1-2021

Evaluating the Impacts of Dam Construction and Longshore Transport upon Modern Sedimentation within the Rio Grande Delta (Texas, U.S.A.)

Samantha Moore
The University of Texas Rio Grande Valley

Elizabeth A. Heise
The University of Texas Rio Grande Valley

Marty Grove
Stanford University

Anthony Reisinger
Texas A&M University

Jude A. Benavides
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/eems_fac

Part of the [Earth Sciences Commons](https://scholarworks.utrgv.edu/eems_fac), [Environmental Sciences Commons](https://scholarworks.utrgv.edu/eems_fac), and the [Marine Biology Commons](https://scholarworks.utrgv.edu/eems_fac)

Recommended Citation

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Earth, Environmental, and Marine Sciences Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.
Evaluating the Impacts of Dam Construction and Longshore Transport upon Modern Sedimentation within the Rio Grande Delta (Texas, U.S.A.)

Samantha Moore†, Elizabeth A. Heise†*, Marty Grove‡, Anthony Reisinger§, and Jude A. Benavides†

†School of Earth, Environmental & Marine Sciences
University of Texas, Rio Grande Valley
Brownsville, TX 78512, U.S.A.

‡Department of Geological Sciences
Stanford University
Stanford, CA 94305, U.S.A.

§Harte Research Institute
Texas A&M University
Corpus Christi, TX 78412, U.S.A.

ABSTRACT

The modern Rio Grande delta system has experienced a century of dam construction, water removal for irrigation and municipal use, and land use modifications that have dramatically reduced its sediment load. This study examines whether damming has sufficiently limited delivery of upstream sediment to permit locally eroded sources and/or littoral transport along the coast to influence the provenance signal of the Rio Grande delta. Changes in sediment provenance within the Rio Grande’s delta can be detected and quantified by measurement of detrital zircon Uranium–lead dating age distributions. Previous provenance studies indicate that modern Rio Grande river sand upstream of Falcon Dam is enriched in zircon derived from Oligocene volcanic fields within the southern Rocky Mountains and the Sierra Madre Occidental. Results from this study indicate that the abundance of Oligocene zircon is depleted in the modern Rio Grande delta relative to river sand sampled upstream of Falcon Dam. Mixing calculations performed with age distributions representative of Eocene–Miocene fluvial sedimentary deposits that crop out downstream of the dam indicate that erosional reworking of these materials has significantly altered sedimentary provenance within the delta. The importance of north-directed longshore transport along the Mexican (Tamaulipas-Veracruz) Gulf Coast was also evaluated. The absence of distinctive zircon from the Trans Mexican volcanic belt and the basement of southern Mexico within the barrier islands of the Rio Grande delta support previous conclusions that sediment transport along the Tamaulipas-Veracruz shelf is highly compartmentalized and restricted in lateral movement due to seasonal variation in littoral current polarity, topographic barriers along the shelf, and other phenomena. Nevertheless, the results of this study demonstrate that construction of dams across rivers such as the Rio Grande is capable of sufficiently limiting upstream sediment transport to permit otherwise unimportant local sources to dominate sand provenance within their delta systems.

ADDITIONAL INDEX WORDS: Sediment starvation, longshore current, detrital zircon, U-Pb age.

INTRODUCTION

Dam construction and the sprawl of human civilization have adversely affected the supply of river sediments to deltas in ways that are difficult to predict (e.g., Nienhuis et al., 2020). The Rio Grande delta is a prime example. Situated along the coast of southernmost Texas, U.S.A. and northern Tamaulipas, Mexico, the wave-dominated Rio Grande delta marks the terminus of the 3000 km long Rio Grande system (Figure 1). The modern Rio Grande delta formed primarily between 8000 and 3000 YBP as a result of a large sediment flux carried by the Rio Grande during the Holocene Climatic Optimum (Rodríguez, Fassell, and Anderson, 2001). Prior to ca. 1850, the Rio Grande River flowed naturally into the delta region as an alluvial channel filled with pebbly sand (Jepsen et al., 2003). As human population has increased, the need for flood control and stable water storage for agriculture and human habitation resulted in dam construction and a myriad of irrigation projects. These modifications of the Rio Grande system have reduced its flow and sediment flux to such an extent that it currently delivers negligible sediment to the coast (Anderson et al., 2014; Benke and Cushing, 2005; Jepsen et al., 2003).

The reduction in Rio Grande sediment flux described above coupled with the Late Holocene highstand in sea level prompts interesting questions. For example, do present-day conditions result in the Rio Grande delta receiving a significant fraction of its sediment from unexpected, and/or previously unimportant sources? This paper investigate two possibilities: (1) locally-derived sediment eroded downstream of Falcon and Marte R. Gómez dams; and (2) longshore transport of extraregional sediment transported northward along the Tamaulipas-Veracruz Gulf Coast to the Rio Grande Delta’s barrier islands (Figure 1). Provenance analysis based upon the measurement of detrital zircon Uranium–lead dating (U-Pb) age distributions provides the means to detect and quantify the contributions of distinct sediment sources. In this study, detrital zircon U-Pb age distributions were measured in modern Rio Grande delta sediment and compared to previous relevant data (Blum et al., 2017; Fan, Brown, and Li, 2019; Mackey, Horton, and Milliken, 2017; Fan, Brown, and Li, 2019; Mackey, Horton, and Milliken, 2017; Blum et al., 2017; Fan, Brown, and Li, 2019; Mackey, Horton, and Milliken, 2017; Blum et al., 2017; Fan, Brown, and Li, 2019; Mackey, Horton, and Mil...
evaluate these hypotheses.

Cenozoic Shoreline Strata of the Texas Margin

The Texas Gulf shoreline propagated southwards throughout the Cenozoic (Galloway, Whiteaker, and Ganey-Curry, 2011) (Figure 1). Paleocene, Eocene, Oligocene, and Miocene conglomerate, sandstone, and shale deposited during this southward migration crop out in the south Texas–northern Tamaulipas region (Page, VanSistine, and Turner, 2005) (Figure 2). Provenance studies indicate that the rivers that formed these deposits drained significant regions of the continental interior throughout the Cenozoic (Blum et al., 2012; Repasch et al., 2017; Xu, Stockli, and Snedden, 2017) to evaluate these hypotheses.

Late Quaternary–Holocene Sea Level Change

The last low stand of sea level occurred between ca. 27–19 Ka and correlated with the maximum expansion of global ice sheets (Clark et al., 2009). Subsequent warming resulted in
dramatic coastal flooding within the northern Gulf of Mexico over the past 10 ka. Age-depth relationships of estuary, marsh, and swash-zone depositional environments for the northern Gulf of Mexico indicate that sea level increased dramatically at 9 to 5 mm/year between 10–8 Ka (Milliken, Anderson, and Rodriguez, 2008). Sea level rise decreased to 5 to 2 mm/year between 8–5 Ka and has slowed to less than 0.6 mm/year over the past 5 Ka. Comparison of regional and global sea-level curves for the last 5000 years indicate that Late Holocene relative sea-level rise across the northern Gulf of Mexico cannot be explained by coastal subsidence (Milliken, Anderson, and Rodriguez, 2008). Satellite altimetry and tide-gauge records indicates that rates of sea level rise have increased by an order of magnitude over the past century (Milliken, Anderson, and Rodriguez, 2008).

Rio Grande Drainage System

The 2830 km long Rio Grande is the fifth longest river in North America (Figure 1). It has a combined catchment of 472,000 km² and defines a 1254 km segment of the U.S.-Mexico border. Also referred to as the Rio Bravo in Mexico, the modern Rio Grande has two hydrologic domains. The upper Rio Grande of Colorado and New Mexico is fed by snow-melt from the southern Rockies and is almost entirely depleted as it flows into west Texas. The lower Rio Grande domain begins with the confluence of the Rio Conchos (Figure 1). The Rio Conchos has a 68,386 km² catchment that includes the Sierra Madre Occidental in the Mexican state of Chihuahua. The water carried by the Rio Conchos is supplied by the North American Monsoon and accounts for ca. 50% of the water carried by the lower Rio Grande. Further downstream, the Rio Grande receives input from the Pecos River, Rio Salado, and smaller streams (Figure 1). Its last major tributary, the Rio San Juan, has a catchment of 33,538 km² that includes the Sierra Madre Oriental in the Mexican state of Nuevo León (Figure 1).

Rio Grande Delta

The Late Quaternary and Holocene sea level changes described above created earlier lobes of the Rio Grande delta (Banfield and Anderson, 2004; Hiatt, 2010; Rodriguez, Fassell, and Anderson, 2001; Weight, Anderson, and Fernandez, 2011). These offshore deltas are believed to have been the dominant source of sands that nourished the central Texas barriers in the past (Anderson et al., 2014) and may also have contributed to the south Texas coast. Alternatively, more recently deposited offshore sediment cored from the south Texas inner shelf and shoreface is composed mostly of a thin veneer of sand resting on red delta silt and clay (Rodriguez, Fassell, and Anderson, 2001). This implies that offshore sand sources are no longer major sources of coastal sediment.

The modern Rio Grande delta straddles the international U.S.-Mexico border and has an areal extent of 360,000 km² (Ewing and Gonzalez, 2016) (Figure 2). The Holocene delta apex is situated ca. 50 km west of the Gulf Coast (98° E) near Reynosa, Mexico (Figure 2). A radiating array of precursor main channels of the Rio Grande abandoned by avulsion extend eastward.
These successively developed channels have produced a 110 km swath of Holocene delta plain deposits along the N-S trending Gulf Coast (Ewing and Gonzalez, 2016) (Figure 2). The latter are built upon clay, silt, sand, and gravel of the Pleistocene Beaumont Formation that represent stream-channel, point-bar, natural-levee, and backswamp deposits of a previously developed delta (Page, VanSistine, and Turner, 2005) (Figure 2).

The Rio Grande delta can be divided into two topographic domains: the upper and lower delta plain. In the upper plain, meandering abandoned river channels, locally known as resacas, are bound by sand-rich levees that rise 3–5 m higher than the surrounding interchannel regions. Although the topographically lower delta plain is morphologically similar, the interchannel regions are inundated by large ephemeral shallow brackish to saline lakes referred to as esteros (Ewing and Gonzalez, 2016) (Figure 2).

Shoreline Environment

A nearly continuous shoreline and dune system marks the interface between the delta and the Gulf of Mexico. North of the U.S.-Mexico border, South Padre Island extends for hundreds of km along the Texas coastline. This barrier island forms lagoons that notably include Laguna Madre (Figure 2). Under fair-weather conditions, 30 to 60 cm high waves with a 2 to 6 second period strike the shoreline. The shallowly inclined, fine sand beaches generate spilling waves. The coast is affected by a diurnal, microtidal (<1 m) range (Morton, 1994).

The long axes of sand dune fields in south Texas define a bearing of 318° for the prevailing winds (Figure 2). According to the Texas Weather Atlas (Larkin and Bomar, 1983), 1961–1980 weather records from Brownville wind conditions are highly seasonal. During the winter (December–February), winds alternate from blowing out of the N to NW as weather fronts approach to S to SE during intervening periods. Wind speeds vary between 8 to 15 knots. For the spring and summer months (March to August), the prevailing winds blow out of the SE to SSE at wind speeds generally between 10–20 knots. Hurricane season lasts from June through November and peaks during August and September. During the fall, winds again alternate from N to NW to S to SE but tend to be light (6–12 knots).

The coastal winds interact with the curved shape of the Texas coastline to cause longshore currents to flow north in south Texas and west in east Texas. This results in a convergence zone offshore of central Texas (Anderson et al., 2014; Curray, 1980; Lohse, 1955; Rodriguez, Fassell, and Anderson, 2001). Consequently, shoreface deposits from east and south Texas are thinner and retrograding compared to those from central Texas, which are thicker and prograding (Rodriguez, Fassell, and Anderson, 2001). Hurricanes that impact southern Texas periodically increase erosion rates by up to an order of magnitude (e.g., Heise et al., 2009).

Human Impacts upon the Rio Grande Delta System

Burgeoning ranching and agriculture activities within the Rio Grande Valley prompted the establishment of the International Boundary and Water Commission in 1889. Marte R. Gómez Reservoir was constructed across the Rio San Juan, the last major tributary of the Rio Grande in 1936. Subsequent construction of Falcon Dam along the Rio Grande occurred in 1953 (Benke and Cushing, 2005) (Figure 1). Additional irrigation projects have substantially reduced the flow of the Rio Grande to the point where the mouth of the Rio Grande River has been sealed by sand bars and silted over (Benke and Cushing, 2005; Ewing and Gonzalez, 2016; Jepaen et al., 2003).

The configuration of the Rio Grande delta was considerably different in the early 1900s than it is today. Figure 3 depicts the coastline morphology in 1930s prior to most dam construction and flood control projects when the coastal interface and barrier islands were less well developed. Dewatering and dredging have significantly impacted the delta system over time (Morton and Pieper, 1975) (Figure 3). In order to ensure the viability of Brazos Santiago Pass as a navigable waterway, jetties were constructed by the Army Corps of Engineers in the

![Figure 3. Morphological change of the Rio Grande delta system related to anthropogenic activity. Locations of samples #3–#8 and #11 shown: (A) Delta wetland region in 1929 prior to most dam construction; (B) 1983 conditions after creation of the Brownsville ship channel and construction of jetties and dredging of Brazos Santiago Pass; (C) 2005 conditions after continued dredging and draining of delta wetlands.](image-url)
late 1920s. The 27–km long deep-water Brownsville Ship Channel was subsequently dredged inland from Brazos Santiago Pass to Brownsville (Ewing and Gonzalez, 2016). This channel has been steadily deepened throughout the years and is now at 13 m navigation depth (Figure 3).

METHODS

A total of 11 samples were collected. A vibracorer was employed to enable the properties of surface vs. deeply buried sand to be contrasted at two separate locations. Sample locations are shown in Figures 3 and 4 with map coordinates...
and additional details provided in Table 1. Samples #1 (surface) and #2 (5 m depth) were collected from a vibrocore extracted from beach sand at Edwin King County Park, 25 km north of the mouth of the Rio Grande River (Figure 4). A second South Padre Island beach sand (#3) was collected 11 km to the south at Isla Blanca Park near the Brazos Santiago Pass jetty. Three additional beach sands (#4, #5, and #6) were collected along Boca Chica beach between Brazos Santiago Pass and the active mouth of the Rio Grande River. Surface sand (#7) and a 5 m deep vibrocore sample (#8) was collected from the active mouth of the Rio Grande (Figure 4). The final sand sample was collected from sediment dredged from the Brownsville ship channel (#11) (Figure 4).

Sand samples were disaggregated, dried, and characterized morphologically at San Diego State University using a CAMSIZER instrument (Blott and Pye, 2001). The CAMSIZER measures both particle size and shape and calculates textural analysis parameters (Blott and Pye, 2001). Sand fed through the CAMSIZER is photographed with two orthogonal high-speed digital cameras. These allow measurement and shape analysis of a wide range of particles from 30 μm to 30 mm.

Zircon (ZrSiO₄) is a primary target phase for U-Pb geochronology (e.g., Schoene, 2014). The abundance of detrital zircon in clastic sedimentary rocks, combined with its resistance to chemical and physical weathering, contributes to the popularity and prolificacy of the U-Pb system for geochronology performed with sedimentary rocks (Gehrels, 2012). Because most zircon is igneous in origin, zircon U-Pb ages are generally thought to represent the time at which zircon within a host igneous rock crystallized from magma. Thus, in cases where sediments are directly routed from igneous source regions to the depositional basin, a distribution of detrital zircon ages represents the distribution of crystallization of igneous rocks within the source region (e.g., Gehrels, 2012). While reworking of sediment from previously deposited rocks obscures primary relationships with basement terranes, the detrital zircon age distribution of a sample remains a distinctive property that can be used to characterize sedimentary provenance (e.g., Fletcher et al., 2007; Kimbrough et al., 2015; Malikowski et al., 2020).

Concentrates of detrital zircon were extracted from the suite of Rio Grande delta sands using conventional hydrodynamic, magnetic, and density methods. Zircons were hand-selected with the aid of a binocular zoom microscope. Grains were mounted, potted in epoxy, sectioned, and polished. Uranium-lead isotopic ages were measured by laser ablation, inductively coupled plasma mass spectrometry (LA-ICP-MS) at the Arizona Laserchron Center. Standard Sri Lanka zircon (standard zircon SL with a 564 Ma U-Pb age) (Kimbrough et al., 2015) and secondary standard zircon R33 were added to the mounts to standardize the U-Pb measurements. A total of 647 of the 1106 grains yielded ²⁰⁶Pb/²³⁵U ages <750 Ma. Since Mesoproterozoic and early Paleoproterozoic zircons have higher and thus more readily measured ²⁰⁶Pb/²³⁰U ion intensities, ²⁰⁶Pb/²³⁰U ages were used instead of ²⁰⁶Pb/²³⁵U ages because the former are generally more accurate for ancient zircons. Approximately 13% percent of the older (>750 Ma) zircons were negatively impacted by U-Pb discordance at the 15% level. Results discordant by greater than 15% were excluded from further analysis.

The Kolmogorov-Smirnov (K-S) test was utilized to calculate the probability that two measured detrital zircon age distributions were derived from the same population (Press et al., 1992). The probability (P) yielded by the test is used to evaluate the null hypothesis that two distributions (A, B) are drawn from the same population. The value of P is calculated from the maximum vertical separation (D) of cumulative age distributions of samples A and B. P also depends upon the sample size (N) where Nc = N1 * N2/(N1 + N2). A value of Nc > 25 is required for a valid test (Press et al., 1992). If P > 0.05, the null hypothesis is upheld because the age distributions for the two samples are not distinguished at 95% confidence. Alternatively, if P < 0.05, the null hypothesis can be rejected. A P value < 0.05 thus indicates that there is a statistically meaningful difference between the age distributions associated with two samples.

The K-S test results reported here were generated using a program written by O.M. Lovera that implements calculations presented in Press et al. (1992). Lovera’s algorithm calculates P for the case in which experimental error is ignored. This is the conventional K-S test that calculates D from cumulative age distributions (i.e. the raw data) and P where experimental error is taken into account. The later calculates D from two cumulative probability density function (i.e. error-weighted ages) and yields high values of P.

RESULTS

Table 1. Sample locations and descriptions of the setting in which the samples were collected.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>Details</th>
<th>Map Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>South Padre Island (Edwin King County Park)</td>
<td>top of core</td>
<td>26.18586 N, -97.177481 W</td>
</tr>
<tr>
<td>2</td>
<td>South Padre Island (Edwin King County Park)</td>
<td>bottom of core</td>
<td>26.18586 N, -97.177481 W</td>
</tr>
<tr>
<td>3</td>
<td>South Padre Island (Isla Blanca Park) near jetty</td>
<td>surface sand</td>
<td>26.07160 N, -97.155961 W</td>
</tr>
<tr>
<td>4</td>
<td>Boca Chica Beach (Brazo Santiago Pass)</td>
<td>surface sand</td>
<td>26.06400 N, -97.150400 W</td>
</tr>
<tr>
<td>5</td>
<td>Boca Chica Beach (midpoint)</td>
<td>surface sand</td>
<td>26.00180 N, -97.150800 W</td>
</tr>
<tr>
<td>6</td>
<td>Boca Chica Beach (near Rio Grande mouth)</td>
<td>surface sand</td>
<td>25.95660 N, -97.147833 W</td>
</tr>
<tr>
<td>7</td>
<td>Boca Chica Beach (near Rio Grande mouth)</td>
<td>top of core</td>
<td>25.95660 N, -97.147833 W</td>
</tr>
<tr>
<td>8</td>
<td>Boca Chica Beach (near Rio Grande mouth)</td>
<td>bottom of core</td>
<td>25.95660 N, -97.147833 W</td>
</tr>
<tr>
<td>9</td>
<td>Mexico-Playa Bagdad</td>
<td>surface sand</td>
<td>25.82382 N, -97.151983 W</td>
</tr>
<tr>
<td>10</td>
<td>Rio Grande</td>
<td>river sand</td>
<td>25.84968 N, -97.4357667 W</td>
</tr>
<tr>
<td>11</td>
<td>Brownsville Ship Channel</td>
<td>dredged sand</td>
<td>26.01210 N, -97.271050 W</td>
</tr>
</tbody>
</table>

Table 2 reports the textural attributes of the sand samples investigated (see Table 1). As indicated, most samples were unimodal, well-sorted, fine-grained sand. The term “slightly gravelly” generally refers to trace shell detritus. The detection limit for textural analysis (30 micron) was reached with sample 8.
Figure 5 illustrates the cumulative U-Pb zircon age distributions measured from the sample suite. Two samples (Playa Bagdad and the Brownsville Ship Channel) yield age distributions that bracket the distributions yielded by all other samples. The modern sand from the Rio Grande River is also emphasized for reference. The modern sand from Playa Bagdad may represent a less disturbed part of the delta system in northeastern Mexico. Finally, the Brownsville Ship Channel sample may expose older (i.e., pre-Holocene) sediments.

The U-Pb detrital zircon age distributions of the Rio Grande River, Playa Bagdad, and Brownsville Ship Channel are shown in Figure 6 as probability density functions. As indicated, all three distributions reveal similar age maxima with abundant Cenozoic and Mesozoic U-Pb ages and a broad distribution of Neoproterozoic, Mesoproterozoic, and Paleoproterozoic zircon. The largest age maxima occur between 40–20 Ma (Figure 6). Because the age peaks for all three samples are rather similar, the cumulative probability density functions (Figure 5) best illustrate the overall differences between the samples. As indicated, the Playa Bagdad sample has 70% < 250 Ma zircon while the Rio Grande and Brownsville ship channel samples have 52% and 42%, respectively, of grains < 250 Ma.

Age distributions measured from the eight beach sand samples (#1–#8) including the two borehole samples (#2 and #8) are dispersed around the age distribution for the Rio Grande sample (#10) (Figure 5). Table 3 presents 2–sample K-S test results from the eleven samples. As indicated, beach sand samples #1–#8 are statistically indistinguishable from Rio Grande river (#10) at 95% confidence. In contrast, comparison of the Playa Bagdad, Mexico sample (#9) with the Rio Grande River sample (#10) yields a value of $P = 0.03$ (measurement error neglected). This indicates that the Playa Bagdad sample

Table 2. Textural attributes of sand samples. Most samples were unimodal, well-sorted, fine-grained sand. In many instances, the term “slightly gravelly” refers to trace shell detritus. Note that the detection limit for analysis (35 micron) was reached with sample #8.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Geometric Mean (μm)</th>
<th>Logarithmic Mean (ϕ)</th>
<th>Sorting</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Sediment Mode/Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>236</td>
<td>2.083</td>
<td>1.238</td>
<td>0.008</td>
<td>1.030</td>
<td>unimodal, very well sorted/sand</td>
</tr>
<tr>
<td>2</td>
<td>236</td>
<td>2.084</td>
<td>1.237</td>
<td>0.049</td>
<td>1.044</td>
<td>unimodal, very well sorted/slightly gravelly sand</td>
</tr>
<tr>
<td>3</td>
<td>232</td>
<td>2.017</td>
<td>1.314</td>
<td>0.139</td>
<td>1.056</td>
<td>unimodal, well sorted/slightly gravelly sand</td>
</tr>
<tr>
<td>4</td>
<td>232</td>
<td>2.017</td>
<td>1.314</td>
<td>0.139</td>
<td>1.056</td>
<td>unimodal, well sorted/slightly gravelly sand</td>
</tr>
<tr>
<td>5</td>
<td>235</td>
<td>2.089</td>
<td>1.29</td>
<td>0.096</td>
<td>1.094</td>
<td>unimodal, well sorted/sand</td>
</tr>
<tr>
<td>6</td>
<td>241</td>
<td>2.053</td>
<td>1.476</td>
<td>0.254</td>
<td>1.174</td>
<td>unimodal, moderately well sorted/sand</td>
</tr>
<tr>
<td>7</td>
<td>225</td>
<td>2.155</td>
<td>1.376</td>
<td>0.013</td>
<td>1.178</td>
<td>unimodal, well sorted/slightly gravelly sand</td>
</tr>
<tr>
<td>8</td>
<td>< 40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>silt</td>
</tr>
<tr>
<td>9</td>
<td>225</td>
<td>2.155</td>
<td>1.273</td>
<td>0.115</td>
<td>1.134</td>
<td>unimodal, very well sorted/slightly gravelly sand</td>
</tr>
<tr>
<td>10</td>
<td>219</td>
<td>2.192</td>
<td>1.369</td>
<td>-0.027</td>
<td>1.161</td>
<td>unimodal, well sorted/slightly gravelly sand</td>
</tr>
<tr>
<td>11</td>
<td>228</td>
<td>2.213</td>
<td>1.325</td>
<td>0.065</td>
<td>1.045</td>
<td>unimodal, well sorted/sand</td>
</tr>
</tbody>
</table>

[Figure 5](#) Cumulative plot of detrital zircon U-Pb age distributions for all Rio Grande delta modern sand samples. Results from Playa Bagdad in Mexico and the Brownsville ship channel bound all other results and serve as end members for future analysis. Rio Grande modern river sand is also used as a reference in future calculations.

[Figure 6](#) Representative probability density functions of detrital zircon 0–3000 Ma U-Pb age distributions measured from modern sand end members: (A) Playa Bagdad (Mexico); (B) Rio Grande; (C) Brownsville ship channel. Insets provide finer detail for 0–300 Ma portion of distribution.
is statistically resolved. Additional K-S tests performed indicate that samples #2, #4, #5, #7, and #8 are statistically indistinguishable at 95% confidence from the Playa Bagdad sample (#9). Samples #2 (P = 0.37) and #8 (P = 0.30) are most similar to the Playa Bagdad sample (#10). Comparisons made between the Brownsville Ship Channel dredged sand (#11) reveal that six of the eight samples overlap at 95% confidence.

DISCUSSION
The Rio Grande delta was a fluvial-dominated system that carried coarse sand and gravel between ca. 8000 and 3000 years ago during the Holocene Climatic Optimum (Rodriguez, Fassell, and Anderson, 2001). Today, dams, irrigation projects, and other factors have water reduced flow within the Rio Grande to the extent that the river carries only fine sand and no longer consistently flows to the Gulf Coast (Anderson et al., 2014; Benke and Cushing, 2005; Jepsen et al., 2003). This stark contrast in conditions prompts the following questions: (1) Is there a contrast in the provenance signature of Rio Grande River sand that can be attributed to dam construction? (2) Is modern sand proximal to the mouth of the Rio Grande River primarily being supplied by the Rio Grande River or from northeast-directed longshore sediment along the modern shoreline of the Gulf of Mexico?

How Have Dams Affected the Provenance of Sand within the Delta?
Dams disrupt the continuity of sediment transport along rivers. Over the past decade, sediment trapping caused by dam construction has caused 85% of the deltas worldwide to experience severe flooding, submergence, and other adverse effects (Nienhuis et al., 2020; Syvitski et al., 2009). The gravitational potential energy possessed by water released downstream from newly constructed dams works to rapidly remove pre-existing bedload (Kondolf, 1997). For example, construction of Glen Canyon Dam along the Colorado River in northern Arizona caused the downstream channel to incise, armor, and narrow (Grams, Schmidt, and Topping, 2007). More locally, construction of Livingston Dam along the Trinity River in central Texas caused bed erosion 50–60 km downstream of the dam (Smith and Mohrig, 2017). This included lowering of the channel bed, reduction in the sediment volume of channel bars, coarsening of sediment on bar tops, steepening of channel banks, and reduction in lateral migration rates of river bends (Smith and Mohrig, 2017).

Falcon Dam (volume of 3×10^8 m3) was completed in 1954 and represents the last major dam on the Rio Grande (Moya et al., 2016). Further downstream, the last major tributary to the Rio Grande, the Rio San Juan, is dammed 20 km upstream from its confluence with the Rio Grande (Figures 1 and 2). Martinez R. Gomez Reservoir (surface area of 235 km2) has been in place since 1936. Erosion of the riverbed has occurred downstream of these two dams since their construction. Moreover, additional sediment is contributed from the topo-graphically elevated region surrounding the dams. Extensive dissection of the landscape near the reservoirs has formed arroyos that lead to the Rio Grande River (Figure 2). The area of maximum relief near Falcon and Martinez R. Gomez Dams is underlain by Eocene, Oligocene, and Miocene strata (Page, VanSistine, and Turner, 2005) (Figure 2). Up to ca. 125 meters of relief occurs in the region adjacent to Falcon and Martinez R. Gomez Dams (Figure 2). Sandstones are characteristically enriched in zircon (e.g., Garcon et al., 2014) and are generally readily eroded when weakly cemented (Small et al., 2015). Further downstream, near Rio Grande City and the furthest downstream Miocene outcrops, the amount of local relief has decreased to ca. 60 meters. By the time the Rio Grande River reached Reynosa, topography is muted and the flood plain of the Rio Grande delta expands radially (Figure 2). Further south, the Rio Grande transitions to an aggregational form with super-elevated levees relative to the floodplain.

To test whether post-1954 erosion of sedimentary rocks south of Falcon Dam has altered the detrital zircon provenance signature of the Rio Grande River sand within the delta region, relevant data from past studies was evaluated. Figure 7 compares the results of previous detrital zircon studies performed with Rio Grande river sand upstream of the reservoir. Blum et al. (2017) and Fan, Brown, and Li (2019) independently collected and measured modern Rio Grande River detrital zircon U-Pb age distributions from near the city of Laredo, Texas, about 115 upstream of Falcon Dam (Figure 1). These are shown in Figures 7B and 7C, respectively. The primary distinction between the two Laredo samples and Brownsville (this study) is the much higher proportion of 40–20 Ma zircon in the former.

The cumulative age distributions for all three samples are shown in Figure 7D. The two independently collected and analyzed samples from Laredo (Blum et al., 2017; Fan, Brown, and Li, 2019) are indistinguishable within 95% confidence (P = 0.86). In contrast, comparisons of the Blum et al. (2017) and Fan, Brown, and Li (2019) samples from above Falcon Dam with the Rio Grande River sample from Brownsville (this study) yield P values (4×10^{-2} and 6×10^{-2}, respectively). These results indicate that the downstream sample from Brownsville is statistically distinguished from both upstream samples at 95% confidence. The cumulative age distributions of the Laredo Rio Grande samples plot above the envelope defined by all results from this study (compare Figures 5 and 7). The Playa

Table 3. Results of the two-sample, Kolmogorov-Smirnov (K-S) test. All comparisons are made relative to sample #10 (Rio Grande sand). A probability (P) of 0.05 or greater means that the two distributions cannot be distinguished at 95% confidence. Calculations performed with the raw data only compare the cumulative distribution functions of two samples. This is the conventional K-S test. Error-weighted K-S results compare the probability density functions (PDF) of the two samples. Because the PDF's are smoothed, calculated values of P are higher.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Error-Weighted Data</th>
<th>Unweighted Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D_{raw}</td>
<td>P_{raw}</td>
</tr>
<tr>
<td>1</td>
<td>0.075</td>
<td>0.937</td>
</tr>
<tr>
<td>2</td>
<td>0.107</td>
<td>0.573</td>
</tr>
<tr>
<td>3</td>
<td>0.097</td>
<td>0.727</td>
</tr>
<tr>
<td>4</td>
<td>0.043</td>
<td>1.000</td>
</tr>
<tr>
<td>5</td>
<td>0.087</td>
<td>0.823</td>
</tr>
<tr>
<td>6</td>
<td>0.103</td>
<td>0.614</td>
</tr>
<tr>
<td>7</td>
<td>0.079</td>
<td>0.961</td>
</tr>
<tr>
<td>8</td>
<td>0.081</td>
<td>0.868</td>
</tr>
<tr>
<td>9</td>
<td>0.196</td>
<td>0.041</td>
</tr>
<tr>
<td>10</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>11</td>
<td>0.128</td>
<td>0.347</td>
</tr>
</tbody>
</table>
Bagdad sample (#9) and the two vibracore samples (#2, #8) from the present study plot closest to the Laredo Rio Grande river sand samples. While these three samples (#2, #8, and #9) appear are likely to be the most pristine samples in the suite, all are distinguishable at 95% confidence from Blum et al.’s (2017) and Fan, Brown, and Li’s (2019) Rio Grande samples. The similar sample preparation and laboratory procedures were used to generate all three data sets argues against analytical issues as a cause for the significant difference between the Brownsville and Laredo river sands from the Rio Grande (Figure 7E–G). Interruption of downstream sediment transport as a result of dam construction provide a much more likely explanation. In a systematic study of the impact of dams upon downstream propagation of sediment and detrital zircon U-Pb age distributions, Malkowski et al. (2020) argued that the mass of sediment transported by California’s Sacramento-San Joaquin River to the Sacramento Delta was sufficiently large prior to dam construction to mitigate against bias caused by sediment trapped in dams. However, this conclusion requires that volumetrically significant new sources of sediment do not appear downstream of the dam after the reservoir is filled. Figure 7E–G displays representative detrital zircon age distributions from Eocene, Oligocene, and Miocene strata from southern Texas (Fan, Brown, and Li, 2019; Mackey, Horton, and Milliken, 2012; Xu, Stockli, and Snedden, 2017). Each distribution represents 4–6 pooled samples collected from southwestern Texas (see compilation details in Fan, Brown, and Li’s 2019) Rio Grande samples.

The Eocene distribution is indicated to most strongly resemble the age distribution of the modern Rio Grande River sand (Figure 7H). The Miocene cumulative age distribution plots below both the Eocene distribution and modern Rio Grande River sand, while the Oligocene age distribution plots well above it (Figure 7H). Interestingly, the Oligocene age distribution strongly resembles the age distributions of both...
modern Rio Grande River sand collected in Laredo, above Falcon Dam (Figure 7). When the K-S test is applied using the Oligocene age distribution as the comparison, \(P \) values of 0.15 and 0.26 are obtained for the Fan, Brown, and Li (2019) and Blum et al. (2017) modern Rio Grande River sands from the Laredo area.

Rigorous assessment of the ability of postdam sediment eroded from Early Cenozoic bedrock downstream from Falcon and Marte R. Gómez Dams to dilute the Oligocene zircon rich sand provenance signature reported for the modern Rio Grande near Laredo (Blum et al., 2017; Fan, Brown, and Li, 2019) (Figure 7B,C) to that measured near Brownsville (this study; Figure 7A) requires knowledge of both the mass and zircon concentration of reworked predam and newly eroded postdam sediment within the Rio Grande delta. While this mass balance calculation is beyond the scope of the present study, a simpler question can be posed: In the absence of any pre-existing river sediment, is it possible to mix the detrital zircon age distributions representing Eocene, Oligocene, and Miocene strata below the two dams in a manner that reproduces the modern Rio Grande river sand from Brownsville? To answer this, three-component mixing calculations were performed.

The mixing calculations presented below employ an extended form of the K-S statistic developed by O.M. Lovera that is applicable to mixtures of age distributions (see Kimbrough et al., 2015). The intersectional probability approach employed assumes that each component to the mixture (i.e. each age distribution) is independent from the other two. Ternary mixtures were calculated with a resolution of 0.1%. Results of these calculations are portrayed in Figure 8A. All mixtures that are indistinguishable from modern Rio Grande River sand (i.e. yield \(P > 0.05 \)) are contoured. The “best fit” solution that corresponds to the highest \(P \) value is 46.7% Miocene, 22.5% Oligocene, and 30.8% Eocene. Note however, that 28% of all ternary mixtures calculated were indistinguishable at 95% confidence from the age distribution yielded by modern Rio Grande River sand (Figure 8A). For example, any mixture between 95% Miocene–5% Oligocene and 63% Miocene–37% Oligocene on the Miocene–Oligocene binary join has a \(P \) value above 0.05. A more restricted range of acceptable mixtures centered on 80% Eocene–20% Oligocene occurs along the Eocene–Oligocene ternary join. In ternary space, a wedge shaped swath of acceptable mixtures trends parallel to, but does not intersect, the Eocene-Miocene binary join.

The significance of these mixing calculations depends upon how representative the input age distributions are for Cenozoic strata that crop out below Falcon and Marte R. Gómez Dams. Available data indicate that the age distributions used are highly reproducible as a function of geologic time throughout southern Texas (Blum et al., 2017; Fan, Brown, and Li, 2019; Mackey, Horton, and Milliken, 2012; Xu, Stockli, and Snedden, 2017). Assuming that the age distributions used in the calculations are representative, it can be concluded that the present-day detrital zircon U-Pb age provenance signature of the modern Rio Grande River can be accounted for by sand locally eroded from Early Cenozoic strata.

Have Longshore Currents Transported Sand from Southern Mexico to the Rio Grande Delta?

Sediment dispersal within marine delta systems is influenced by geological setting, sediment flux, and particle size distribution, and a host of hydrodynamic processes acting along the river/ocean interface (Masselink and Hughes, 2003; Woodroffe, 2002). Long-term coastal subsidence/emergence as a result of sea level variation has a major impact upon deltaic systems (Allen, 1965). Fluvially dominated deltas form when sediment input overwhelms wave energy and are more prevalent during periods of low sea level (Komar, 1973; Seybold, Andrade, Jr., and Herrmann, 2007). Alternatively, wave-dominated delta configurations involving barrier island formation occur when river sediment flux is reduced and/or wave energy becomes sufficiently high to winnow away fine-grained sediment and redistribute river sand along the shoreline (Nienhuis, Ashton, and Giosan, 2015; Seybold, Andrade, Jr., and Herrmann, 2007).
A Late Holocene reduction in sediment supply caused the Rio Grande delta to become a wave-dominated system ringed by barrier islands (Rodriguez, Fassell, and Anderson, 2001) (Figure 2). Depending upon the effectiveness of long-shore transport, it is conceivable that sand within the barrier islands of the Rio Grande could contain extraregional sand derived from southern Mexico. The efficacy of long distance sand transport by littoral currents during sea level highstands depends upon the width of the continental shelf, the steepness of the littoral zone, and whether or not topographic barriers exist (Ribó et al., 2020). In cases where rising sea level broadens the shelf, the possibility of far-traveled sediment transport via long-shore drift is enhanced since less sand is diverted offshore. For example, Garzanti et al. (2017) have employed detrital zircon age distributions and other provenance data to trace an 1800 km long littoral zone sand highway that extends from the Orange River of coastal Namibia to Angola's Atlantic coastline. Less laterally extensive (800–1000 km scale) longshore transport has also been documented along southern Brazil's Atlantic coast (Calliari and Toldo, 2016) and along the Pacific shore of Australia (Boyd et al., 2008).

Recognition of extraregional sediment requires distinctive age components. There are two distinctive provenance signatures represented along the Tamaulipas-Veracruz Gulf Coast (Figure 1) that are potentially useful for detecting extraregional sand in the Rio Grande barrier islands. Beach sand directly sourced from the Trans Mexican volcanic belt (Figure 1) contains significant proportions of diagnostic Quaternary detrital zircon (Armstrong-Altrin et al., 2018; Ramos-Vázquez and Armstrong-Altrin, 2019) (Figure 9). For example, nearly 50% of the detrital zircon age population examined from beach sand collected along the southern Veracruz coast near the mouth of the Rio Papaloapan (Figure 1) are <10 Ma with most grains yielding Quaternary U-Pb ages (Alvarado Beach) (Armstrong-Altrin et al., 2018) (Figure 9). The inset in Figure 9 documents the Quaternary-rich character of zircon present within six samples from the southern Vera Cruz coast (Armstrong-Altrin et al., 2018; Ramos-Vázquez and Armstrong-Altrin, 2019) (locations shown in Figure 1).

The basement of south-eastern Mexico is dominated by Triassic-Permian, early Paleozoic–late Neoproterozoic, and Grenville age zircon (Centano-Garcia, 2017) (Figure 9). The magenta (200–300 Ma), cyan (400–700 Ma), and yellow bands (900–1150 Ma) in Figure 9 demonstrate coastal samples collected along the southern Vera Cruz coast are enriched in zircon in these age ranges. For example, the combined Rio Girijalva and Rio Usumacinta collectively drain the Chiapas Massif and Oaxacan complexes of southern Mexico (Figure 1). The Atasta beach sample of Armstrong-Altrin et al. (2018) is highly enriched in early Paleozoic–late Neoproterozoic and Grenville zircon (Figure 9). Additional detrital zircon samples from the Bosque and Paseo del Mar coastal areas also contain these age components (Ramos-Vázquez and Armstrong-Altrin, 2019) (Figures 1 and 9).

To test for southern Mexican (i.e. Vera Cruz coast) provenance in the barrier island sand of the Rio Grande delta, a composite age distribution was constructed by pooling all barrier island samples (#1–#8) from the present study (Figure 9). This is justified because all are indistinguishable at 95% confidence by the K-S test. Figure 9 indicates that while Pliocene zircon is present in the composite sample, the details of the youngest portion of the composite age distribution (samples #1–#8) does not conform to the age distribution of the Trans Mexican volcanic belt. The inset to Figure 9 shows the youngest (0–50 Ma) detrital zircon present in the Alvarado beach sands and the composite sample (#1–#8) from the Rio Grande delta. Only 13 of the 807 analyses from the eight beach sand samples yielded ages in the 10–0 Ma range. Moreover, the 10 of the 13 young analyses clustered at 4.8 ± 0.5 Ma. Zircon sampled from the Trans Mexican volcanic belt is expected to yield abundant Quaternary zircon. The 1.6% levels of 10–0 Ma zircon present in the composite Rio Grande beach sand (#1–#8) are comparable to the background levels of this age zircon within the Rio Grande system (Blum et al., 2017; Fan, Brown, and Li, 2019) (Figure 7).

Similarly, the provenance signature of the composite (#1–#8) age distribution also contrasts markedly with that from the basement of southeastern Mexico (Figure 9). Specifically, the proportions of early Paleozoic–Late Neoproterozoic (400–700 Ma) and Grenville (900–1150 Ma) are much lower than is the case for the coastal areas of southern Mexico (Figure 9). Hence, no compelling evidence exists from the Rio Grande delta samples investigated in this study for northward longshore...
transfer of sediment from as far south as the Vera Cruz coast of southern Mexico.

Tapia-Fernandez, Armstrong-Altrin, and Selvaraj (2017); Hernandez-Hinojosa et al. (2018), Armstrong-Altrin et al. (2018), and Ramos-Vázquez and Armstrong-Altrin (2019) have all concluded on the basis of detrital zircon age systematics and other compositional attributes of coastal sediment that river supplied sediment to the coastal areas was much more important in defining the provenance and composition of coastal sediments than offshore factors such as longshore currents.

Further north, the nature of longshore sediment transport along the Mexican (Tamaulipas-Veracruz) Gulf Coast is well understood. The Mexican coastal shelf is considerably narrower than the Texas shelf and is thus more vulnerable to sediment diversion to deeper water (Figure 1). At the latitude of Brownsville, prevailing SE winds intersect the nearly N-S trending south Texas coastline at an acute angle and cause coastal longshore transport to be predominately directed to the north (Shideler, 1978). Numerical simulations performed by Zavala-Hidalgo, Morey, and O’Brien (2003) are presented in Figure 10. The calculations simulate the entire Gulf of Mexico, are based upon the Navy Coastal Ocean Model (Martin, 2000), and are forced with climatological monthly surface fluxes of heat and momentum derived from the Comprehensive Ocean Atmosphere Data Set (DaSilva, Young, and Levitus, 1994). The results indicate that the Tamaulipas-Veracruz shelf experiences a swift seasonal reversal of the along-shelf current (Figure 10). Littoral currents run down the coast from September to March and up the coast from May to August.

Coastal observations confirm that seasonal variation in the direction of longshore current occurs along the Veracruz shelf (Figure 1). For example, net sediment transport in the Rio Nautla area of Veracruz, Mexico is indicated to occur from south to north on the basis of northward prograding sand spits and river-mouth bars (Self, 1977) (Figure 1). During the winter however, winds out of the NE cause longshore current to flow in the opposite direction. The Rio Tecolutla and the Rio Nautla both drain the Late Miocene–Holocene Trans Mexican Volcanic belt and carry abundant volcanic detritus and distinctive limestone lithoclasts. Self (1977) reports that lithoclasts supplied by the Rio Tecolutla and Rio Nautla are transported as far as 60 km south of the Rio Nautla during the winter reversals.

A significant barrier to longshore transport occurs at Cabo Rojo (21.5° N) on the Veracruz coast, 150 km north of the Rio Nautla (Figure 1). Stapor (1971) described the impact of the barrier reef complex at Cabo Rojo. Three reefs (Arrecife Blanquilla, Arrecife Medio, and Isla De Lobos) occur along 100° south bearing that extends 5 to 12 km off the coast. These reefs have facilitated development of a lagoon (Laguna de Tamiahua) in their lee that deflects the coastline up to 25 km east of the regional trend. The overall geometry of the cape barrier is that of an asymmetric tombolo with a 60 km northern leg and a 35 km southern leg developed landward of the Blanquilla-Lobos coral reef tract (Stapor, 1971). This perturbation of the coastline serves to direct either north- or south-flowing shelf sand into deeper water (Stapor, 1971).

![Figure 10. Cumulative probability plot of detrital zircon U-Pb age distributions discussed in the text. Data from the Alvarado and Atasta Beach areas of the Veracruz coast of Mexico is from Armstrong-Altrin et al. (2018). The Alvarado beach sample represents sediment carried by the Papaloapan River which drains the adjacent Trans Mexican volcanic belt (see Figure 1). Note that 50% of the age distribution is defined by 10–0.25 Ma volcanic zircon. The Atasta Beach sample represents sediment delivered from the Rio Girijalva and Rio Usumacinta that collectively drain the Chiapas Massif and Oaxacan complexes of southern Mexico. A pooled age distribution constructed from samples #1–#8 (this study) is shown for comparison. Note that the cumulative age distributions of the Atasta and Rio Grande samples differ dramatically. The inset shows that Rio Grande delta sands do not contain any resolvable volcanic zircon from the Trans Mexican volcanic belt.](image-url)

Sediment transport off of the shelf in this region may be further amplified by periodic collisions of anticyclonic loop current rings against the 21.5° to 23° N segment of the Mexican continental margin (e.g., Vidal, Vidal, and Perez-Molero, 1992). These interactions are thought to occur with a high enough frequency to serve as the most effective mechanism to transfer continental shelf water (and presumably shelf sediment) into the deeper gulf (Vidal, Vidal, and Perez-Molero, 1992). Further north Stapor (1971) concluded that the morphology of barrier islands along the southern (Tamaulipas) part of the Rio Grande delta indicate net southward longshore transport. This implies that south-directed flow in the seasonal variation in littoral
currents shown in Figure 10 prevails over north-direct transport.

In summary, available evidence indicates that factors including the narrow Veracruz-Tamaulipas continental shelf, geomorphic features (e.g., Cabo Rojo), oceanographic phenomena (e.g., ring current collisions with the shelf), and seasonal variation in the direction of wind-driven littoral currents (Figure 10) all support Stapor’s (1971) conclusion that coast-parallel sediment transport is presently highly compartmentalized along the Veracruz-Tamaulipas Gulf Coast. This conclusion agrees with that of Armstrong-Altrin et al. (2018) that sediment supplied by major rivers is far more important than longshore currents in determining the provenance and composition of Late Holocene coastal sediments along the Veracruz-Tamaulipas Gulf Coast.

CONCLUSIONS

Detrital zircon U-Pb age distributions were measured from a variety of modern sediments from the Rio Grande delta of southern Texas, U.S.A. and northern Tamaulipas, Mexico in order to detect and quantify the potential impacts of dam construction and longshore transport. Modern Rio Grande River sand yields a detrital zircon U-Pb age distribution that is statistically indistinguishable from six surface beach sands collected along the barrier islands of the Rio Grande delta. The Playa Bagdad, Mexico sample appears distinct from the Rio Grande River sample in that it is enriched in Oligocene (notably 40–20 Ma) zircon. Similarly, two 5 meter deep vibracone samples of beach sand are similarly enriched in this component. These three samples may represent the most pristine delta deposits in the suite.

A statistically meaningful contrast in detrital zircon provenance signature exists between two independently reported Rio Grande modern sand samples collected upstream from Falcon Dam near Laredo, Texas and the sample collected in this study near Brownsville, Texas in the delta region. The former is highly enriched in Oligocene zircon and indistinguishable from one another at 95% confidence. The samples upstream from Falcon Reservoir most strongly resemble the Playa Bagdad and 5 meter vibracone samples from this study.

Ternary mixing calculations of age distribution representative of Eocene, Oligocene, and Miocene sandstones that crop out below Falcon dam demonstrate that locally eroded material can reproduce the provenance signature of Rio Grande modern sand in the delta. While more rigorous mass balance calculations are required, it is tentatively concluded that the Rio Grande delta sediment that was analyzed contains a large proportion of locally eroded material.

The late Holocene highstand of sea level makes it possible for the wave dominated delta to receive extraglacial input via longshore transport. Analysis of available data bearing upon longshore currents along the Tamaulipas Gulf Coast of Mexico indicated the possibility that extraglacial sediment could be transported northwards from as far south as the Cabo Rojo area, 420 km to the south. However, analysis of Rio Grande delta beach sands failed to detect meaningful concentrations of distinctive Trans Mexican volcanic belt-derived zircon that would confirm longshore transport on such a scale. This may imply that seasonally variable sand movement along the Mexican (Tamaulipas) Gulf coast is dominated by south-directed littoral currents.

ACKNOWLEDGMENTS

Joan Kimbrough (SDSU) is thanked for assisting with Camsizer analysis at San Diego State University and the UA staff of the Arizona Laserchron Center for help with detrital zircon U-Pb analysis. Oscar Lovera (UCLA) provided codes for calculating Kolmogorov-Smirnov statistics for individual samples and ternary mixing calculations. Andres Cardenas is thanked for help with sample collection. The four anonymous reviewers are thanked for their thoughtful feedback and suggestions.

LITERATURE CITED

