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Inflammatory Signaling and Innate Immune Response
	 Inflammation is a crucial mechanism of innate immune response.  
Macrophages and neutrophils recognize pathogen-associated  
molecular patterns (PAMPs) and damage-associated molecular  
patterns (DAMPs), undergoing a complex set of signaling  
interactions to release pro-inflammatory cytokines (most notably  
IL-1β and IL-18 [1] that prompt inflammatory response. To  
mediate innate immune response, pattern-recognition receptors 
(PRRs) recognize a broad range of markers of infection, stress, and 
damage. PRRs include membrane-bound receptors such as Toll-like 
receptors (TLRs), the interleukin receptors (ILRs), and the tumor  
necrosis factor receptors 1 (TNF-R1) and 2 (TNF-R2). Upon  
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binding of extracellular ligands, these PRRs activate intracellular  
signaling events, such as activation of NFκB, a transcription factor 
that upregulates expression of a wide variety of stress-response genes, 
or through post-translational modification such as activation of c-Jun 
amino-terminal kinase (JNK) [2] to effect inflammatory response.  
Within the cytoplasm, inflammatory ligands bind and activate  
intracellular PRRs that combine with a variety of associated factors  
to form large cytoplasmic scaffolding assemblies that integrate  
inflammatory activation and activate secretion of the major  
cytokines IL-1β and IL-18 by binding and activating caspase-1 [3] 
(Figure 1). These cytoplasmic PRRs, classed as nucleotide-binding 
domain leucine-rich repeat-containing receptors (NLRs), recognize 
a wide variety of intracellular inflammatory stimuli. Four classes 
of NLRs (NLRP1, NLRP3, NLRC4 and AIM2) share in common a  
nucleotide-binding oligomerization domain, and have demonstrated 
an ability to form large oligomeric inflammasome complexes in the 
cytoplasm [4]. While each of the four sense a variety of inflammatory 
signals to mediate caspase-dependent activation of inflammation, the 
NLRP3 inflammasome is the best characterized.

	 Plasma membrane PRRs TLR, ILR, and TNF-R (red boxes) bind 
cytokines and extracellular ligands, activating NFκB and JNK, which 
activate nuclear transcription of cellular stress factors, particularly 
NLRP3. NLRP3 (blue), ASC (gold), and caspase-1 (purple) associate 
in the cytoplasm as the large, macromolecular NLRP3 inflammasome 
in macrophages. Mitochondria are impacted by membrane-bound 
PRR signals and aid in activating the NLRP3 inflammasome (via  
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Abstract
	 As the complexity of cellular signaling in inflammatory response 
emerges, it is increasingly clear that mitochondria are directly  
involved in, and in some cases are even required for, activation 
of inflammatory response. As a bioenergetic organellar network,  
mitochondria dynamically modulate their organization and  
function in response to cellular signaling cues and metabolic  
demand. The NLRP3 inflammasome, a caspase-activating  
multifactor scaffolding assembly, is directly activated by  
mitochondrial factors and functional parameters. Mitochondria are 
also heavily implicated as downstream targets of inflammation in 
a variety of tissues. Elevated inflammation and cytokine-mediated  
damage to mitochondria are implicated in the pathogenesis of  
disparate conditions such as Type 2 diabetes and autism spectrum 
disorders. Recent findings indicate that mitochondrial factors are  
released as extracellular mediators of inflammatory response. 
Here, we discuss the mechanistic interaction of mitochondria in  
inflammatory signaling, as well as the implications for inflammatory  
mitochondrial damage as a causative force in highly prevalent  
human diseases.
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Figure 1: Schematic of mitochondrial interactions with NLRP3 inflammasome 
signaling.
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ROS or specific interaction with mtDNA, cardiolipin, MFN2, or 
MAVS). Inflammasome activation results in cleavage of pro-IL-1β and  
pro-IL-18 to active cytokines IL-1β and IL-18, which are secreted 
from the cell to spread inflammation.

The NLRP3 Inflammasome
	 The NACHT, LRR, and PYD domain-containing protein (NLRP3) 
is a major mediator of caspase-1 activation. To accomplish this, NLRP3 
associates with the apoptosis-associated speck-like protein containing  
a CARD domain (ASC) adaptor protein. ASC contains a caspase  
recruitment domain (CARD), thus allowing binding of pro-caspase-1 
to the inflammasome complex. ASC has a remarkable ability to  
dimerize and associate with pro-caspase-1, causing formation of a 
single large (~2 μm diameter) NLRP3 inflammasome in macrophages 
[5].

	 Formation of the NLRP3 inflammasome is cued by the  
membrane-bound PRRs, such as the TLRs, ILRs, and TNF-Rs, 
which activate NFκB and JNK in the nucleus NFκB is a major  
stress-response transcription factor, which rapidly increases mRNA 
levels of pro-inflammatory factors, particular NLRP3 and pro-IL-1β 
[6,7]. For inflammasome formation, NFκB-mediated increases in  
transcription of both NLRP3 and pro-IL-1β are required, as 
these factors are found at low basal levels. Conversely, ASC and  
pro-caspase-1 (as well as pro-IL-18) are found at sufficiently high 
levels in the cytoplasm to allow inflammasome assembly [6]. Upon 
binding of caspase-1 as part of the NLRP3 inflammasome, the  
inactive pro-caspase-1 is autocatalytically cleaved and forms the active 
caspase-1 heterodimer [8,9]. Active caspase-1 then cleaves proIL-1β 
and pro-IL-18 to their active Il-1β and IL-18 forms, which are then 
secreted as inflammatory cytokines [8-10] (Figure 1). An exciting 
collection of findings indicates that a variety of factors located in the 
mitochondria play a crucial role in NLRP3 inflammasome response.

Mitochondria: A Dynamic Organellar Network
	 As organelles of endosymbiontic origin [11], mitochondria  
occupy a highly unique niche in cellular biology. By combining  
genetic contributions from both chromosomal and mitochondrial  
genomes, mitochondria carry out the bulk of cellular ATP production 
via oxidative phosphorylation. Mitochondrial structure is incredibly  
dynamic, changing in response to cellular need and organellar  
bioenergetic function, even in cells with highly constrained  
architecture such as cardiac [12] and skeletal muscle fibers [13]. This 
dynamic structure undergoes profound alteration in response to  
mitochondrial dysfunction, indicating that structural dynamics  
represent a critical parameter to be explored in mitochondrial-im-
mune interactions.

	 The dual genetic composition of mitochondria is unique among 
the organelles of a human cell: both nuclear- and mitochondrially-en-
coded gene products are required	 to fully assemble the five com-
plexes of oxidative phosphorylation (OxPhos) in the mitochondrial  
inner membrane. While hundreds of proteins are present in human  
mitochondria [14,15], the vast majority of these are encoded by  
nuclear genes. Mitochondrial DNA (mtDNA) encodes only 2 rRNAs,  
22 tRNAs, and 13 polypeptides from a 16,569 bp circular DNA.  
Despite the small handful of proteins encoded by mtDNA, these  
polypeptides are essential subunits of the OxPhos complexes in the  
inner membrane. While Complex II is encoded solely by nuclear  
DNA, the other four complexes each contain at least one  
mtDNA-encoded polypeptide. Complexes I-IV transfer electrons  

supplied by NADH and FADH2, ultimately donated to molecular  
oxygen to create water, to drive H+ pumping from the mitochondrial  
matrix to the intermembrane space. This H+ pumping activity  
generates a proton-motive force, which in higher organisms is  
chiefly comprised of an electrochemical gradient, or transmembrane 
potential (∆ψm) that is then utilized by the F1F0 ATP synthase [16]. By 
allowing a single H+ to return to the matrix down the gradient, ADP 
and Pi are bound at the F1 portion of the ATP synthase and coalesced 
to ATP during the rotation-mediated conformational shifting of the 
holoenzyme [17].

	 Mitochondrial structure is organized to support bioenergetic 
function. While traditional models of mitochondrial ultrastructure 
envisioned a collection of individual organelles dispersed throughout 
the cytoplasm, advances in cellular imaging and the identification of 
genetic factors controlling mitochondrial morphology have combined 
to reveal mitochondrial ultrastructure as a highly dynamic, sensitive 
process capable of dramatic response to cellular stimuli. Mitochondria  
were originally named as being ‘thread-like granules’. Improved  
imaging techniques revealed that mitochondria do in fact have the 
ability to interconnect as a networked reticulum throughout the cell 
[12,18]. Optic atrophy 1 (OPA1) was identified as a factor that is  
required for fusion of the mitochondrial inner membrane [19], 
while mitofusin 1 (MFN1) and mitofusin 2 (MFN2) carry out fusion  
of the outer mitochondrial membrane (Hoppins et al., 2007). 
While OPA1, MFN1, and MFN2 carry out mitochondrial fusion, a  
different set of factors carry out mitochondria fission. FIS1 [20] and 
MFF [21] are mitochondrial outer membrane proteins that recruit  
dynamin-related protein 1 (DRP1) from the cytoplasm. Upon  
docking at the outer membrane, DRP1 will form multimeric rings 
around a mitochondrion, dividing it in two [23]. Thus, mitochondrial 
fusion and fission are opposing processes governed by different sets 
of factors, in which a cell will balance mitochondrial organization  
between the two (Figure 2).

Figure 2: 3T3 mouse embryonic fibroblasts visualized by confocal  
fluorescence microscopy, labeled for mitochondria (MitoTracker, red) and the 
nucleus (DAPI, blue).
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	 The cell’s mitochondria display both interconnected, fused  
mitochondria (to the right of the nucleus) and fragmented, divided 
mitochondria (to the left of the nucleus). Size bar = 10 μm.

	 Mitochondrial ultrastructure is directly tied to mitochondrial  
function, existing in a sensitive balance to maintain energetic  
homeostasis. Damage or dysfunction to the structure/function  
balance of mitochondria causes a loss of ability to maintain a fused, 
interconnected mitochondrial network. Cells with either genetic [23] 
or pharmacologically-induced mitochondrial dysfunction [24] have 
mitochondria that are unable to fuse together, instead maintaining 
an obligately fragmented organization. This loss of organellar fusion  
under conditions of mitochondrial dysfunction is caused by  
proteolytic cleavage of the OPA1 fusion protein [25], occuring when 
the ∆ψm across the mitochondrial inner membrane is low [26].  
Subsequently, ∆ψm-sensitive cleavage of OPA1 was found to be  
mediated by OMA1, a metalloprotease located in the inner  
mitochondrial membrane [27,28]. Thus, mitochondrial function  
(specifically ∆ψm) directly mediates mitochondrial fusion by OPA1, 
while transgenic ablation of either mitochondrial fission [29] or fusion  
[30] negatively impacts bioenergetic function, indicating the  
hand-in-hand relationship between mitochondrial bioenergetic 
function and structural organization. Moreover, while bioenergetic  
dysfunction and loss of efficient mitochondrial organization are  
detrimental in and of themselves, emerging evidence suggests 
that mitochondrial dysfunction plays a strong role in activation of  
NLRP3-mediated inflammatory signaling (discussed below). As  
mitochondrial structural dynamics are directly linked to processes 
including apoptosis and autophagy [31,32], mitochondrial-inflamma-
tory interactions are likely to be similarly linked to a fascinating set 
of dynamic alterations, with enormous consequences for the cell and 
surrounding environment.

Mitochondria in NLRP3 Inflammasome Signaling
	 Mitochondria are emerging as a major activator of NLRP3  
inflammasome signaling, and are in some cases required for NLRP3 
inflammasome activation. Recent findings show that a variety of  
mitochondrial components interacts with and activate the NLRP3 
inflammasome as major contributors to innate immune signaling 
by macrophages. Even more intriguingly, Misawa et al. showed that  
mitochondria are recruited en masse to the inflammasome within 
the cytoplasm of macrophages [33], suggesting that a host of other  
mitochondrial factors may have critical roles in inflammasome-me-
diated signaling.

	 A role for mitochondria in NLRP3 inflammasome signaling was 
first suggested when mitochondria were observed to colocalize with 
the NLRP3/ASC/caspase-1 scaffold assembly upon inflammasome 
induction. While reactive oxygen species (ROS) had previously 
been shown to be necessary for NLRP3 inflammasome activity [34],  
inhibition of the mitochondrial voltage-dependent anion channel 
(VDAC) abrogated both intracellular ROS levels and inflammasome 
assembly, indicating that mitochondrial ROS production is directly 
involved in NLRP3 inflammasome signaling of macrophages [35]. 
Subsequently, macrophages treated with E. coli lipopolysaccharide or 
ATP (both inflammasome activators) displayed release of mtDNA into 
the cytoplasm. Moreover, transfection to deliver cytoplasmic mtDNA 
stimulated secretion of both IL-1β and IL-18, indicating that release 
of mtDNA from the mitochondrial matrix into the surrounding  
cytoplasm directly contributes to NLRP3 inflammasome activity.  
Shimada et al. [36] then found that mitochondrial dysfunction  

correlates with NLRP3 inflammasome activity, with binding of  
oxidized mtDNA a required step in NLRP3 inflammasome activation  
and IL-1β [36]. These results provide an unusual mechanism of  
inflammasome activation: while mtDNA damage is increasingly  
appearing as a common form of mitochondrial damage in a variety  
of cellular settings [37,38], it is unclear how a highly packaged,  
compacted circle of DNA [39,40] is released from a double  
membrane-bound organelle into the cytoplasm. Future research will 
undoubtedly shed new light on how mtDNA escapes the organelle to 
participate in inflammatory signaling.

	 Additional studies suggest that entire mitochondrial organelles 
are active players in NLRP3 inflammasome activity. Cardiolipin, a  
diphosphatidylglycerol lipid, is found nearly exclusively in the  
mitochondrial inner membrane. However, upon both ROS-dependent  
and –independent induction of the NLRP3 inflammasome,  
cardiolipin translocates to the outer membrane of the  
mitochondria, where it interacts with the leucine-rich repeat (LRR) 
domain of NLRP3, concurrent with ASC and caspase-1 recruitment 
to the inflammasome leading to IL-1β secretion [41]. Cardiolipin  
translocation to the outer membrane appears to be mediated by  
phospholipid scramblase-3, contributing to mitochondrial  
autophagy in rat cortical neurons [42], suggesting that binding  
of cardiolipin by cytoplasmic signaling molecules is a general  
stress-response mechanism in cells, with profound disease  
implications. As a large-scale cytoplasmic macromolecular scaffolding 
assembly, the NLRP3 inflammasome requires the tubulin cytoskeleton 
to transport mitochondria to inflammasome sites, where they bind to 
ASC [33]. The mitochondrial anti-viral signaling (MAVS) factor is a 
likely adaptor protein mediating NLRP3-mitochondrial interaction, 
required for IL-1β maturation and secretion in THC-1 monocytes,  
as well as macrophages [43,44]. MFN2 is required for NLRP3  
inflammasome activation following infection with RNA virus:  
Ichinohe et al. found that this association requires an intact ∆ψm for 
MFN2-NLRP3 interaction [45]. These studies indicate that a diverse  
set of mitochondrial factors mediate activation of the NLRP3  
inflammasome (Figure 1). MFN2 and MAVS, as proteins located in 
the outer mitochondrial membrane, are easier to envision as ‘docking 
partners’ with the NLRP3 protein, while translocation of cardiolipin 
to the mitochondrial outer membrane and the release of mtDNA from 
the organelle into the cytoplasm represent highly dynamic events in 
inflammasome activation. These studies clearly demonstrate that 
much remains to be understood regarding the roles these factors play  
in inflammatory response, and further indicate that additional  
mitochondrial factors localized to any part of the organelle may 
be similarly involved in dynamic recruitment to the NLRP3  
inflammasome. Further, the studies above (except where indicated) 
have characterized NLRP3 signaling interactions in macrophages, as 
major mediators of innate immune response. It is highly likely that 
NLRP3-mediated signaling will show a range of specific responses in 
different cell types throughout the body.

Inflammatory Damage to Mitochondria
	 In addition to their emerging role as integral contributors to  
inflammatory response in the innate immune system, mitochondria 
are increasingly implicated as cellular targets of cytokine-mediated 
inflammation in a host of tissues. While macrophages and similar  
immune cells involve mitochondria in inflammatory signaling, many 
of the same cytokines have been shown to damage mitochondria in 
the pathogenesis of prevalent human diseases, particularly Type 2  
diabetes mellitus.
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	 Mitochondria have long been implicated in the pathogenesis  
of Type 2 diabetes mellitus and associated metabolic disorders.  
Decreased mitochondrial function [46,47] and gene expression 
[48,49] have been strongly correlated with Type 2 diabetes in diverse 
tissues such as skeletal muscle and peripheral blood. As such, an 
abundance of clinical and experimental data indicates that decreased  
mitochondrial function and bioenergetics capacity plays a  
contributing role in Type 2 diabetes. However, it has been unclear 
what genetic or environmental factors this can be attributed to.  
Inherited mutations of mtDNA cause insulin resistance and diabetes  
mellitus in patients [50,51], indicating that mitochondrial  
dysfunction can be a causative determinant of insulin resistance.  
Despite this, inherited pathogenic mtDNA mutations do not occur 
frequently enough (1 in 5,000-10,000 individuals [52,53] to explain 
the rapidly-expanding prevalence of Type 2 diabetes worldwide.  
However, the emergence of cytokine-mediated inflammation  
as a causative mechanism of Type 2 diabetes suggests that  
cytokine-mediated damage to mitochondria plays a major role in the 
pathogenesis of diabetes and co-morbid conditions.

	 Cytokine-mediated inflammation has gained recognition as a  
major causative force in the development of insulin resistance 
and diabetes [54-56]. While the initial studies demonstrating this  
causative mechanism explored the ability of TNF-α to mediate  
insulin resistance [55], subsequent studies built upon these findings 
to include IL-1β, IL-6, IL-18, resistin, leptin, adiponectin, and others. 
Many of these are expressed both by macrophages and adipocytes, 
providing a mechanistic link for the co-morbidity of Type 2 diabetes  
and obesity [57]. Upon binding of these cytokines to PRRs at the  
plasma membrane, the NFκB and JNK pathways are activated,  
mediating crucial stress-mediated transcription of inflammatory  
factors (such as IL-1β and NLRP3, above). The NLRP3 inflammasome 
is activated in cytokine-mediated insulin resistance [58,59] and  
mediates impaired wound healing through sustained inflammation in 
diabetic patients [60].

	 Many of these same cytokines have been shown to directly  
damage mitochondria. TNF-α cause rapid damage to mtDNA 
and increased ROS production [61], and inhibits mitochondrial  
bioenergetics [62]. This TNF-α-induced damage is dependent  
on TNF-R1 binding, and appears to involve stress-response  
translocation of p53 to mitochondria [61,63]. Similarly,  
heat-inactivated E. coli activates TLR-4, causing mtDNA depletion 
[64]. These findings are concordant with experimental and clinical  
data showing loss of mtDNA content and bioenergetic function  
[65-67]. This mitochondrial damage has wide-ranging effects on 
the cell at large. Mitochondrial involvement in the development of 
insulin resistance appears to occur via elevated mitochondrial ROS  
production, rather than decreased OxPhos activity per se [68].  
Mitochondrial dysfunction has been suggested to cause insulin  
resistance by decreasing insulin receptor substrate-1 (IRS1)  
expression [69,70]. Mechanistically, loss of mtDNA has been shown 
to effect broad changes in nuclear transcription via ‘retrograde’  
mitochondria-to-nucleus signaling, in which mitochondrial  
dysfunction affects pathways including NFkB and JNK to add to  
cellular stress response [71,72]. The specific impacts of mitochondrial  
dysfunction on gene expression of various inflammatory factors 
are likely to provide insight into a critical cell-wide consequence of  
mitochondrial dysfunction.

	 While the connections between inflammatory signaling and  
mitochondria have been best characterized in diabetes and metabolic  

disorders, these interactions are increasingly found across a range 
of other prevalent diseases. Gene expression profiling [73,74] and  
biomarker studies find increases in cytokines in autistic subjects 
[75], particularly IL-6 and TNF-α [76-]. These studies are consistent 
with findings of mitochondrial dysfunction and increased organellar  
fission in brain samples of autistic individuals [79]. Similar  
involvement of NLRP3-associated inflammation is found in  
Alzheimer’s disease [80] and cardiomyopathy [81]. These associations 
strongly suggest that inflammation and mitochondria comprise a  
pathogenic axis that is likely to play a role in a wide range of  
prominent human diseases.

Mitochondrial Factors as Inflammatory Messengers
	 As discussed above, the release of mtDNA from the organelle in 
response to NLRP3-associated inflammatory stimuli is a highly novel,  
dynamic response, suggesting that mtDNA is a key mediator of  
intracellular inflammation. Recent evidence suggests that mtDNA  
and associated factors may have further roles as extracellular  
inflammatory mediators. Mathew et al. observed that extracellular, 
partially degraded mtDNA causes induction of cytokine secretion, 
most notably IL-1β, suggesting that mtDNA is itself a category of  
damage-associated molecular pattern (DAMP) for recognition by 
PRRs [82]. Similarly, Chaung et al. [83] found that transcription  
factor A, mitochondrial (TFAM), the major mtDNA-packaging  
protein, mediates inflammation in hemorrhagic shock [83]. These 
findings strongly indicate that mtDNA and the other protein factors 
directly associated with it [39] are released from mitochondria and  
act as pro-inflammatory signaling factors, appearing as  
clinically-relevant indicators of inflammation in experimental systems 
and patients [84,85]. Just as the adaptive nature of the mitochondrial 
network has become evident as a key element of cellular homeostasis,  
these findings indicate the importance of mitochondrial factors as  
mediators of inflammatory signaling. The mechanisms of  
mitochondrial factor release will reveal exciting, highly novel  
molecular dynamics of factors previously thought to reside exclusively 
within mitochondria.

Conclusion
	 The specific interactions of mitochondrial factors with innate  
inflammatory factors, particularly NLRP3, bring together two fields 
of cell biology that previously had little apparent connection. These 
interactions are of enormous importance medically, as increased  
inflammation has emerged as a causative or contributory factor in a 
wide range of many of the most rapidly-expanding diseases today. As 
the dynamics and causes of both bioenergetic stress and inflammation  
in human disease are uncovered, understanding the intrinsic  
mechanistic connections of inflammatory signaling with  
mitochondrial biology is increasingly vital to cellular homeostasis and 
human health.
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