotype and phenotype information in a Canadian sample (Table 1) 

were selected from the Multi-Site Collaborative Study for Genotype-Phenotype Associations 

in Alzheimer’s disease and the Neuroimaging component of Genotype-Phenotype 

Associations in Alzheimer’s disease (GenADA) - Study Accession: phs000219.v1.p1. The 

details of these subjects were described elsewhere (Li et al., 2008; Filippini et al., 2009). 

Genotyping was conducted using the Affymetrix technique. There were 52 SNPs within the 

PTPRK gene.

2.1.2. NIA-LOAD family study—In total, 3007 individuals were available from the 

National Institute on Aging - Late Onset Alzheimer’s Disease (NIA-LOAD) Family Study: 

Genome-Wide Association Study for Susceptibility Loci – Study Accession: 

phs000168.v1.p1. The details about these subjects were described elsewhere (Lee et al., 

2008). Genotyping was conducted by the Center for Inherited Disease Research (CIDR) 

using the Illumina Infinium II assay protocol. Totally, 1266 AD cases and 1279 non-AD 

individuals (including 1070 with AAO values) from 1386 pedigree (589 nuclear families) 

(Table 1) were included in this study. There were 88 SNPs within the PTPRK gene.

2.1.3. The Marshfield sample—The Marshfield sample is from the publicly available 

data in A Genome-Wide Association Study on Cataract and HDL in the Personalized 

Medicine Research Project Cohort - Study Accession: phs000170.v1.p1 (dbGaP). The 

details about these subjects were described elsewhere (McCarty et al., 2005, 2008). Cancer 

cases were defined as any diagnosed cancer excluding minor skin cancer; while age at onset 

of cancer was defined by date of the earliest cancer diagnosis in the registry. Genotyping 

data using the ILLUMINA technique are available for 3564 Caucasian individuals (716 

cancer cases and 2848 controls). Adjusted (age 59, BMI 29, no estrogen) baseline LDL 

values (mean ± SD = 149.1±26.9) and total cholesterol level (mean ± SD = 216.2±28.1) 

available for 2273 individuals were treated as continuous variables. Within the PTPRK gene, 

79 SNPs were available.

2.2. Statistical methods

2.2.1. Genotype quality control—Hardy-Weinberg equilibrium (HWE) was tested 

using Golden Helix Software (http://www.goldenhelix.com/SNP_Variation/HelixTree/

index.html). To deal with population stratification, the principal component analysis 

approach (Price et al., 2006) in Golden Helix was used to identify outlier individuals for the 

case-control data. Then, minor allele frequency (MAF) was determined for each SNP using 

HAPLOVIEW software (Barrett et al., 2005).
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2.2.2. Multiple logistic regression models in PLINK software—For the case-

control designs, the multiple logistic regression analyses of risk of AD and cancer as binary 

traits, adjusted for age and sex, were performed. The asymptotic p-values for the logistic 

regression models were observed while the odds ratio (OR) and its 95% confident interval 

(CI) were estimated using PLINK v1.07 (Purcell et al., 2007). Multiple linear regression 

analysis was used to examine the associations of SNPs with AAO of AD in the GenADA 

Canadian sample and the LDL and total cholesterol in the Marshfield sample after adjusting 

for age and sex. The asymptotic p-values were observed. The OR and its standard error for 

the logistic models, and the regression coefficient (β) for the linear models, were estimated 

using PLINK v1.07. To deal with multiple testing, Bonferroni correction 

(α=0.05/52=9.62×10−4) for the discovery in the Marshfield sample was used for statistical 

significance.

2.2.3. Family-based association study—A family-based association analysis for AD 

was performed using PBAT version 36.1 (Van Steen et al., 2005). The advantages of using a 

family based association include that the design accommodates nuclear families with 

missing parental genotypes, extended pedigrees with missing genotypic information and 

contains analysis of SNPs, haplotype analysis, quantitative traits, and time to onset 

phenotypes. For the affection status of AD, the family‐based association test - generalized 

estimating equation (FBAT-GEE) statistic was used to perform family-based association 

analysis (Lange et al., 2003). For testing time-to-onset trait (AAO), FBAT-Wilcoxon 

statistics were employed (Lange et al., 2004). The AAO values for healthy siblings were 

censored and age at entry into the study was used.

2.2.4. In silico analysis—We evaluated potential function of the disease associated 

SNP. First, we examined if these variants were located within the regions of the gene that 

might have potential functional importance. The sequences containing the associated SNPs 

were examined for microRNA binding sites, splicing sites, regulatory gene regions, and 

species-conserved regions using NIH-SNP Function Prediction (http://snpinfo.niehs.nih.gov/

cgi-bin/snpinfo/snpfunc.cgi). Second, to determine if disease associated SNPs with PRPRK 
expression levels in human brain, we used publicly available data from the Genotype-Tissue 

Expression (GTEx) project (GTEx Consortium et al., 2015), in which, there is RNA 

sequencing on brain tissue from healthy donors available, resulting in genotype and 

expression phenotype data for ~100–120 normal individuals in multiple different brain 

regions. The information about subjects and RNA quality can be found in the GTEx website 

(www.gtexportal.org).

3. Results

3.1. Descriptive statistics

Based on the principal components analysis using the Golden Helix and missing values of 

AAO, we removed 15 individuals from the GenADA-case control sample. Consequently, 

791 AD cases and 782 controls were left for further analysis from the Canadian sample 

(GenADA). The demographic characteristics of the subjects in these three samples are 

shown in the Table 1. The mean AAO for AD cases was 76.4 and 72.3 years in the NIA 
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sample and Canadian samples, respectively. The mean age at entry was 75.5 years for 

controls in NIA sample, and was 77.6 years in AD cases versus 73.4 years in controls in the 

Canadian sample. The mean age at entry was 71.1 years in cancer cases versus 65.1 years in 

controls in the Marshfield sample.

3.2. Case-control association analyses in the GenADA Canadian sample

Single marker analysis showed that five SNPs were associated with risk and six SNPs were 

associated with AAO (p<0.05) (Table 2). The strongest association was observed between 

SNP rs4895829 and risk of AD (OR=0.65, 95%CI=0.47–0.91, p=1.25×10−2). The top two 

SNPs showing significant associations with AAO were rs1891150 and rs1341597 

(p=8.02×10−6 and 8.33×10−5, respectively), remained significant after a Bonferroni 

correction (p<9.62×10−4). Interestingly, rs2326681 was associated with both the risk and 

AAO of AD (p=4.65×10−2 and 5.18×10−3, respectively). Fig.1 shows the location of the 

SNPs showing association with AD and/or AAO.

3.3. Family-based association analyses with the NIA-LOAD data

Seven SNPs were associated with AD (p<0.05) by using FBAT-GEE analysis for affection 

status in the family-based study (Table 3). The most significantly associated SNP was 

rs1016015 (p=2.3×10−2) in an additive model and rs11756545 (p=1.02×10−2) in a dominant 

model. Our results further showed 12 SNPs associated with AAO (p<0.05) by using the 

FBAT-Wilcoxon test (Table 4). The most significantly AAO associated SNP was rs11966128 

(p=1.39×10−4) in an additive model which remained significant after a Bonferroni correction 

(p<0.05/88=5.68×10−4). In addition, rs7748155 was associated with both the risk and AAO 

of AD in the family sample (p=1.57×10−2 and 2.07×10−2, respectively).

3.4. Associations with cancer and cholesterol in the Marshfield sample

Table 5 showed that four SNPs were associated with the risk of cancer (top SNP rs1339197 

with OR=0.84, 95%CI=0.74–0.95, p=4.1×10−3). We identified 12 SNPs associated with 

LDL-cholesterol and 8 SNPs associated with total cholesterol (p<0.05) in the Marshfield 

sample (Table 5). The first three most significant SNPs for LDL-cholesterol were 

rs4544930, rs1012049 and rs9372885 (p = 3.47×10−3, 5.31×10−3 and 6.6×10−3, 

respectively). The top two SNPs associated with total cholesterol were rs1012049 and 

rs17352289 (p=6.09×10−3 and 8.87×10−3, respectively). Interestingly, rs7767531 was 

associated with cancer, LDL-cholesterol and total cholesterol (p=4.12×10−2, 3.26×10−2, 

1.4×10−2, respectively); while four SNPs (rs7767531, rs4533930, rs1012049 and 

rs17352289) were associated with both LDL-cholesterol and total cholesterol levels.

3.5. In silico analysis

To test if the sequences containing the associated SNPs were located at microRNA binding 

sites, splicing sites, regulatory gene regions, and species-conserved regions using NIH-SNP 

Function Prediction (http://snpinfo.niehs.nih.gov/cgi-bin/snpinfo/snpfunc.cgi). We found 

SNP rs7748155 associated with both AD and AAO and was located at the gene regulatory 

region and species-conserved region; while AAO-associated SNPs (rs17055612 and 

rs17055719) were located at the gene regulatory regions. The cholesterol associated SNP 
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rs17828130 was a coding nonsynonymous SNP and was located at the gene regulatory 

region; while rs9372885 was located at the gene regulatory region.

Having established strong associations of disease associated SNPs with AAO and risk of 

AD, we tested if the genotype at these SNPs are associated with levels of gene expression in 

the brain, based on the date from The Genotype-Tissue Expression (GTEx). We 

hypothesized that the effects of the SNP genotypes on AD risk may reflect genotypes based 

differences in levels of the gene expression in the brain. To investigate this, we analyzed 

recently released GTEx Consortium data. In postmortem samples from 100–120 normal 

individuals from the GTex dataset, among the disease associated SNPs, only rs4895829 

genotype was associated with the expression level in the cerebellum (p = 7.3×10−5, Fig. 2), 

with GG genotype carriers showing the lowest levels of expression as compared with GC 

and CC genotypes (G is minor allele).

4. Discussion

In the present study, we examined the association of PTPRK gene with the risk and AAO of 

AD by using a case-control dataset and a family based-study sample for replication. In the 

case-control data, five SNPs were associated risk of AD and six SNPs were associated with 

AAO. Using FBAT-GEE and FBAT-Wilcoxon statistics in the family sample, we found that 

seven SNPs were significantly associated with the risk of AD and 12 SNPs were associated 

with the AAO of AD in the family-based dataset; while one SNP (rs7748155) was associated 

with both risk and AAO. There were few SNPs in the PTPRK gene that overlapped between 

these two data sets, which may be due to different arrays used for genotyping. The findings 

of the case-control design were confirmed by the results found using a family sample at the 

gene level in our current study. We also demonstrated homozygous disease associated 

genotype (GG) of rs4895825 displayed the lowest levels of expression as compared to other 

genotype groups (CG and CC) in human cerebellum brain tissue (Fig.2). In addition, one 

additional sample showed that several SNPs were associated with the risk of cancer and 

cholesterol levels.

To the best of our knowledge, this is the first study to investigate the association of PTPRK 
gene with AD, especially with AAO of AD. A previous study has identified the APOE e4 

allele with AAO of AD (Williamson et al., 2009). However, APOE genotyping was neither 

fully specific nor sensitive (Bird, 2008). Genetic factors for AAO play an important role in 

the prevention and early treatment intervention of AD. A multi-gene approach will be 

effective in the screening and prevention of AD. The PTPRK gene investigated in this study 

is highly expressed in the human brain. Although the biological functions of PTPRK in 

neoplastic cells are still poorly characterized, PTPRK mediates highly specific intercellular 

homophilic interactions suggesting that it can directly sense cell-cell contact and thereby 

mediate contact inhibition of cell growth (Yang et al., 1997). The PTPRK is known to be up-

regulated by transforming growth factor-beta (TGF-β), and therefore likely involved in 

mediating TGF-β dependent anti-proliferative and cell migration effects (Wang et al., 2005). 

Previous studies have already found that an overproduction of TGF-β can cause cerebral 

amyloid angiopathy, which is frequently associated with AD (Wyss-Coray et al., 1997; 

Ueberham et al., 2005). Other studies have also shown that several SNPs within PTPRK 
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gene are associated with three adult psychiatric disorders: schizophrenia, major depressive 

disorder and bipolar disorder (Hamshere et al., 2009; Network and Pathway Analysis 

Subgroup of Psychiatric Genomics Consortium et al., 2015). In the present study, the AD-

associated SNP rs17461290 and AAO-associated SNP rs10872331 were previously 

associated with bipolar schizoaffective disorder (p=0.0165 and 0.049, respectively) 

(Hamshere et al., 2009); while the AD-associated rs11753971 and AAO-associated 

rs7767531 were previously associated with across three adult psychiatric disorders: 

schizophrenia (p=0.024 and 0.0949, respectively), major depressive disorder (p=0.0204 and 

0.0343, respectively) and bipolar disorder (p=0.0207 and 0.0579, respectively) (Network and 

Pathway Analysis Subgroup of Psychiatric Genomics Consortium et al., 2015).

In the present study, four SNPs (rs1339197, rs9491931, rs9402020 and rs7767531) were 

associated with cancer; especially, the rs1339197 was also associated with AAO of AD in 

the family-bases sample, which suggested that PTPRK may play a role in AD and cancer. 

The PTPRK gene is involved in the processes related to many tumors, and the locus 6q22–

23 is a common region of allelic deletion at chromosome 6 in several cancers (Yang et al., 

1997). Previously, PTPRK as a potential tumor suppressor gene has been investigated by 

many cancer researchers. Some of these cancers were associated with AD or had a high 

prevalence in patients with AD in a number of studies. For example, Nakamura and his 

colleague reported that PTPRK may be a putative tumor suppressor, and appear to be 

relevant to the pathogenesis and prognosis of primary central nervous system lymphomas 

(PCNSLs) (Nakamura et al., 2003). The PCNSLs were reported to be present in progressive 

dementia that is a major form of AD (Burns and Iliffe, 2009). The study by Agarwal and 

colleagues indicated that PTPRK is significantly relevant to glioma pathogenesis (Agarwal 

et al., 2013). Furthermore, previous studies demonstrated that Alzheimer’s disease and 

glioblastoma shared a yet unknown pathway that can promote the progression of both 

diseases (Lehrer, 2010; Deutsch and Mendez, 2015). Another study suggested PTPRK was 

the most likely candidate tumor suppressor gene for endocrine pancreatic tumors (Barghorn 

et al., 2001). Recent studies also reported that PTPRK was a key factor in coordinating 

apoptosis in prostate cancer cells (Sun et al., 2013). An epidemiological study which used 

National Cancer Institute’s Surveillance, Epidemiology and End Results (SEER) Program 

data showed the higher prevalence of pancreatic cancer and prostate cancer in patients with 

AD than that in control subjects (Burke et al., 1994). Stevenson and colleagues’ study 

suggested PTPRK-mediated cell signaling pathway may be targeted with epigenetic 

therapies in acute lymphoblastic leukemia (Stevenson et al., 2014). Another study also found 

a relationship between acute lymphoblastic leukemia and AD by an immunological method 

(Sato et al., 1991). Therefore, the PTPRK gene may play a similar role in the progression of 

these cancers and AD.

Previous studies demonstrate that cholesterol levels are associated with dementia related 

(Ahmed et al., 2014; Giudetti et al., 2016). Our results further showed that 12 SNPs 

associated with LDL-cholesterol and 8 SNPs associated with total cholesterol. Interestingly, 

rs7767531 was associated with cancer, LDL-cholesterol and total cholesterol; while the 

same SNP is also associated with AAO in the family sample. However, future study is 

required to validate our current findings using more SNPs in the PRPRK genes and a large 

sample.
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Moreover, based on the results of the in Silico analysis, we found four SNPs (rs7748155, 

rs17055612, rs17055719 and rs17828130) were located at the gene regulatory regions; while 

rs7748155 was also located at species-conserved region suggesting potential functional 

importance of the PTPRK gene. The cholesterol associated SNP rs17828130 was a coding 

nonsynonymous SNP and was located at the gene regulatory region; while rs9372885 was 

located at the gene regulatory region. In addition, individuals carrying minor allele (disease 

associated G allele) of AD risk SNP, rs4895829, demonstrated having significantly lower 

gene expression of the PTPRK as compared with non-carriers. Thus, the in Silico analysis 

adds additional evidence of supporting PTPRK gene in association with AD phenotypes.

There are several strengths of this study. First, we used population-based case control sample 

for initial study and then a family-based sample for replication. The family-based design 

provided a robust and powerful approach to identify a full range of disease susceptibility 

variants and confirmation of the results of case-control study. Second, several AD and its 

AAO associated SNPs (rs17461290, rs10872331, rs11753971, and rs7767531) were 

previously associated with psychiatric disorders. Third, we conducted association studies of 

PTPRK with cancer and cholesterol levels. In addition, we performed functional analyses.

There are a number of limitations in this study. For example, the small number of SNPs of 

the PTPRK gene in the GenADA sample led to a little overlap of the SNPs in the two 

samples. Some disease and AAO associated SNPs in the PTPRK gene were different 

between in the two sample sets indicating that phenotypic and genotypic heterogeneity exists 

in AD and AAO. Therefore, our replication results in AD and its AAO are gene-based rather 

than SNP-based. Furthermore, current findings might be spurious or subject to type I error. 

Future confirmatory studies, or targeted genome sequencing the PTPRK gene in AAO of AD 

in the current sample sets, may provide an opportunity to dissect the genetic complexity of 

this gene in this disorder more accurately.

5. Conclusion

We discovered a significant association between PTPRK genetic variants and the risk and 

AAO of AD in two independent samples. To our knowledge, this finding of AD associated 

PRPRK variants has not been previously reported. Furthermore, we provided initial evidence 

of several genetic variants in PTPRK influencing the risk of cancer and cholesterol levels. 

These results suggest a potential role of PTPRK in the pathogenesis of AD, cancer and 

cholesterol metabolism. These findings may serve as a resource for replication in other 

ethnic populations. In addition, future studies of this gene may help to characterize the 

genetic function of AD risk and AAO and the biological pathway of pathogenesis and 

prognosis of AD, cancer, and cholesterol levels.
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Figure.1. 
The results of –log(p) values for single SNP analysis of risk and AAO of AD in the 

GenADA sample.
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Figure 2. 
Genotype at rs4895829 associates with gene expression in the brain and defines a clinically 

important AD phenotype in eQTL Boxplot showing the association between rs4895829 

genotype and gene expression in the cerebellum in 89 healthy postmortem samples (P = 

0.000073) from the GTEx Consortium, with GG (Home Ref, N=4) genotype carriers 

showing the lowest levels of expression. Medians and interquartile ranges are indicated. GC 

genotype (Het, N=25) and CC genotype (Homo Alt, N=60) are shown.
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Table 1.

Descriptive characteristics of cases and controls.

Variable
Family Study (NIA sample) Case-control study (Canadian sample) Marshfield sample

AD Patients Controls AD Patients Controls Cancers Controls

Sample size (n) 1266 1279 791 782 716 2848

Mean AAO (years±SD
a
) 76.4±6.7 - 72.3±8.5 - 64.2±12.8 -

Range of age at onset (years) 50-98 - 40-97 - 40-97 -

Mean age at entry (years±SD) - 75.5±8.1 77.6±8.6 73.4±7.9 71.1±10.3 65.1±11.3

Range of age at entry (years) - 42-103 43-100 48-94 46-90 46-90

a
SD refers to the standard deviation of the mean.
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Table 2.

Single marker analysis of risk of AD and its AAO in the GenADA sample.

SNP Position
a

AL
b

MAF
c

HWE
d

OR-AD
e

p-AD
f β-AAO

g
p-AAO

h

rs4895829 128420786 G 0.17 0.145 0.65(0.47, 0.91) 0.0125 0.12(−0.34, 0.59) 0.6106

rs9375546 128417097 C 0.17 0.085 0.68(0.49, 0.93) 0.0151 0.16(−0.31, 0.61) 0.5168

rs4897243 128430767 T 0.17 0.132 0.68(0.49, 0.94) 0.0186 0.19(−0.27, 0.66) 0.419

rs2326681 128691100 C 0.01 0.843 2.11(1.01, 4.38) 0.0465 −1.86(−3.16, −0.56) 0.00518

rs17245411 128387064 C 0.05 0.532 0.69(0.48, 0.99) 0.0482 −0.22(−1.12, 0.67) 0.6238

rs1891150 128805122 C 0.03 0.397 0.86(0.56, 1.33) 0.5177 −2.19(−3.14, −1.23) 8.02E-06

rs1341597 128820851 T 0.03 0.452 0.93(0.60, 1.46) 0.7682 −1.97(−2.95, −0.99) 8.33E-05

rs17055598 128669758 A 0.01 0.759 1.53(0.78, 2.99) 0.2172 −1.81(−3.23, −0.38) 0.01324

rs1891149 128805026 A 0.06 0.775 1.17(0.86, 1.60) 0.313 −0.76(−1.43, −0.09) 0.02572

rs41514350 128527278 C 0.02 0.013 1.42(0.79, 2.55) 0.2392 1.27(0.03, 2.50) 0.0447

a
Physical position (bp);

b
Minor allele;

c
Minor allele frequency;

d
p-value for Hardy-Weinberg equilibrium test;

e
Odds ratio for AD;

f
p-value for AD;

g
Regression coefficient for AAO;

h
p-value for AAO.
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Table 3.

Single marker analysis of risk of AD based on FBAT-GEE (p<0.05).

SNP Position (bp)
a

AL
b

MAF
c

HWE
d

Fam#
e p-FBAT-GEE

f

rs1016015 128869961 T 0.01 >10−4 19 0.023(a) 0.023(d,r)
g

rs11753971 128614517 T 0.10 0.71 129 0.427(a) 0.0372(d,r)

rs11756545 128855588 C 0.09 0.63 146 0.0937(a) 0.0102(d,r)

rs17461290 128870929 T 0.16 0.96 194 0.265(a) 0.0332(d,r)

rs4341027 128348811 C 0.30 0.25 258 0.0504(a) 0.027(d,r)

rs7748155 128733046 C 0.19 0.19 183 0.696(a) 0.0157(d,r)

rs9398863 128362605 C 0.10 0.65 112 0.0233(a) 0.0611(d,r)

a
Physical position is based on NCBI Genome Build 36.3.

b
Minor allele.

c
Minor allele frequency.

d
p-value of Hardy-Weinberg equilibrium test.

e
The number of informative families using an additive model.

f
p-value based on FBAT-GEE analysis for affection status.

g
Letters in parentheses indicate the genetic models used for analysis (a, additive; d, dominant; r, recessive model).
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Table 4.

Single marker analysis of AAO based on FBAT-Wilcoxon (p<0.05).

SNP Position (bp)
a

AL
b

MAF
c

HWE
d

Fam#
e p-FBAT-Wilcoxon

f

rs10428737 128781777 A 0.10 0.03 63 0.024(a) 0.032(d,r)
g

rs11966128 128650841 G 0.08 0.72 62 0.000139(a) 0.000778(d,r)

rs1339197 128649904 T 0.46 0.03 219 0.0135(a) 0.0108(d,r)

rs17055612 128674033 C 0.08 0.74 62 0.00302(a) 0.00177(d,r)

rs17055628 128677748 C 0.07 0.96 62 0.00185(a) 0.00106(d,r)

rs17055719 128694187 G 0.07 1.00 60 0.00353(a) 0.0021(d,r)

rs17456385 128668324 T 0.07 0.87 58 0.00799(a) 0.00499(d,r)

rs3822945 128782080 A 0.29 0.01 161 0.095(a) 0.0442(d,r)

rs7748155 128733046 C 0.19 0.19 132 0.0488(a) 0.0207(d,r)

rs7767531 128535684 G 0.35 0.09 190 0.01(a) 0.0236(d,r)

rs7773248 128682710 G 0.08 0.97 63 0.000685(a) 0.000369(d,r)

rs9402035 128702994 T 0.11 0.31 73 0.0108(a) 0.00708(d,r)

a
Physical position is based on NCBI Genome Build 36.3.

b
Minor allele.

c
Minor allele frequency.

d
p-value of Hardy-Weinberg equilibrium test.

e
The number of informative families using an additive model.

f
p-values based on FBAT-Wilcoxon analysis for age at onset.

g
Letters in parentheses indicate the genetic models used for analysis (a, additive; d, dominant; r, recessive model).
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Table 5.

Associations between SNPs and cancer and cholesterol levels in the Marshfield sample.

SNP Positiona ALb MAFc HWEd OR-Cancere p-Cancerf β-LDLg p-LDLh β-Choli p-Cholj

rs1339197 128649904 T 0.441 0.75 0.84(0.74, 0.95) 0.0041 1.38(−0.13, 2.89) 0.07436 1.10(−0.36, 2.56) 0.14

rs9491931 128614570 C 0.246 0.648 1.19(1.03, 1.36) 0.0157 −0.64(−2.42, 1.13) 0.4757 −0.89(−2.59, 0.81) 0.306

rs9402020 128505339 G 0.051 0.042 0.71(0.53, 0.95) 0.0229 2.14(−1.25, 5.53) 0.216 1.19(−2.02, 4.42) 0.469

rs7767531 128535684 G 0.334 0.018 0.87(0.76, 0.99) 0.0412 1.81(0.15, 3.48) 0.0326 1.99(0.40, 3.59) 0.01402

rs4544930 128436582 T 0.204 0.016 0.97(0.83, 1.13) 0.677 −2.86(−4.77,−0.94) 0.00347 −2.30 (−4.14, 0.47) 0.014

rs1012049 128572000 A 0.275 0.417 0.92(0.80, 1.06) 0.236 2.41(0.72,4.100 0.00531 2.28(0.65, 3.91) 0.00609

rs9372885 128517784 T 0.021 0.313 0.68(0.43, 1.08) 0.0991 6.84(1.91,11.8) 0.0066 4.63(−0.17, 9.43) 0.0588

rs3813372 128555088 G 0.016 0.446 0.65(0.37, 1.12) 0.118 7.81(1.74,13.9) 0.0118 4.85(−0.93,10.6) 0.1

rs9402030 128602695 G 0.015 0.488 0.55(0.29, 1.02) 0.0557 8.39(1.82,14.9) 0.0124 5.70(00.55, 12.03) 0.0739

rs9372887 128607471 A 0.013 0.531 0.59(0.32, 1.12) 0.107 8.01(1.20,14.8) 0.0213 5.71(−0.75, 12.17) 0.0834

rs6912749 128438700 T 0.229 0.033 0.98(0.85, 1.13) 0.767 −2.03(−3.85, −0.19) 0.0301 −1.56(−3.32, 0.20) 0.0829

rs12528715 128588870 G 0.049 0.019 1.16(0.90, 1.51) 0.258 3.61(0.27, 6.94) 0.0342 2.55(−0.69, 5.79) 0.123

rs17055441 128573344 A 0.017 0.436 0.63(0.36, 1.09) 0.095 6.60(0.43, 12.7) 0.0362 4.52(−1.34, 10.4) 0.131

rs13213933 128590678 A 0.049 0.019 1.17(0.90, 1.52) 0.241 3.53(0.19, 6.88) 0.0383 2.57(−0.68, 5.83) 0.121

rs17352289 128656785 A 0.072 0.184 0.87(0.69, 1.10) 0.252 2.90(0.08,5.73) 0.0439 3.69(0.93,6.44) 0.00887

rs9398869 128783169 A 0.082 0.218 1.08(0.87, 1.33) 0.505 2.21(−0.42,4.84) 0.1 3.28(0.68, 5.88) 0.0134

rs17828130 128445438 A 0.365 0.024 0.90(0.80, 1.03) 0.117 1.57(−0.02, 3.16) 0.0535 1.70(0.18, 3.22) 0.0283

rs6914064 128824612 C 0.421 0.497 0.99(0.88,1.12) 0.871 0.94(−0.59,2.47) 0.23 1.49(0.28, 2.94) 0.0458

a
Physical position (bp);

b
Minor allele;

c
Minor allele frequency;

d
p-value for Hardy-Weinberg equilibrium test;

e
Odds ratio for cancer based on logistic regression;

f
p-value for canccer based on logistic regression;

g
Regression coefficient for LDL based on linear regression;

h
p-value for LDL based on linear regression;

i
Regression coefficient for total cholesterol level based on linear regression;

f
p-value for total cholesterol level based on linear regression.
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