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Background: Combination antiretroviral therapy has significantly advanced HIV-1 infection treatment.
However, HIV-1 remains persistent in the brain; the inaccessibility of the blood–brain barrier allows
for persistent HIV-1 infections and neuroinflammation. Nanotechnology-based drug carriers such as
nanodiscoidal bicelles can provide a solution to combat this challenge. Methods: This study investigated
the safety and extended release of a combination antiretroviral therapy drug (tenofovir)-loaded nanodiscs
for HIV-1 treatment in the brain both in vitro and in vivo. Result: The nanodiscs entrapped the drug in
their interior hydrophobic core and released the payload at the desired location and in a controlled release
pattern. The study also included a comparative pharmacokinetic analysis of nanodisc formulations in in
vitro and in vivo models. Conclusion: The study provides potential applications of nanodiscs for HIV-1
therapy development.

First draft submitted: 1 March 2021; Accepted for publication: 6 May 2022; Published online:
1 June 2022
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Over the past decades, HIV-1 treatment has been revolutionized by significant progress in therapeutic options
such as combination antiretroviral therapy (cART) that control HIV-1 infection [1]. Through the development
of cART, HIV-1 infection has been transformed from a deadly disease to a relatively manageable chronic illness.
The cART helps reduce the morbidity caused by reducing the viral load in the plasma of people with HIV-1 [1,2].
Considering the rapid improvement of disease pathology through cART, the Joint United Nations Programme on
HIV/AIDS (UNAIDS) developed a 90–90–90 treatment target in 2013 to help end this epidemic by 2020 [3].
Unfortunately, UNAIDS has fallen short of its 2020 goal, and developing an effective cART drug-delivery system
remains a challenge [4]. The main reason is that HIV-1 is found in latent reservoirs such as the CNS, where cART
drugs have restricted access due to lower permeability across the blood–brain barrier (BBB) [2,5].

Additionally, patients often struggle to follow their medication schedule due to significant side effects, which
result in suboptimal therapeutic drug levels within the body, the rapid rebound of viral replication, mutations
and treatment failure [1]. An increasing amount of evidence also shows that long-term use of cART is associated
with neurological toxicity which may include peripheral neuropathy or neurocognitive deficits [5]. The BBB’s
inaccessibility allows for persistent HIV-1 infections and HIV-associated neurocognitive disorder (HAND), which
is the most common manifestation of HIV-1 pathogenesis within the CNS [5]. While cART regimens have effectively
reduced peripheral viral load, the prevalence of different forms of HAND, such as asymptomatic neurocognitive
impairment, mild neurocognitive disorder and HIV-associated dementia, increases as HIV-1 patients age [5,6]. Thus
optimizing the drug dosing that can reach viral reservoirs with minimum side effects for the patients is the current
challenge.
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In the last decades, nanotechnology has been extensively used in the field of medicine to develop the next
generation of targeted therapies for many diseases, a field that is often referred to as nanomedicine or precision
medicine [7]. Drugs with very low solubility, such as most anti-HIV drugs, present various challenges for phar-
maceutical optimization, including a suboptimal concentration of drug in the tissues, less diffusion capacity and
a requirement for frequent dosing or larger quantities for intravenous intake; however, nanomedicine represents
an excellent strategy to overcome the limitations of conventional drug-delivery systems [7,8]. Several properties
determine successful nanoparticle (NP)-mediated drug delivery, including biocompatibility, circulation shelf life
and high drug-loading capacity. In this regard, several nanocarriers, such as solid lipid NPs [9], liposomes [10],
polymeric micelles [11], dendrimers [12], oil bodies [13], aptamers [14] and nanoporous lipid bilayers [15], have been
characterized for their potential for in vivo drug delivery [11,16].

A successful drug delivery also depends on the shape and size of the particle, which are crucial for cellular
uptake [17,18]. Several studies have demonstrated the morphology of the NP determining the efficacy of the drug
delivery [19,20]. A recent study has shown that self-assembled micelles have much enhanced cellular uptake compared
with vesicles with the same or similar composition [21–24]. NPs with a diameter ranging from 20 to 100 nm resulted
in optimal accumulation in tumors, with an enhanced permeability and retention effect [25,26]; different enhanced
permeability and retention effects have been observed in nanorods in terms of their in vivo hydrodynamic behaviors,
circulation and extravasation into the tumor [27,28]. NPs that are smaller than 100 nm, such as liposomes, have
some advantages over rod-shaped particles [19,29].

Liposomes are one of the most widely used delivery vehicles for carrying agents. Liposomes have several advantages
over other nanodelivery systems by being less toxic and having a high therapeutic index [30,31]. They have advantages
such as protecting drugs or other therapeutic agents from degradation, targeting the site of action through ligand–
peptide or –antibody conjugation, and have been noted to have little toxicity or side effects [32]. Nanodiscoidal-
shaped bicelles or nanodiscs (NDs) share a similar chemical composition with liposomes but have not been studied
extensively. NDs can be generated with control of lipid content and particle size due to their low polydispersity.
They have the property of spontaneously forming discoidal bicelles that can entrap hydrophobic drugs; they consist
of short- and long-chain lipids and are around 30 nm in diameter and 5 nm in thickness [33,34]. NDs are stable
soluble membrane mimetics, a property that allows for further improvements, such as tagging to scaffold proteins;
thus NDs provide a suitable model for studying membrane proteins [35,36]. This formulation allows large-scale
production. During the manufacturing process, a disc-to-vesicle structural transition process occurs as the long-
chain lipid molecule goes through from the low-temperature gel (order) to high-temperature La (liquid disorder)
phase. Even though NDs and nanovesicles present similar dimensions, structurally they are not reversible at a lower
temperature and remain intact in a uniform shape and size [34,37,38].

In the present study, nanodiscoidal bicelles offer an optimal structure for lipid-based drug delivery to assist in
entrapping hydrophobic molecules until the body has metabolized them. Previous studies have demonstrated that
ND bicelles can serve as nanocarriers to deliver hydrophobic molecules to cancerous cells [39]. The cellular uptake of
the bicelles was approximately five- to ten-times greater than that of spherical vesicles or liposomes with an identical
chemical composition [35,39]. In the present study we have expanded our previous observation of NDs with one of
the anti-HIV drugs currently recommended by WHO for HIV-1 infection treatment [40]. An ND formulation was
developed and characterized using this cART drug, tenofovir (TFV; a nucleoside reverse transcriptase inhibitor).
This study aims to develop an ND formulation of TFV (ND–TFV) to perform extended drug release for effective
long-term inhibition of HIV-1.

Materials & methods
Materials
All solvents (methanol, ethanol, chloroform and toluene) were purchased from Sigma-Aldrich (MO, USA) and
filtered with a 0.2-μm filter before use. Zwitterionic long-chain dipalmitoyl phosphatidylcholine (DPPC; di-16:0,
catalog #850355P), charged long-chain dipalmitoyl phosphatidylglycerol (DPPG; di-16:0, catalog # 840455),
zwitterionic short-chain dihexanoyl phosphatidylcholine (DHPC; di-6:0, catalog # 850305C) and PEG2000-
conjugated distearoyl phosphoethanolamine (DSPE-PEG2000; catalog # 880120) were purchased from Avanti
Polar Lipids (AL, USA) and used without further purification. Dulbecco’s phosphate-buffered saline (PBS) and
fetal bovine serum (FBS) were purchased from Life Technologies (NY, USA). Cremophor EL (Crem) was purchased
from Sigma-Aldrich. Human embryonic microglial clone 3 cells (HMC-3) and human neuroblastoma cells (SH-
SY5Y) were purchased from American Type Culture Collection (ATCC; VA, USA). The transformed cell lines retain

10.2217/nnm-2022-0043 Nanomedicine (Lond.) (Epub ahead of print) future science group



Effect of drug-to-lipid ratio on nanodisc-based tenofovir drug delivery to the brain for HIV-1 infection Research Article

the properties. Primary human brain microvascular endothelial cells (HBMVECs; Catalog # 1000) and human
astrocytes (HAs; catalog #: 1870) were obtained from ScienCell Research Laboratories (CA, USA) and cultured
with their provided specialty mediums. Cells were cultured with Eagle’s Minimum Essential Medium (Catalog #
30-2003, ATCC) supplemented with FBS to a final concentration of 10%, Dulbecco’s PBS 1× (catalog # 30-2200,
ATCC), TFV (catalog # PHR1592, Sigma-Aldrich), CellTiter 96 R© Aqueous One Solution Cell Proliferation Assay
(Catalog # G3582; Promega, WI, USA), BioTek Synergy HT multi-mode microplate reader (BioTek, VT, USA)
and Pur-A-Lyzer™ Maxi 6000 Dialysis Kit (Sigma-Aldrich) were purchased from the listed vendors.

Methods
Preparation of NDs

Nanodiscoidal bicelles were prepared via self-assembly, as previously described [36,41]. For TVF-loaded NDs,
the desired ratios of lipids and TVF were homogenized in a solution of chloroform, methanol and DMSO
(13:7:5). The organic solvents were dried through a nitrogen purge at 58◦C and desiccated at room temperature
overnight in a vacuum oven to remove any residual solvent. The dried lipid or lipid and drug mixtures were
homogeneously hydrated with filtered deionized water to 10 wt% through temperature cycling and vortexing.
The experiments were performed with the samples diluted to 1.0 or 0.1 wt% depending on the experimental
requirements [42]. The formulation of the samples with the lipid and drug concentrations is summarized in
Supplementary Table 1. The drug-loaded NDs were further centrifuged at 5000 r.p.m. for 10 mins to separate
unencapsulated and large drug/lipid complexes. The lipid composition of the bicelle remains constant throughout
the samples (DPPC:DHPC:DPPG:DSPE-PEG2000 = 66.6:25.1:3.8:3.8) and drug-to-lipid molar ratios studied
were 1:20 and 1:4. Drug-to-lipid ratios are considered theoretical and based on how much lipid and drug is being
used in the whole solution, which can be calculated to know the amount of lipid and drug to add [43,44].

Structural characterization
Computational molecular modeling & calculations

Molecular simulation studies were carried out to understand the interactions between TFV and lipid molecules.
The molecular lipophilic surface potential (MLSP) and molecular electrostatic potential (MEP) of TFV were
calculated using VEGA-ZZ 3.2.0 software (Drug Design Laboratory, Milan, Italy). MEP is used to depict the
3D charge distributions of a molecule, and MLSP simulates the combined lipophilicity of a molecule’s fragments
at given point in space using the Molinspiration Property Calculation Service molecular [45], which is based on
the Gasteiger–Hückel charges of the atoms [46,47]. The color ramp for the MLSP ranges from violet/blue (higher
lipophilicity or greater lipophilicity potential) to red (lower lipophilicity or lower lipophilicity potential).

Small- & wide-angle x-ray scattering
Small- & wide-angle x-ray scattering (SAXS/WAXS) was used to analyze the structure of the bicelles. Before
measurements, samples were ultrasonicated in a water bath for 30 min and vortexed for 10 min. Samples were
tested at lipid concentrations of 10 mg/ml. SAXS/WAXS measurements were conducted at 16ID-LiX Beamline at
National Synchrotron Light Source II, located at the Brookhaven National Laboratory (Upton, NY, USA), using
the standard flow-cell-based solution scattering setup with x-ray energy of 13.5 keV. The SAXS/WAXS intensity
is expressed as a function of the scattering vector, q (q ≡ 4π

λ
sin θ

2 , where θ is the scattering angle) varies from
0.005 to 2.5 Å-1 [48]. Radial averaging and q-conversion of data were performed using the standard software [49] by
merging the data collected from all three detectors in the measurements. Transmission correction and background
subtraction were performed to minimize the hydrogen bond’s intensity from water at ∼2.0 Å-1.

Dynamic light scattering
The size and population distribution of the nanocarriers were determined using an ALV/CGS-8F/4 (ALV compact
goniometer system, Malvern Instruments Ltd. Worcestershire, UK) instrument equipped with a 632.8-nm laser
beam. The samples were dissolved in ultrapure distilled filtered water to 0.1 wt% and vortexed before each
measurement. Results were an average of ten measurements.

ζ-Potential
The ζ-potential was measured within 30 min of sample preparation. The measurements were recorded in triplicate,
and the averages of the results were used for data representation purposes using a 90Plus Particle Size Analyzer
(Brookhaven Instruments Corp., NY, USA).

future science group 10.2217/nnm-2022-0043
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Cell viability assay of NDs
Cytotoxicity of NDs was determined via a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium (MTS) assay on HMC-3 and SH-SY5Y cells. Cells were cultured in 96-well black-
bottomed plates at 50,000 cells per well and incubated at 37◦C in a humidified 5% CO2 atmosphere for 24 h
to allow for 70% confluency [50]. After 24 h, cells were treated with various empty ND concentrations (0.01–
0.1 mg/ml) for 72 h. Unformulated TFV (Sigma-Aldrich) (also called free drug or FD–TFV) was also measured in
similar conditions simultaneously. Untreated cells, incubated with fresh growth medium only, were considered as
controls. After incubation, cells were washed and incubated with 100 μl of fresh cell medium. Cells were incubated
with 20 μl of MTS reagent (CellTiter 96 R© AQueous One Solution; Promega) per the manufacturer’s instructions,
along with 100 μl of cell medium for 1 h at 37◦C in a humidified 5% CO2 atmosphere. After incubation,
absorbance readings at 490 nm were taken using the BioTek Synergy HT multi-mode microplate reader hourly
for 4 h, for a total of five measurements. The MTS assay was performed, and the optical density of the culture
supernatant was measured at 490 nm. The net absorbance (sample absorbance − absorbance of blank) was taken
as an index of cell viability of the treated and untreated cells. All measurements were taken as three independently
replicated experiments of six values each. Cell viability was calculated using the following equation: Sample

Control × 100%.

Reactive oxygen species assay
Reactive oxygen species (ROS) productions in HMC-3 and SH-SY5Y cells following ND treatment were detected
using the dichlorofluorescein diacetate assay (Molecular Probes, OR, USA). Cells were cultured in 96-well black-
bottomed plates at 100,000 cells per well and incubated at 37◦C in a humidified 5% CO2 atmosphere for 24 h
to allow for 70% confluency. The following day, the cell medium was taken out from each well and replenished
with 100 μl of PBS + 1% FBS. Negative control cells were treated with antioxidant catalase, and the plate was
incubated for 2 h. After incubation, the medium was taken out and replenished with 100 μM dichlorofluorescein
diacetate (made with PBS + 1% FBS) to each well and incubated for 1 h. Following incubation, cells were treated
with various concentrations (0.01–0.1 mg/ml of TFV) of the 1:4 and 1:20 ND–TFV and incubated for 2 h. A
study of FD–TFV was also measured simultaneously. Cells with no drug (untreated) were incubated with a growth
medium and used as control. Further cells were also treated with H2O2 (50 μM) for positive controls. After 2 h,
the first reading of cell ROS production was read in the BioTek Synergy HT multi-mode microplate reader and
then taken every hour for the following 18 h (excitation, 485 nm; emission, 528 nm) [50]. All measurements were
taken as three independently replicated experiments of five values each.

In vitro sustained drug release assay of ND–TFV
The drug release kinetics of the ND-based drug delivery were determined in PBS using equilibrium dialysis. A
50-μl solution of the 5 mg/ml 1:4 and 1:20 ND–TFV formulated TFV, along with 1 ml of PBS, was placed
into a dialysis bag (Pur-A-Lyzer™ Maxi 6000 Dialysis Kit, Sigma-Aldrich; molecular cutoff 6–8 kDa), sealed and
put into a 50-ml conical tube filled with 20 ml of PBS with 0.1% Tween R© 20 aqueous solution. The tube was
then placed on a shaker at 37◦C and rotated at 150 r.p.m. At scheduled intervals (0, 5, 10, 15 and 30 min; 1,
2, 4 and 8 h; 1, 2, 4, 6, 8, 10, 12 and 14 days), 200 μl of the external release medium was collected for liquid
chromatography–tandem mass spectrometry (LC–MS/MS). Immediately after that, the medium was replenished
with 200 μl of fresh dissolution medium at 37◦C. Samples were collected in triplicate. The exact concentration of
FD–TFV was used as a control.

Drug release in vitro through the BBB
HBMVECs and HAs were obtained and prepared for plating of the BBB model. The in vitro BBB model was
established in a transwell plate as per published protocols [51,52]. HAs were split and seeded on the lower side of
0.4-μm pore size PTFE membrane tissue culture inserts at an initial concentration of 105 cells per well. HBMVECs
were incubated for 2 h to allow cells to be saturated on the outside of the insert. After incubation, a confluent layer
of HBMVECs was grown on the upper side of the membrane. After 24 h of incubation, the BBB’s integrity was
measured with transendothelial electrical resistance (TEER) using Millicell ERS microelectrodes (Millipore, MA,
USA). Typical TEER values of untreated BBB were observed to be around ∼140 �/cm2. Cells were grown up to
70% confluency, and the predetermined concentration of ND–TFV was introduced into the upper chamber of the
transwell insert. Following the introduction to the upper chamber, medium was collected at various time points
(30 min; 1 h; 1, 2, 4, 6, 8 and 10 days) from the lower chamber and replenished with fresh medium. Samples were
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taken in triplicate for each treatment and stored at -20◦C until further analysis by LC–MS/MS. Simultaneously, a
separate set up with the same concentration of FD–TFV was used as a control.

Cell uptake & characterization of extended release from NDs
Microglial (HMC3 cells) uptake, retention and release of 1:20 ND–TFV, 1:4 ND–TFV and FD–TFV were
determined as per the previously described protocols [53–55]. HMC-3 cells were cultured in 24-well plates at
50,000 cells per well and incubated at 37◦C in a humidified 5% CO2 atmosphere for 24 h to allow for 70%
confluency. After 24 h of cell growth, samples were assigned into different treatment groups of 1:20 ND–TFV, 1:4
ND–TFV and FD–TFV and treated at a concentration of 0.0625 mg/ml. Following drug treatment, samples were
incubated at 37◦C, and cell uptake was determined every hour for 8 h and then at a 24-h time point. For each
sample, medium was collected into microcentrifuge tubes and stored at -20◦C for later analysis. Samples were taken
in triplicate for each treatment. Cells were trypsinized and centrifuged to collect cell pellets, which were washed
in 1 ml of PBS and centrifuged at 3000 r.p.m. for 8 min at 4◦C. The PBS was then discarded, and cell pellets
were resuspended in 200 μl of HPLC-grade methanol, homogenized, and centrifuged at 14,000 r.p.m. for 10 min
at 4◦C. The methanol extract was then collected into a separate microcentrifuge tube, and the cell debris/pellet
was discarded. Samples were then placed into a speed vac at 60◦C (Vacufuge Plus, Eppendorf, NY, USA) to dry
out. Samples were then stored at -20◦C for later analysis and resuspended with 50 μl of PBS for analysis via
LC–MS/MS.

In vivo animal care
Healthy BALB/c mice (8 weeks old; 1:1 male:female) were purchased from Charles River Laboratories (CA,
USA) and housed under a 12-h/12-h light/dark cycle. A Teklad Certified Global 18% protein rodent diet,
(#2018C, Envigo, WI, USA) and water were provided to the mice ad libitum. Mice were administered a single
intravenous dose. The average weights of phase A and phase B mice were 17.3–18.6 and 17.2–23.4 g, respectively.
All procedures were per the current Association for Assessment and Accreditation of Laboratory Animal Care
(AAALAC) recommendations. In vivo studies were carried out in collaboration with NIH-DAIDS Preclinical
Contract Services.

In vivo study
The in vivo study was set up into two phases: phase A was performed to determine the maximum tolerated
dose (MTD study), and phase B was performed to determine the plasma pharmacokinetics (PK study) of two
formulations of TFV (ND and a saline preparation) following an intravenous dose administration.

For the MTD study (phase A), ten males and ten females were divided into five different treatment groups as
follows: bicelles only (lipid 5 mg/100 μl); TFV (2 mg/kg) with ND (drug-to-lipid ratio 1:20); TFV (10 mg/kg)
with ND (drug-to-lipid ratio 1:7.3); TFV (15 mg/kg) with ND (drug-to-lipid ratio 1:5); and TFV (20 mg/kg) with
ND (drug-to-lipid ratio 1:3.8). There were time intervals of 30–45 min between the dose groups, and mice were
observed immediately post-dose, 30–45 min post-dose and once daily up to 48 h for toxicity signs. Animals were
monitored for any altered clinical signs such as gross motor and behavioral activity and any observable appearance
changes.

During the in vivo PK study (phase B), three males and three females were divided into two groups. Two-dose
formulations of TFV were used in this phase as a single intravenous dose administration; the ND–TFV 20 mg/kg
(group 6) and a freshly prepared TFV saline solution at 20 mg/kg (group 7). Additionally, six untreated mice were
used to compare as baseline samples. Blood was collected from the retro-orbital sinus of mice under isoflurane
anesthesia into tubes containing potassium-EDTA for drug plasma levels at 10 min and 0.5, 1, 3, 8, 24, 48 and
72 h post-dose. Animals were observed immediately post-dose, once daily and before the last blood collection. PK
data analysis was performed using the plasma concentrations of TFV via LC–MS/MS.

In vitro & in vivo drug analysis by LC–MS/MS
For in vitro drug analysis, TFV was monitored by LC–MS/MS using an AB Sciex (MA, USA) 6500+ QTRAP R©

mass spectrometer coupled to a Shimadzu (MD, USA) Nexera X2 LC system. TFV was measured with the mass
spectrometer in positive MRM (multiple reaction monitoring) modes by following the precursor-to-fragment ion
transitions 288.1 to 176.2. A Kinetex C8 column (5 μm, 100 × 4.6 mm) was used for chromatography with the
following conditions: buffer A: dH2O + 0.1% formic acid, buffer B: acetonitrile + 0.1% formic acid; 0–1.0 min
5% B, 1.0–3.0 min gradient to 100% B, 3.0–5.0 min 100% B, 5.0–5.1 min gradient to 5% B, 5.1–6.0 min
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5% B. Indinavir (transition 614.6 to 138.9) was used as an internal standard. 50 μl of the provided sample was
mixed with 100 μl of 50:50 methanol:0.02 N HCl containing 50 ng/ml indinavir as internal standard. Samples
were vortexed for 15 s, incubated at room temp for 10 min and centrifuged at 16,100× g at 4◦C in a refrigerated
microcentrifuge. LC–MS/MS then evaluated the supernatant. Standard curves were generated using PBS spiked
with varying concentrations of TFV or tenofovir disoproxil fumarate (TDF) and processed as described above.
The concentration of the drug in each time-point sample was quantified using Analyst 1.7 software (AB Sciex). A
value of threefold above the signal obtained from blank PBS was designated the limit of detection. The limit of
quantification was defined as the lowest concentration at which back-calculation yielded a concentration within
20% of theoretical and above the limit of detection.

For in vivo drug analysis, all reagents used in the plasma samples analysis were either HPLC grade or American
Chemical Society reagent grade. CD-1 mouse plasma collected with potassium-EDTA anticoagulant was purchased
from BioIVT (NY, USA). The test article TFV (the monohydrate form) was supplied by US Pharmacopeia (MD,
USA). Medical Isotopes, Inc. (NH, USA) provided the standard internal TFV-d6, and the purity was assumed to be
100% during stock solution preparation. Calibration standards, quality control samples, blank plasma samples and
the study samples were placed into microcentrifuge tubes and all except the blank plasma samples were spiked with
an internal standard spiking solution. Samples were briefly vortexed before centrifugation. Following centrifugation,
the supernatant was transferred into glass autosampler vials containing Milli-Q water and briefly vortexed. Samples
were then stored in a refrigerated autosampler (set at 5◦C) before injection into the LC–MS/MS system.

A Phenomenex Synergi Polar-RP column (4 μm, 100 × 2 mm) (CA, USA) was used for chromatography with
the following conditions: buffer A: 2% acetic acid in water, buffer B: 0.1% acetic acid in acetonitrile; 0–2.0 min
2% B, 2.0–2.01 min gradient to 98% B, 2.01–3.5 min 98% B, 3.51–5 min gradient to 2% B. The concentration
of the drug in each time-point sample was quantified using Analyst 1.7 software.

Statistical analysis
Experiments were performed in multiple replicates with data presented as mean ± standard error of the mean.
Each experiment’s statistical significance was analyzed using a one-way or two-way analysis of variance with post
hoc Dunnett’s multiple comparisons test by GraphPad Prism (GraphPad, Inc., CA, USA); p-values of ≤ 0.05 were
considered significant.

Results
Computational molecular modeling & calculations
There are several challenges in developing long-acting nanoformulations for anti-HIV drugs. In this regard, the
current approach to a ND-based formulation has shown significant advancement in the drug delivery approach.
The initial characterization with MLSP modeling results for TFV showed lower lipophilic locations surrounding
the drug molecule (Figure 1A). The analysis provided the lipophilic potential surrounding each atom or group
of atoms and the 3D spatial features of the molecular interactions within the drug molecule. The low lipophilic
potential of TFV allows it to be easily entrapped into the bilayer of the ND. The ND is a low-polydispersity,
spontaneously forming discoidal shape with a diameter of about ∼30 nm and a thickness of ∼5 nm. The ND is
composed of long-chain lipids, DPPC, short-chain lipids and DHPC. Additionally, NDs can entrap hydrophobic
molecules and have a robust formation and assembly mechanism. The ND represents an attractive drug-delivery
model to bypass the BBB to inhibit HIV-1 replication within the brain. Both the MEP and MLSP of TFV were
calculated using VEGA-ZZ software; the MEP showed TFV’s 3D charge distributions, while MLSP demonstrated
the lipophilicity potential of TFV’s different regions. Both MEP and MLSP provide insights into the molecule’s
overall structure, lipophilicity and surface charge of the drug, as well as TFV’s interactions with the phospholipids
of the bicelle and the way in which it is entrapped. MEP and MLSP are essential tools for understanding the process
in which drug-loaded bicelles are self-assembled and encapsulated. As shown in Figure 1A, TFV is an extremely
lipophobic molecule (shown in red/orange), limiting its incorporation within the bicellar core. TFV prefers to
locate in the external terminals of the phospholipids due to their higher hydrophilicity.

Structural characterization
The size distribution of drug-loaded bicelles was also investigated using dynamic light scattering (DLS). The
hydrodynamic radius (Rh) of the NDs was determined using DLS in an aqueous solution to determine the pristine
and drug-loaded bicelles’ size distribution (Figure 1B). In the pristine bicelles (bicelles without any drug), Rh

was approximately 8.5 nm, while the Rh of TFV-NDs was in the range of ∼10–13 nm, at which size excess
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drug molecules precipitate after the NDs’ capacity was reached. After drug encapsulation and at lower drug
concentrations (drug:lipid ratios of 1:20), a slight increase in size was observed. Further increase in the drug
concentrations (drug:lipid ratios of 1:7.3, 1:5 and 1:4) caused the formation of larger bicelles, deformation of the
discoidal shape and ultimately the creation of larger aggregations. The DLS results confirmed the uniformity of the
NDs for individual TFV-bicelle samples.

SAXS was used to provide the detailed discoidal core–shell architecture of the designed ND with TFV at the
different TFV concentrations and drug-to-lipid ratios. As indicated in Figure 1C, the lipid concentrations in
TVF-loaded ND formulations were 0.085 wt% in 1:20 ND, 0.031 wt% in 1:7.3 ND, 0.021 wt% in 1:5 ND
and 0.017 wt% in 1:4 ND. The TVF concentration was fixed at 0.01 mg/ml in all samples. This technique is
sensitive to the electron density distribution in the structure of nanoassemblies averaged over time. The pattern of
the X-axis is 1/Å; thus higher X-values correlate to smaller distances. Lipid bilayers within the ND are considered
as the lipophilic core, represented in SAXS data as hydrocarbon chains, placed between two shells of hydrophilic
phosphatidylcholine head groups. Given that the phosphate group has the highest electron density in the system
and is higher than hydrocarbon tails and water, the electron density profile across the bilayer can be approximated
as a ‘square well’; therefore the SAXS pattern corresponds broadly to the correlation length of head-group distance
(Figure 1C). In addition, the slope at the low q region could also determine the lipid aggregates’ morphology.
SAXS/WAXS can provide insights into the discoidal morphology of the NDs by simulating their electron density
profile. SAXS/WAXS probes the average arrangement of molecules in NDs; in a well-defined bicelle, the SAXS
data generally contain a series of peaks for q >0.07 Å-1, which correlate to the lipid bilayer structure (Figure 1C).
We developed a five-layer core–shell discoidal model in SASView [48,49] to describe the bicellar morphology, as
reported in our previous work [14,34,35,47]. Several structural parameters were used within the model, such as the
rim thicknesses, trim (trim), the hydrophilic bilayer shell, ts, norm, crystalline methylene lengths, the terminal methyl
of the long-chain phospholipids (tmethylene and tmethyl) and radius of the core (Rcore). Their corresponding electron
scattering length densities: ρrim, ρs, norm, ρmethylene and ρmethyl, respectively, and the electron scattering length density
of the solvent (water), ρw, were also considered within the model [47]. The SAXS data of pristine bicelles were the
best fit with the five-layer core–shell discoidal model, yielding ts, norm, trim, disc thickness and Rcore of 0.5, 2.4, 4.6
and 10.1 nm, respectively; these values were consistent with those reported in the literature [48]. The retention of the
valley and broad bilayer peak in SAXS patterns of the ND–TFV indicated that the NDs maintained their structures
up to the 1:20 drug-to-lipid ratio. However, the SAXS data indicated the role of TFV’s chemical structure and its
influence on the bicelles’ internal structure. The overall diameter of the bicelles increases with higher drug content,
while Rcore remains practically constant for TFV bicelles. Furthermore, trim increases abruptly for TFV bicelles
with lower drug-to-lipid ratios. This seems consistent with the recent report that the short-chain DHPC with a
large spontaneous curvature, mixed with DPPC, induces defects on the DPPC bilayer, thus making the membrane
more active in interacting with a foreign hydrophobic species [49]. The Rcore suggests that TFV mainly resides at
the face (closer to the surface and polar water environment) even with increased TFV composition calculated by
the constant of Rcore.

The preliminary characterization of the 1:4 and 1:20 ND formulation established that it was a clear and
colorless liquid that can be stored at room temperature (25◦C). The molecular characterization indicated that
the formulation was a discoidal shape with a hydrodynamic radius of 7.5–13 nm. Overall, based on the drug
concentration measured, the majority of the free TFV added in preparation was encapsulated into NDs by the end
of the procedure; therefore experiments were designed after measuring the TFV in the initial stock concentration.

Cytotoxicity assay of NDs
To characterize the ND formulation in the biological system in in vitro conditions, it was necessary to screen the
formulation for cytotoxicity and ensure that it would not induce significant cytotoxicity to microglial (HMC-3)
and neuronal (SH-SY5Y) cells. Because our formulation was developed to target the brain, it was essential to observe
the effect of ND on these cells for any neurotoxicity or cytotoxicity. A cell viability (MTS) study was performed
for empty ND, 1:4 ND–TFV and 1:20 ND–TFV. ND–TFVs were introduced to these cells separately at varying
TFV drug concentrations of 0.01–0.1 mg/ml and incubated for 72 h.

Overall, the cell viability results indicated that NDs were less toxic to HMC-3 cells than to SH-SY5Y cells.
Additionally, a separate setup to evaluate the effect of empty NDs was conducted, where HMC-3 and SH-SY5Y
cells were treated with varying lipid concentrations of the bicellar NDs associated with the TFV concentrations.
The results showed that lipid concentrations above 0.08 and 0.05% were significantly cytotoxic for HMC-3 cells
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Figure 2. Cell viability assay of nanodiscs (empty) on HMC-3
and SH-SY5Y cells. Cell viability of (A) HMC3 and (B) SY5Y cells
with different lipid concentrations (%) of the nanodiscs
(0.01–0.53%). Untreated (control) cells were considered to
represent 100% viability, and percentage cell survival was
monitored based on control. Cell viability percentage was
measured as mean ± standard deviation of three
independently replicated experiments. Statistical significance
was calculated by one-way analysis of variance with post hoc
Dunnett’s multiple comparisons test.
*p < 0.05 was indicative of significance compared with the
control.
ND: Nanodisc.

and SH-SY5Y cells, respectively (Figure 2A & B). The 1:20 ND–TFV formulation was found to be significantly
toxic at concentrations above 0.0625 mg/ml of TFV for HMC-3 cells (Figure 3A). For SH-SY5Y cells, the effect
of 1:20 ND was found only to be statistically significant at 0.1 mg/ml but was observed to decrease cell viability
starting at 0.05 mg/ml. The 1:4 ND formulation was significantly toxic at concentrations above 0.05 mg/ml for
SH-SY5Y cells (Figure 3B). FD–TFV was not considered to be significantly toxic when compared with the control.
This indicated that there was an observed decrease in cell viability at higher drug concentrations associated with
higher lipid concentrations.

Effect of empty NDs & ND–TFVs on ROS production by HMC3 & SH-SY5Y cells
While nanomaterials possess unique properties that have increased their use, understanding their interactions within
biological systems is important. As a first approach to predicting the inflammatory response of neuronal cells, the
ROS production of HMC-3 and SH-SY5Y cells was evaluated. HMC-3 (Figure 4A) and SH-SY5Y cells (Figure 4B)
were treated with drug-to-lipid ratios of 1:20 and 1:4 at different TFV drug concentrations (0.01–0.1 mg/ml). A
negative control antioxidant (catalase) and positive control (H2O2) were used on untreated cells. A simultaneous
setup was also performed for empty NDs at varying lipid concentrations. Because a significant drop and then
a plateau in cell viability was seen for lipid concentrations above 0.1%, the ROS assay was only done for lipid
concentrations of 0.01–0.1% to observe ROS production (Figure 5A & B).

Both HMC-3 cells and SH-SY5Y cells undergoing the treatment of 1:20 NDs were shown to significantly
increase ROS production at all the tested concentrations (0.01–0.1 mg/ml) compared with the control (Figure 5A
& B). Whereas, both cell lines undergoing the treatment of 1:4 NDs did not show a significant increase in
ROS production at tested concentrations up to 0.1 mg/ml. Additionally, we analyzed the FD–TFVs’ effect on
ROS production of HMC-3 and SH-SY5Y cells. The FD–TFV did not induce a significant increase in ROS
production for either cell line, indicating that the FD–TFV does not actively induce ROS production at the tested
concentrations. Overall, these results showed that ROS production in 1:4 ND-treated cells was closer to that in
untreated cells, suggesting this formulation’s potential for further optimization.
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In vitro sustained drug-release assay
The NDs’ extended drug release characteristic was determined in PBS Tween 20 aqueous solution using an
equilibrated dialysis system. The TFV released from the dialysis bag into the outside environment was sampled at
different time points up to 14 days and was measured by LC–MS/MS. The dialysis bag used in these experiments
was selected for its pore size of 6–8 kDa molecular weight cutoff (MWCO), so that only drug molecules could
be transported across the membrane. Simultaneously, a separate setup with the same concentration and volume
of FD–TFV was used as a control. Results were expressed as the percentage of total TFV released into the system
compared with the initial concentration. It was observed that 63% of FD–TFV was released within 4 h. Compared
with FD–TFV, the 1:4 ND–TFV showed 35% drug release within 4 h (Figure 6). Compared with the FD–TFV,
the 1:20 ND–TFV showed 0.18% drug release within 4 h and showed a significant, sustained drug release of
TFV in vitro (Figure 6). Overall, when comparing both 1:20 ND–TFV and 1:4 ND–TFV, the FD–TFV had a
significantly faster TFV release, although it is considered delayed in terms of the free drug. However, the 1:20
ND–TFV was shown to have a significantly extended release compared with the 1:4 ND–TFV (Figure 6).

Drug release through the BBB model in vitro
The ND was further characterized for its drug-delivery property across the BBB. An in vitro BBB model was used to
recreate the biological barrier encountered in drug delivery toward HIV-1 residing in the brain and to understand
the drug release kinetics of the NDs in the BBB environment. The BBB model’s integrity was characterized by
measuring the TEER values before and after the ND exposure. The range of TEER values was from 130 to 150 � at
the beginning and the end of the experiments (Figure 7A). The range of TEER values was similar in all three groups
(control, ND–TFV and FD–TFV). The TEER values indicated the consistent integrity of the BBB throughout
the experiment, confirming the contribution of the BBB in transporting the ND formulation from the apical to
the basolateral side of the BBB. The percentage of drug release of TFV from the 1:4 ND–TFV formulation was
compared with that of the FD–TFV, and the pattern indicated that the 1:4 ND–TFV had a sustained release up to
4 days, which was not significantly different from FD–TFV (Figure 7B). Based on the results of this in vitro BBB
model, 1:4 ND–TFV was observed to have similar drug release characteristics compared with FD–TFV. In contrast,
the 1:20 ND–TFV formulation was shown to have extended release properties which were significantly different
from those of the FD–TFV. These observations are similar to those seen in the dissolution study (Figure 6).
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Figure 4. Effect of nanodiscs at 1:20 and 1:4 and free tenofovir on reactive oxygen species production in HMC-3 and
SH-SY5Y cells. (A) HMC-3 and (B) SH-SY5Y cells were exposed at different concentrations (0.01–0.1 mg/ml). A
graphical representation was made of ROS production; ROS production was measured in terms as mean ± standard
deviation of RFU from three independently replicated experiments. Statistical significance was calculated by two-way
analysis of variance with post hoc Dunnett’s multiple comparisons test.
*p < 0.05 was indicative of significance compared with untreated cells.
FD: Free drug; ND: Nanodisc; RFU: Relative fluorescence units; ROS: Reactive oxygen species; TFV: Tenofovir.

Cell uptake & characterization of extended release from ND
To evaluate the intracellular uptake of TFV in microglial cells, an in vitro cellular uptake study was performed. The
cellular uptake of two formulations (1:4 and 1:20 ND–TFV) and FD–TFV (control) simultaneously monitored the
uptake and release of TFV over 24 h. Our results showed different uptake of the two formulations. Maximum uptake
was observed at 1 h for 1:20 ND–TFV, at 2 h for 1:4 ND–TFV and at 1 h for FD–TFV (Figure 8). Based on the
physiochemical characteristics of TFV (Figure 8), this drug penetration to microglial cells was not very significant.
The concentrations measured within the samples were below or around the limit of quantification, indicating that
only a small amount of TFV can cross the cell membrane. This small window of cellular uptake could indicate a
limited capacity of microglia to uptake TFV, or it could be that the formulation’s physical characterization prevents
a higher uptake of the NDs. The observed results from this cellular uptake study indicated that 1:4 ND–TFV
accumulated TFV within the cell to a greater extent than the 1:20 ND–TFV and FD–TFV formulations. However,
the short windows of drug uptake by the microglial cells could indicate that the size and surface charge of the NDs
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Figure 5. Effect of empty nanodiscs on reactive oxygen
species production on HMC-3 and SH-SY5Y cells. (A) HMC-3
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could also be a contributing factor. The overall observation suggested that with the formulation, TFV has a higher
chance of getting into the cells compared with FD–TFV.

In vivo MTD study
During the MTD study, male and female BALB/c mice were treated with a single intravenous dose at 0, 2, 10,
15 or 20 mg/kg. Mice were observed at predetermined time points, appeared normal throughout the phase and
tolerated the varying ND concentrations well based on the parameters observed. The highest MTD dose level of
TFV was selected at 20 mg/kg to continue with further characterization.
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Figure 7. Transendothelial electrical resistance values and sustained drug release from 1:20 and 1:4 nanodiscs in an
in vitro blood–brain barrier model. 1:20 ND, 1:4 ND and FD–TFV were introduced into the apical chamber of the BBB
model. (A) TEER values of the BBB were measured to ensure formulations did not significantly affect the integrity of
the BBB. (B) Drug release of formulations through the BBB was observed and measured for up to 10 days. A graphical
representation was made in terms of average drug release percentage (%) and was measured in terms of mean % ±
standard deviation (n = 3). Statistical significance was calculated by a two-way analysis of variance with post hoc
Dunnett’s multiple comparisons test.
*p < 0.05 was indicative of significance when compared with FD–TFV.
BBB: Blood–brain barrier; FD: Free drug; ND: Nanodisc; TEER: Transendothelial electrical resistance; TFV: Tenofovir.
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In vivo PK analysis of NDs
During the PK study, male and female BALB/c mice were administered a single intravenous dose at 20 mg/kg
TFV in the ND–TFV formulation (group 6) and FD–TFV in a sterile saline formulation (group 7), and blood
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samples were collected for up to 48 and 72 h. The PK data analysis was performed using the plasma concentrations
of TFV.

Significant differences in PK parameters were observed between the ND and FD–TFV formulation-administered
groups. The initial (C0) plasma concentrations were 42,387.8 ± 17,936.2 and 65,023.1 ± 43,635.0 ng for ND–
TFV and FD–TFV, respectively. The C0 in the FD–TFV formulation was almost 1.5-fold that of the ND–TFV
formulation. The drug was detected up to 72 h post dosing but was below the lower limit of quantification of
the analytical method. The plasma concentration data of up to 24 h was used in calculating the area under the
curve (AUC0–inf); AUC0–inf values of 5755.3 ± 1338.2 and 9148.4 ± 4490.9 ng/ml/h were achieved in ND–TFV
and FD–TFV, respectively. This followed the trend of C0 in terms of the magnitude of the differences between
the two groups. The AUC0–inf was 1.6-times greater in the FD–TFV formulation compared with ND–TFV. The
volume of distribution and the clearance showed a pattern similar to C0 and AUC0–inf. The volume of distribution
measures the relative distribution of the drug in the plasma and extracellular compartments of the body. Given
that C0 was high in the FD–TFV formulation compared with the ND–TFV formulation, it was expected that the
volume of distribution would be higher in ND–TFV compared with FD–TFV; the values were 596.9 ± 391.5
and 398.3 ± 179.3 ml/kg for ND–TFV and FD–TFV, respectively. Similar to the volume of distribution, plasma
clearance of the drug was faster in ND–TFV compared with FD–TFV: the clearance values were 3694.5 ± 1154.5
and 2528.2 ± 901.8 ml/h/kg in ND–TFV and FD–TFV, respectively. The overall elimination constant (K10) was
higher in the ND formulation compared with FD-TNF; this was expected, because C0 and AUC0–inf were small
in the formulation. The K10 values were 7.1 ± 1.8 and 6.7 ± 1.1 h-1 in ND–TFV and FD–TFV, respectively.

Discussion
This study focused on the encapsulation of the anti-HIV drug TFV into NDs. Previously NDs have been established
as a prominent drug carrier for several anticancer drugs [39]. However, this is the first time the formulation was
tested for an anti-HIV drug. Because the ND formulation can encapsulate both hydrophobic and hydrophilic
drug molecules, it provides a unique opportunity to expand this work [56]. MEP and MLSP provided information
about the surface charge, molecular structure and lipophilicity of TFV and characterized its interactions during
entrapment in the ND (Figure 1). MEP and MLSP showed TFV to be an extremely hydrophilic molecule; this can
limit the drug’s incorporation within the bicellar core, but the ND can entrap both hydrophobic and hydrophilic
molecules because of the amphiphilic nature of the phospholipids [30,57]. DLS was used to investigate the size
of the drug-loaded-NDs, and the results confirmed the uniformity of the NDs for individual TFV-ND samples
(Figure 2). SAXS patterns of the NDs in both 1:4 and 1:20 ND–TFV indicated that the NDs maintained their
structures via the retention of the valley and broad bilayer peaks (Figure 1C). However, the SAXS data indicated
the role and influence of TFV’s chemical structure on the NDs’ internal structure. The overall diameter of the NDs
increased with higher drug content, and Rcore remained practically constant for ND–TFVs. The ND formulation
was observed to be clear and colorless and miscible with water at room temperature. In addition, an advantage of
this formulation was its stability at normal room temperature (25◦C).

Cytotoxicity results indicated that the 1:20 ND–TFV formulation caused a decrease in cell viability for HMC-3
and SH-SY5Y cells due to increasing extracellular TFV concentrations (Figure 3), which are associated with higher
lipid content (Figure 2 & Supplementary Table 1). While lipid-based formulations are safe and biocompatible and
display low toxicity, there is still a level of concern for the high lipid concentrations seen within this study; studies
of NDs’ toxicity toward neuronal cells remain limited [57]. The results also indicated that SH-SY5Y cells were more
susceptible to toxicity than HMC-3 cells, as both ND–TFV formulations (1:4 and 1:20) were observed to cause a
decrease in cell viability. Even though the cell viability study was done as per published protocol, it is important
to note that it was a direct exposure of cells (HMC3, SH-SY5Y) to ND or free drug in in vitro conditions [50]. In
clinical settings, most cART drugs are given through oral administration; therefore exposure of brain cells to cART
drugs occurs after first-pass metabolism [58]. In this regard, further in vivo studies will be performed to evaluate the
safety of the ND formulation in the future.

Further evaluation of the ND–TFV on ROS production and oxidative stress showed that 1:20 ND–TFV induced
a significant increase in ROS production for both cell lines. In contrast, ROS production in 1:4 ND–TFV-treated
cells was closer to that in untreated cells, indicating this formulation’s potential for further optimization (Figure 4).
The observation of induced ROS production from 1:20 ND–TFV may be due to several factors regarding the
ND composition. ROS production on empty ND bicelles was also observed but indicated no significant increase
in ROS production (Figure 5). Overall, the optimization of the NDs is dependent on several other factors, such

10.2217/nnm-2022-0043 Nanomedicine (Lond.) (Epub ahead of print) future science group



Effect of drug-to-lipid ratio on nanodisc-based tenofovir drug delivery to the brain for HIV-1 infection Research Article

as their long-term stability, sustained release and therapeutic efficacy. Considering the results from the ROS assay,
both 1:20 and 1:4 ND–TFVs were further evaluated to understand the drug release properties of the formulations.

In the drug release study, 1:20 ND–TFV demonstrated a significantly sustained release compared with FD–TFV
and 1:4 ND–TFV (Figure 6). It should be noted that during LC–MS/MS analysis of the 1:20 ND’s drug release
profile, there was a detection of a prodrug-like molecule of TDF, although our formulation was not made with
the prodrug TDF. This may be due to by-products or metabolites found from TFV in the 1:20 sample that may
have been identified as structurally similar to TDF [59,60]. A loss of TFV into by-products has been previously
attributed to pH, which may have been a factor in the 1:20 sample [57]. Additionally, it is essential to note that
there was no other detection of the prodrug in the 1:4 ND and FD–TFV samples. The release profile of FD–TFV
showed a limitation in the release across the dialysis membrane, which could be attributed to the retardation effect
of the tight membrane structure [61]. Considering the structure of the hydrophilic formulation on the surface and
the hydrophobic core, the current results agree with the suggestion that the lipid content of a nanostructure helps
govern the drug-loading capacity, prolonged release action and overall stability of the formulation, which suggests
why 1:20 ND–TFV may have better encapsulation compared with 1:4 ND–TFV [62]. In addition, because the
formulation has an automatic encapsulation property without any experimental procedure, the amount of the drug
it will hold also largely depends on how well the ND is formed with a concentration of lipids [36,62]. Overall, the
drug release study established that 1:20 ND–TFV was significantly more stable than 1:4 ND–TFV, which could
translate into better pharmacokinetics in vivo.

The drug release study through an in vitro BBB model showed the 1:20 ND formulation to have extended
release properties that were significantly different from those of the FD–TFV, whereas the 1:4 ND–TFV had
similar drug release properties to FD–TFV (Figure 7B). It is noteworthy that the drug release of the FD–TFV and
ND–TFV across the BBB is regulated by the biological transporters present on both sides of the BBB [63]. Often it
was observed that the drug release capacity across the BBB might be higher; however, those formulations struggle
with sustained-release properties, as indicated in our observation. While FD–TFV and 1:4 ND–TFV could cross
the BBB efficiently, they did not have a sustained release property like that of the 1:20 ND–TFV formulation.
It is also worth noting that these formulations did not compromise the integrity of the BBB (Figure 7A). These
formulations were also evaluated for their microglial uptake via an in vitro cell uptake study. As microglia are
considered the major reservoir of HIV-1, observation of their drug uptake would help determine the brain’s drug
retention capacity. The results showed a maximum TFV uptake observed at 1 h for 1:20 ND, 1 h for FD–TFV
and 2 h for 1:4 ND–TFV (Figure 8). The 2 h of drug uptake by the microglial cells could indicate that the size,
surface charge and PEGylation of the NDs could be contributing factors [64,65].

Based on our in vitro studies, an in vivo optimization study was also designed to observe the MTD and PK of
1:4 and 1:20 ND–TFVs in mice. In this regard, it is important to mention that both male and female BALB/c
mice used for this study were 8 weeks old, selected considering the clinical relevance of the study: the majority
of people with HIV-1 are living longer and aging with the virus due to the wide availability of cART in recent
years [66]. This opens up the opportunity to optimize the NDs and current cART drugs in an older animal model.
However, we acknowledge the fact that older mice may be more susceptible to tenofovir toxicity compared with
younger mice [67]. The MTD study indicated that out of several doses tested in the mice, the highest dose was
well tolerated without any adverse clinical observation, based on any visible symptoms. An in vivo PK analysis
was performed on the measurable plasma concentration of TFV after administration in two different intravenous
formulations: an ND–TFV formulation and FD–TFV. The plasma concentration–time profile and PK parameters
showed significant differences between the two formulations. Higher C0 and AUC0–inf were obtained in the FD–
TFV formulation compared with the ND–TFV formulation. This suggested that a significant part of the ND
formulation had been distributed to the extracellular compartment of the body and penetrated intracellularly,
because nanoparticles are known to have higher penetration/permeation, possibly including brain tissues and other
organs [63]. However, tissue distribution studies are needed to confirm this observation. TFV is known to have poor
permeation/penetration across the cell. However, once inside the cells, TFV converts to a diphosphate form that
stays inside the cell for a long time due to its charged nature [68,69]. Administering TFV as the ND formulation
may improve therapeutic outcomes in HIV-1 infection. Furthermore, the volume of distribution and clearance
values also suggested higher extravascular distribution of ND–TFV compared with FD–TFV. However, differences
in C0, AUC0–inf, volume of distribution and clearance parameters of the two groups (ND–TFV and FD–TFV)
were not statistically significant (p > 0.05) due to high standard deviation. This high standard deviation was due
to the smaller size of the animals used in the study and could be decreased by increasing the group size. We intend
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to perform comprehensive PK, tissue distribution and pharmacodynamic studies in a big group to determine the
statistical significance between the two formulations.

Both in vitro and in vivo characterization studies indicate that further optimization of the formulation is needed
to obtain more significant PK information. The structural lipid composition of the NDs was changed to some
extent to be more closely aligned with a liposomal structure. The change in structure provided more stability in
holding TFV within its aqueous core and indicated extended drug release properties. A similar types of structures
have been well documented to have sustained release properties because of their amphiphilic nature [70]. However,
the present study could not provide anti-HIV-1 efficacy of either formulation against HIV-1, which is an important
aspect of the optimization of this nanodrug. Considering the importance of the drug-to-lipid ratio in both the
1:4 and the 1:20 formulations, the study mainly focused on the cytotoxicity, sustainability, pharmacokinetics and
drug release properties of these formulations in vitro and in vivo. Given that the present study has established the
above-mentioned characteristics of these formulations, further research will be needed to check the therapeutic
efficacy of these formulations in vitro and in vivo. ND formulations are well characterized in cancer therapy, which
provides us the confidence to take these formulations for further characterization [33,35,39].

The use of this formulation for anti-HIV drugs and the effect of cART drug-to-lipid ratio on their pharmacological
properties are reported for the first time in this study, which is completely different than anything we have established
in the past. Therefore the clinical relevance of the current observations is significant, because this ND formulation
can hold a clinically relevant level of hydrophobic and hydrophilic cART drugs and cross the BBB. This observation
further indicates that these formulations can be potential candidates for next-generation anti-HIV drug delivery
with further optimization. Overall, the study established that NDs could provide drug stability and sustained drug
release properties to the TFV formulation. This is the first time an ND formulation has been characterized for
antiretroviral drug delivery to the brain and its potential for anti-HIV treatment.

Conclusion
Overall, this study’s results contribute to developing an ND-based delivery toward the brain to treat HIV-1.
However, as observed, an increase in the ND’s lipid content, as seen in the 1:20 formulation, could affect the
cellular environment when using higher concentrations. The greater lipid content within the 1:20 formulation
allows it to have more stability than the 1:4 formulation, enabling it to have a sustained drug release for a more
extended period. In the meantime, the 1:4 formulation is shown to have minimal cytotoxicity on neuronal cells
but has a relatively faster drug release according to the in vitro and in vivo studies. The ND formulation offers
an attractive solution for the treatment of active and slowly replicating HIV-1 in the brain. This is a significant
observation, as controlling the slowly replicating HIV from HIV reservoir organs such as the brain will provide a
significant improvement in treatment outcomes for HAND.

Executive summary

• The study for the first time demonstrated the utilization of a nanodisc (ND) formulation for anti-HIV drug
delivery across the human blood–brain barrier in in vitro conditions.

• The ND formulation allows an unbiased investigation of the interaction between the drug and the cells, keeping
other physicochemical characteristics invariant.

• The self-assembling capacity of NDs provides an opportunity to encapsulate both hydrophobic and hydrophilic
combination antiretroviral therapy drugs and develop a sustained release of the drug formulation; this
formulation can host a complete set of drugs in one molecular structure.

• The efficacy of targeted delivery across the blood–brain barrier makes the formulation unique for future delivery
of therapeutics.

• The study established an important role of the drug-to-lipid ratio in the ND formulation which is important for
further success of this nanodrug in vitro and in vivo.
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