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ABSTRACT

Gravitational radiation from theGalactic population of close white dwarf binaries (CWDBs) is expected to produce
a confusion-limited signal at the lower end of the sensitivity band of the Laser Interferometer Space Antenna (LISA).
The canonical scale height of the disk population has been taken to be 90 pc for most studies of the nature of this
confusion-limited signal. This estimate is probably too low, and the consequences of a more realistic scale height are
investigated with a model of the LISA signal due to populations of CWDBs with different scale heights. If the local
space density of CWDBs is held constant, increasing the scale height results in both an increase in the overall strength
of the confusion-limited signal as well as an increase in the frequency at which the signals become individually re-
solvable. If the total number of binaries is held constant, increasing the scale height results in a reduction of the num-
ber of expected bright signals above the confusion-limited signal at low frequencies. We introduce an estimator for
comparing this transition frequency that takes into account the signal spreading at higher frequencies.

Subject headinggs: binaries: close — Galaxy: structure — gravitational waves — white dwarfs

1. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is a planned
space-based gravitational radiation detector that will have a
sensitivity band in the range of 10�5 to 10�1 Hz. Many of the
target sources for LISA will be supermassive and intermediate
mass black hole inspirals, as well as extreme mass ratio inspirals
of stellar mass compact objects into these more massive black
holes. At the lower end of the sensitivity band, the primary noise
source will not be instrumental but rather will come from the
accumulated signal of millions of close white dwarf binaries
(CWDBs) in the Galaxy. If we interpret the signal as many
overlapping sources, this signal is expected to dominate the in-
strumental noise above�0.2 mHz. At higher frequencies, the sig-
nal will start to separate into individually resolvable sources as
the number density of ultracompact binaries falls with increasing
frequency. In most studies of the sensitivity and science capa-
bilities of LISA, this confusion-limited signal is modeled as an
additional Gaussian and stationary noise source in the frequency
range between 0.1 and 3 mHz (e.g., Cutler 1998; Barack & Cutler
2004a, 2004b).

The overall shape and placement of the confusion-limited
noise source is usually based on the original work of Hils et al.
(1990), who calculated the expected signal from a number of
different binary systems in the Milky Way. The expected signal
due to CWDBs was shown to dominate all other Galactic sources
between 0.1 and 3 mHz. Their calculation of the expected pop-
ulation of CWDBs was ostensibly based on a surface density star
formation rate, which is independent of the scale height of any
Galactic spatial distribution model. However, they then com-
pared the local space density of their model with observations
and concluded that a factor of 10 reduction of the total number
of binaries would bring their model more in line with observa-
tions. This amounts to a de facto calibration of the total number
of binaries by local space density. The calculation of the local

space density is dependent on their Galactic spatial distribution
model

�(r) ¼ N

4�R2
0z0

e�R=R0e� zj j=z ð1Þ

(Hils et al. 1990), which is a double exponential with a radial
scale R0 ¼ 3:5 kpc and a disk scale height z ¼ 90 pc. The choice
of z0 ¼ 90 pc follows from the fact that the mass of the CWDB
progenitors are relatively massive, lying in a critical range be-
tween 1.12 and 5.6 M� (Webbink 1984). It is this reduced
population that is used to generate the white dwarf binary back-
ground in the LISA sensitivity curve generator.1

More recent simulations of the Galactic white dwarf binary
population have used a number of different spatial distributions
(Edlund et al. 2005; Nelemans 2003; Nelemans et al. 2001a).
The most recent simulation of Edlund et al. (2005) used the
probability distribution

P(R; z) ¼ 1

4�R2
0z0

e�R=R0 sech2 z=z0ð Þ; ð2Þ

where R0 and z0 are the radial scale and scale height, respec-
tively. Others have included a bulge by effectively doubling the
star formation rate in the inner regions of the Galaxy and adding
a bulge density of

�bulge / e� r= 0:5 kpcð Þ½ �2 ð3Þ

(Nelemans 2003), where r ¼ x2 þ y2 þ z2ð Þ1/ 2 in kpc. The Ga-
lactic white dwarf model used to generate the confusion noise
of Barack & Cutler (2004a, 2004b) is based on the population

1 See http://www.srl.caltech.edu /~shane/sensitivity/MakeCurve.html.
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synthesis of Nelemans et al. (2001a). Through an error in the
radial probability distribution function, the spatial distribution
actually used was of the form

�(r) ¼ N

4�RR0z0
e�R=R0 sech2(z=z0); ð4Þ

which unintentionally does a reasonable job of simulating a
bulge (Nelemans 2003). In all three cases above, the radial scale
was R0 ¼ 2:5 kpc, and the scale height was z0 ¼ 200 pc.

It is a well-known fact that different classes of stars have
different scale heights (Gilmore&Reid 1983; Kuijken&Gilmore
1989; Kent et al. 1991; Marsakov & Shevelev 1995; Ojha et al.
1996; Reed 2000; Siebert et al. 2003), and that for main-sequence
stars, the more massive ones live in thinner disks (e.g., Miller &
Scalo 1979). While it is true that the current crop of high-mass
main-sequence stars are found in a thin disk, CWDBs are evolved
systems, many of which are much older than the O(107) yr im-
plied by the main-sequence lifetimes of the most massive CWDB
progenitors. Any evolved population is known to exhibit a large
scale height that is proportional to its vertical velocity dispersion
(Nelson et al. 2002; Mihalas & Binney 1981; Wielen 1977; Allen
1973, 247). There is some debate as towhy old stellar populations
live in thicker disks. Perhaps the thickness is simply an artifact of
the conditions of the primordial galaxy, when stars were formed
from gas clumps within a galaxy potential that was still collapsing
to form the disk (Eggen et al. 1962) or were easily scattered by an
environment rich in galaxy mergers (Steinmetz & Navarro 2002).
On the other hand, interactions with potential fluctuations from
molecular clouds and other small-scale perturbations may heat
an initially cold stellar population, creating an ever thicker disk
as it ages and experiences more encounters (Schröder & Pagel
2003).

Whatever the reason, it is clear that the vertical scale height for
white dwarfs is rather thick—current estimates place z0 between
240 and 500 pc (Nelson et al. 2002). In light of these estimates,we
have chosen scale heights of 90 and 500 pc to investigate the
consequences of a larger scale height on the nature of the expected
gravitational wave signal from CWDBs in the Galaxy. To mini-
mize the effect of using different population synthesis models, we
compare these two scale heights using our own population mo-
del.We anticipate similar behavior if one were to change the scale
height of a different population model. In order to compare the re-
sulting gravitational wave signals, we introduce a tool for charac-
terizing the separation of strong signals in the frequency domain.

2. POPULATION MODEL

The population model we use to generate the different pop-
ulations of the CWDBs is modified slightly from the population
model described in Benacquista et al. (2004). In this model, the
binary types at birth are assigned a probability based on the pop-
ulation synthesis of Nelemans et al. (2001b), assigned an age
based on an assumed constant birth rate, and then placed in the
galaxy based on probability distributions in cylindrical coordi-
nates R and z given by

P(R) dR ¼ R dR

R2
0

e�R=R0 ; ð5Þ

P(z) dz ¼ dz

2z0
sech2(z=z0); ð6Þ

where R0 is the radial scale length and z0 is the scale height. In
order to investigate the effects of different scale heights, we

have chosen to keep a fixed value of radial scale R0 ¼ 2500 pc
and have varied only the scale height and the total number of
binaries. The space density of binaries, �(r), is found from the
total number, N, and the probability distributions by

�(r) ¼ NP(R; z); ð7Þ

where P is given by equation (2). We assume that the solar
neighborhood is located at Re ¼ 8500 pc and ze ¼ 0 pc and de-
fine the local space density to be �e ¼ �(Re; ze). We then obtain
�e ¼ 4:25 ; 10�10 pc�2ð ÞN /z0 for the local space density. For
our baseline thin-disk model (Thin model), we choose z0 ¼
90 pc and N ¼ 3 ; 106, so that �e ¼ 1:4 ; 10�5 pc�3. We have
chosen this value to most closely mimic the reduced population
used by Hils et al. (1990). To obtain the same local space den-
sity using the distribution of equation (4) (Nelemans et al. 2001a),
one would need to take N ¼ 2:2 ; 107 1:0 ; 107ð Þ for a scale
height of 200 pc (90 pc). Assuming that roughly 10% of white
dwarfs are in binary systems and about 10% of these are CWDBs
with orbital period less than 2 ; 104 s, this is about a factor of 3
below a conservative estimate of the expected local white dwarf
space density of 4 ; 10�3 pc�3 (Knox et al. 1999). For our larger
scale height model (Thick Amodel), we choose z0 ¼ 500 pc and
N ¼ 1:67 ; 107. This model has the same local space density as
our baselinemodel. To investigate the effect of the increased total
number in the Thick A model, we have also introduced a model
with the same total number as the Thin model,N ¼ 3 ; 106 but a
scale height of z0 ¼ 500 pc (Thick Bmodel). These threemodels
are summarized in Table 1.
We have used the Michelson signal as the observable for the

expected LISA data stream. The data stream is calculated in
the long wavelength approximation for binaries whose central
gravitational wave frequency is below 3 mHz (see Rubbo et al.
[2004] or Cutler [1998] for descriptions of this approximation).
At higher frequencies ( f k 3 mHz), we have used the rigid
adiabatic approximation (see Rubbo et al. [2004] or Vecchio &
Wickham [2004] for a description of this approximation). We
have included a linear chirp for those binaries whose frequency
will shift by more than �3 ; 10�9 Hz during the 1 yr observa-
tion.We have generated three realizations of each of our Galaxy
models. To minimize any variations between models, we used
the same three initial random seeds to generate the three real-
izations of each model. Thus, the first realization of the Thin
model has exactly the same population of binaries as the first
realization of the Thick B model (modulo a rescaling of the
z-coordinate), and the first realization of the Thick B model is a
subset of the first realization of the Thick A model. Represen-
tative strain spectral densities for the three models are shown in
Figures 1–3. To better characterize the spectra, we have also
included a running median over 1000 bins for each spectrum.
For reference, we have also included the LISA sensitivity curve
(at S/N ¼ 1) and the standard Hils-Bender CWDB confusion
curve as generated by the LISA sensitivity curve generator.
Because our spectra are calculated in the detector frame and the

TABLE 1

Disk Population Model Parameters

Model

z0
(pc)

N

(106)

�e
(10�6 pc�3)

Thin ...................... 90 3 14

Thick A ................ 500 16.7 14

Thick B ................ 500 3 2.6

BENACQUISTA & HOLLEY-BOCKELMANN590 Vol. 645



sensitivity curve generator output is in the barycenter frame, we
have rescaled the sensitivity curve generator output by 3/20ð Þ1/ 2
to account for averaging over all polarizations and directions.

The strain spectra for the models show the expected behavior—
there is a foreground of strong nearby signals superimposed on a
confusion-limited background at frequencies below about 1 mHz,
numerous individually resolvable signals above about 10mHz, and
a transition zone in between where the floor of the strain spectral
density drops to the numerical noise level of �10�22 Hz�1/2. We
note that the running median of our spectra is generally below
the standard Hils-Bender curve. This is due to the fact that we
are using a population synthesis based on the binary evolution
of Nelemans et al. (2001b), and this tends to produce binaries
whose chirp mass is roughly a factor of 2 lower than the popu-
lation synthesis of Hils et al. (1990; G. Nelemans 2005, private
communication). However, if one scales up the running median
curve so that it coincides with the standard Hils-Bender curve,

one notices that for each model there is still considerable signal
noise beyond the standard upper confusion limit of 3 mHz, and
that the noise level drops much more slowly than the standard
confusion curve. This is shown in Figure 4 for the Thin model,
which best matches the Hils et al. (1990) CWDB population. We
caution, however, that it is misleading to quantitatively com-
pare the specific characteristics of the standard CWDB curve to
the Thin model—the population synthesis model is different,
the approach to data analysis is different, and we define a dif-
ferent measure of the confusion onset (see x 3). Consequently,
the standard confusion curve on these figures should be used
merely as a qualitative benchmark.

3. ESTIMATING THE TRANSITION FREQUENCY

Characterizing the shape and amplitude of the unresolvable
gravitational wave sources is not a trivial undertaking, and many
groups are working to develop techniques to extract both the
resolvable signals from the confusion foreground (cf. Umstätter
et al. 2005a, 2005b; Cornish & Larson 2003a, 2003b; Takahashi

Fig. 1.—Strain spectral density (black) for the Thin model with a running
median over 1000 bins (gray). The expected noise level and standard Hils &
Bender (1997) confusion-limited noise from the LISA sensitivity curve generator
are shown as the light gray dashed curves. The noise and standard confusion-
limited noise curves have been multiplied by 3/20ð Þ1/ 2 to transform them from
the barycenter frame to the detector frame.

Fig. 2.—Strain spectral density (black) for the Thick A model with a running
median over 1000 bins (gray). The expected noise level and standard Hils &
Bender (1997) confusion-limited noise from the LISA Sensitivity Curve Gener-
ator are shown as the light gray dashed curves. The noise and standard confusion-
limited noise curves have been multiplied by 3/20ð Þ1/ 2 to transform them from
the barycenter frame to the detector frame.

Fig. 3.—Strain spectral density (black) for the Thick B model with a running
median over 1000 bins (gray). The expected noise level and standard Hils &
Bender (1997) confusion-limited noise from the LISA sensitivity curve generator
are shown as the light gray dashed curves. The noise and standard confusion-
limited noise curves have been multiplied by 3/20ð Þ1/ 2 to transform them from
the barycenter frame to the detector frame.

Fig. 4.—Running median of the Thin model over 1000 frequency bins
compared with the standard CWDB confusion curve from the LISA sensitivity
curve generator scaled to coincide with the Thin model at low frequencies.
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& Seto 2002; Cutler 1998) and to quantify the extent of the
foreground itself (Hils et al. 1990; Nelemans et al. 2001a; Bender
& Hils 1997; Evans et al. 1987; Postnov & Prokhorov 1998;
Timpano et al. 2006). Since these techniques are still in devel-
opment, there is no canonical and robust way to quantify the
onset of the confusion limit. We develop and present one sta-
tistic in this section; however, we caution that we are using it
primarily as a comparison tool to discover trends among our
models, and it should not be used to compare our results with
those of other published work. For a given data analysis tech-
nique, however, the same trends should be obtained.

The conversion of the raw Galactic spectrum to a smooth curve
representing the confusion limit is subject to a number of as-
sumptions concerning both the ability to remove stronger fore-
ground signals from the low-frequency region and to individually
resolve and extract signals from the higher frequency regions
where there are both full and empty frequency bins. Depending
on how optimistically one chooses to estimate these abilities, one
can dramatically alter the shape of the Galactic confusion curve.
For example, the method described in Hils & Bender (1997)
assumes that information in three frequency bins are required
to completely parameterize (and therefore subtract) the signal
from an individual binary. These three bins are removed at the
signal strength of the foreground binary. The effect of this as-
sumption is to produce the dramatic drop in the standard white
dwarf binary curve at around 3 mHz where the average num-
ber of binaries per frequency bin drops below 1. Timpano et al.
(2006) have used a different method to estimate the ability to
remove signals in the transition zone. Starting with the full signal
from the entire population of binaries, they calculate a running
median to determine the background level of the full signal.
Next, they determine the bright binaries that stand above this
level with a S/N of at least 5. These binaries are then completely
and exactly removed from the data stream. The process is then
repeated on the remaining signal until the number of new bright
binaries is less than 1% of the previously found bright bina-
ries, resulting in a remaining signal that is nearly Gaussian. This
process is highly optimistic and therefore represents a lower
bound on the cleaned signal. Nelemans et al. (2001a, 2004)
simply cut the signal off once the average number of binaries
per bin drops below 1. Since these assumptions rely on the cur-
rently undemonstrated capabilities of future data analysis tech-
niques, we choose to analyze the signal prior to any assumed data
reduction.

3.1. The � Estimator

Although individual binaries will occupy a single frequency
bin in the barycenter frame (unless they are chirping), the motion
of LISAwill spread these signals out over several frequency bins.
Consequently, simply counting the number of binaries per bin is
not a very realistic way of determining the transition zone. The
ability to resolve a signal is related more to the number of ad-
jacent bins without signal than the number of binaries per bin.
In order to successfully extract the signal due to a binary, it is
necessary to determine parameters (such as sky position, orien-
tation, and amplitude) that fully characterize the spreading of
the signal in the frequency domain. The accuracy with which
this can be done is related to the signal-to-noise ratio (S/N). Thus,
we construct a parameter, �, that characterizes the fraction of fre-
quency bins that contain signal with a specified S/N.

To motivate our definition of �, we treat the signal strength
h( f ) in any frequency bin as though it were sampled from a
distribution function. In frequency regions where the signal is

completely confusion-limited (or pure noise), we take this dis-
tribution function to be

P(h( f )) ¼ h( f )

�2
f

exp
�h2( f )

2�2
f

" #
; ð8Þ

where �f is a measure of the averaged signal strength over a suit-
ably small frequency range so that it can be considered constant.
From the mean,

hhi ¼
Z 1

0

hP(h) dh; ð9Þ

and the variance,

�2
h ¼

Z 1

0

h2P(h) dh� hhi2; ð10Þ

we can construct the dimensionless quantity

� ¼

ffiffiffiffiffiffi
�2
h

q
hhi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4� �

�

r
: ð11Þ

Thus, in the confusion-limited regime, � should be well de-
scribed by equation (11) and should be approximately 0.5.
When the data stream consists of both noise and signal, the

signal strength in any frequency bin should then be modeled as
if it were sampled from a linear combination of two distribu-
tion functions, one for the noise and one for the signals. This
function is given by

P 0(h( f )) ¼ a
h( f )

�2
f

exp
�h2( f )

2�2
f

" #

þ (1� a)
h( f )

(b�f )
2
exp

�h2( f )

2(b�f )
2

" #
; ð12Þ

where a gives the probability that a given frequency bin will be
empty (i.e., dominated by instrument noise of strength �f ) and
b is a measure of the signal-to-noise ratio for the average re-
solvable signal. The value of � in this case is given by

� ¼
4 aþ b2 1� að Þ½ � � � aþ b 1� að Þ½ �2

n o1=2

ffiffiffi
�

p
aþ b 1� að Þ½ �

: ð13Þ

When we apply � to our simulation of the LISA data stream,
we compute the mean and variance of the strain spectral density
over n frequency bins using

hhii ¼
1

n

Xiþn�1

j¼i

h fj
� �

; ð14Þ

�2
hi ¼

1

n

Xiþn�1

j¼i

h2 fj
� �

; ð15Þ

and construct

�i ¼
ffiffiffiffiffiffi
�hi

p

hhii
: ð16Þ
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In a region of the spectrum where the potentially resolvable
sources have S/N given by b, then �i is a measure of the fraction
of bins devoid of resolvable signal. Consequently, one can set a
threshold value of �i corresponding to the value of a necessary
for a given data analysis technique to be able to resolve signals
with S/Nkb.

3.2. Expected N-Dependence of Transition Frequency

Without adhering to a specific data analysis technique, the
choice for the threshold value of �i is somewhat arbitrary. How-
ever, for a given choice of a, we can expect the transition fre-
quency ( ft) at which �i crosses the associated threshold to scale
with the total number of binaries (N ) according to ft / N 3 / 8. In
order to understand this scaling, we note that in the expected
transition region between 1 and 10 mHz, the number density of
binaries in frequency space is governed primarily by the period
evolution through gravitational radiation. Therefore, according
to Hils et al. (1990),

dN

df
/ Nf �11=3; ð17Þ

where f is the gravitational wave frequency. At the frequen-
cies of the transition region, the primary source of spreading
of the signal into adjacent frequency bins is the Doppler mod-
ulation of the signal, so �f / f . Consequently, at the transi-
tion frequency

dN

df

����
����
ft

/ f �1
t / Nf

�11=3
t ; ð18Þ

and so we obtain ft / N 3 / 8.
In order to test the ability of the � estimator to correctly

reproduce the expected scaling of ft with N, we have applied �
to a broad set of Galaxy realizations using the density distribu-
tion given by equation (4) with different values for z0, R0, andN.
Note that these toy models have a different density distribution
than our disk population models, which more closely match
Hils et al. (1990); these models serve to test the � estimator and

TABLE 3

Transition Frequencies for the Disk Population Models

Model Realization

ft
(mHz)

Thin .................................. 1 2.09–2.11

Thin .................................. 2 1.79–2.17

Thin .................................. 3 1.58–2.20

Thick A ............................ 1 2.93–4.42

Thick A ............................ 2 3.60–5.03

Thick A ............................ 3 3.46–5.35

Thick B ............................ 1 2.22

Thick B ............................ 2 1.79–2.19

Thick B ............................ 3 2.10–2.23

TABLE 2

Transition Frequencies at which � Passes through 1.2

for Galaxy Realizations with Different N

N

(106) Number of Models

ft
(mHz)

4............................ 3 2.90 � 0.07

8............................ 6 4.01 � 0.11

12.......................... 1 4.64

20.......................... 2 5.56 � 0.18

Fig. 5.—� for all models in the transition zone. Three realizations are plotted for the Thin (black line), Thick A (dashed dark gray line), and Thick B (light gray line) models.
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determine reasonable values for a, b, and �i. In these realizations,
we did not introduce any simulated instrumental noise into the
data stream, but numerical round-off errors introduce an effective
noise contribution that we estimate from the strain spectral den-
sity to be ’10�22 Hz�1/2. In the expected transition region the
mean signal strength, read from the strain spectral density, is
’10�20 Hz�1/2. Correspondingly, we take b ¼ 100 as an approx-
imation of the S/N in the region of interest. We arbitrarily chose
a ¼ 0:5 to give a threshold value of �i ¼ 1:2. We then chose to
average over n ¼ 20;000 bins to ensure a reasonably smooth
curve for �. If smaller values of n are used, the effect is to increase
the variation in �, which increases the spread of frequencies for

which � passes through the threshold without significantly alter-
ing the central value of ft. The values of ft obtained in this way
are shown in Table 2. A least-squares fit to the values of ft for a
function of the form ft ¼ �N� gives � ¼ 0:39 � 0:04, indicat-
ing that � does reproduce the correct scaling of the transition
frequency with total number.
We note that the � estimator is really nothing more than a

dimensionless measure of the degree of scatter in the strain am-
plitude about its mean. It is through the motivation described in
equations (8)–(13) that we interpret � as a measure of the num-
ber of resolvable signals with S/N > b. The fact that � repro-
duces the expected scaling of the transition frequency with total
number can be viewed as confirmation that this interpretation is
reasonable.

4. RESULTS

We have applied the � estimator to our model populations to
determine the relationship between the transition frequency and
the scale height. We calculated the mean and variance as de-
scribed in equations (14) and (15), averaging over n ¼ 20;000.
Again, as in x 3.2, by inspection of the strain spectral density
plots, we find that the mean signal strength in the expected tran-
sition zone is �10�20, while the effective noise due to numeri-
cal round-off errors is�10�22. Consequently, we take the same
values as in x 3.2. We note that � is weakly dependent on the
value of b, so that reducing b by a factor of 5 (as might naively
be expected from increasing the scale height by the same factor)
results in a negligible reduction of the threshold value to � ¼
1:15. The plots of � for all models are shown in Figure 5.

Because the transition between confusion-limited signal to in-
dividually resolvable sources occurs over a spread of frequencies,

Fig. 6.—Strain spectral density for the Thinmodel between 2.09 and 2.11mHz,
where � passes through 1.2. There are 76 binaries in this region of the spectrum.

Fig. 7.—Plot of � as a function of frequency (in mHz) for the three realizations of each model. Note that the Thin model (black line) is above the Thick Bmodel (light
gray line), which is above Thick A (dashed dark gray line).

BENACQUISTA & HOLLEY-BOCKELMANN594 Vol. 645



� can fluctuate about 1.2 over a range of frequencies. Furthermore,
regions where random clustering of particularly loud signals can
stand well above the confusion-limited noise will also produce
values of � above 1.2. The range of frequencies through which �
transitions past 1.2 are given for each model in Table 3. It is clear
from Figure 5 that using a larger scale height for the Galaxy while
maintaining the local space density of binaries results in a higher
transition frequency, aswould be expected from simply increasing
the total number of binaries in the Galaxy. Also, we note that there
is no significant difference in the value of ft between the Thin and
Thick B models. Again, this is not unexpected since all of these
models contain the same number of binaries.We show in Figure 6
the appearance of the spectrum for theThinmodel around 2.1mHz
to illustrate the separation of signals at this point. There are 76 bi-
naries shown in Figure 6.

At the low-frequency end of Figure 5, there is an interesting
distinction between all three models. Below about 1 mHz, the
Thin model has a higher value of � than either Thick model, and
the Thick A model has a lower value of � than the other two
models. This detail is shown in Figure 7. It is understandable
that the Thick A realizations should give a � below the Thin
and Thick B models. The much larger total number of binaries
in the Thick A models will produce a stronger confusion-limited
signal from the thousands of binaries per frequency bin expected
in the low-frequency end of the spectrum. Consequently, we
would expect an overall smaller S/N for the bright signals that
stand out above the background. This in turn will produce a
smaller value of � due to the reduced value of b.

The explanation for the differences between the Thin and
Thick B models is a little more subtle. First, we note that the
background confusion-limited signal should be similar for both
models, since they both have the same value ofN (and therefore
the same number of binaries per frequency bin). Furthermore,
we used the same three random seeds to generate the three
realizations of the Thin model as we used to generate the three
realizations of the Thick B model, so the number density of bi-
naries in frequency space cannot differ between the twomodels.
Therefore, the differences in � between these two models can-
not arise from different values of a. However, since the Thick B
models have a larger scale height, the local space density is re-
duced by the ratio of scale heights. This, in turn, means that the
average distance to the nearby binaries is larger in the Thick B
models than the Thin models. Again, this will result in an
overall lowering of the S/N of the bright signals compared with
the Thin models, producing a smaller value of � in the Thick B
models.

5. CONCLUSIONS

The canonical curve that is used to represent the Galactic
white dwarf binary confusion-limited signal in descriptions of
LISA’s sensitivity is based on a de facto local space density cal-
ibration of the total number of binaries in the Galaxy. The spa-
tial distribution model that was used has a scale height of 90 pc
(Hils et al. 1990). More recent models of the Galactic white
dwarf binary population use a spatial distribution model with a
scale height of 200 pc (Nelemans et al. 2001a, 2001b). Current

estimates for the vertical scale height for white dwarfs in the disk
are somewhat thicker, with scale heights between 240 and 500 pc
(Nelson et al. 2002). The consequences of using an increased
scale height in models of the Galactic white dwarf binary contri-
bution to the LISA sensitivity curve differ depending on whether
one calibrates the total number of binaries using global prop-
erties (such as inferred star formation history) or local properties
(such as local space density). We have generated three models of
the Galactic white dwarf binary population and calculated the ex-
pected LISA data stream from three realizations of each of these
models. In order to analyze the expected transition frequency of
the signal as it goes from confusion-limited to individually resolv-
able, we have introduced an estimator, �.

If the total number of binaries (N ) in a Galactic binary sim-
ulation is calibrated by using the local space density, then an
increase in the scale height of the spatial distribution model will
result in a linear increase in the total number of binaries. In this
case, the resulting change to the expected confusion curve is what
one would expect from simply increasing the number of bina-
ries. The transition frequency increases, and the overall level of
the confusion-limited signal at low frequencies is increased. Since
the local space density is used to calibrateN, the number of nearby
low-frequency sources is unchanged by going to a larger scale
height. The result of this is that fewer of these nearby sources will
stand out above the low-frequency confusion-limited signal. Con-
sequently, successfully extracting these bright sources will have
less of an effect on the low-frequency confusion-limited signal
than might be assumed from using a thin disk model, such as
that found in Timpano et al. (2006).

If the total number of binaries is fixed by a global calibration
method, the resulting effect of changing the scale height is con-
siderably more subtle. Since the value ofN is independent of the
scale height, the expected transition frequency will not change.
This is borne out by our analysis with the � estimator. In ad-
dition, the overall level of the low-frequency confusion-limited
signal will change only negligibly due to the slight increase in
the average distance to distant binaries. However, there can still
be an effect on the low-frequency confusion-limited signal. With
a fixed N, the local space density depends inversely on the scale
height, so a larger scale height yields fewer expected nearby bright
sources. Furthermore, the average distance to these nearby sources
will increase for models with greater scale height. The net re-
sult is that fewer bright sources will be extractable from the low-
frequency confusion-limited signal.
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