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ABSTRACT 

 

Calagos, Marven, Buffer Controlled Cache For Low Power Multicore Processors. Master of 

Science Engineering (MSE), May, 2018, 96 pp., 10 tables, 66 figures, references, 33 titles.  

 This thesis proposes a buffered dual access mode cache to reduce power consumption in 

multicore caches for embedded systems. This cache is called Buffer Controlled Cache (BCC 

cache). The proposed scheme introduces a pre-cache buffer to determine how to access the cache. 

The proposed cache shows better prediction rates and lower power consumption than 

conventional caches, such as Phased cache and Way-prediction cache. For single core 

implementation, Simplescalar and Cacti simulators have been used for these simulations using 

SPEC2000 benchmark programs. The experimental results show that the proposed cache 

improves the power consumption by 37%-42% over the conventional caches. Multi2Sim and 

McPAT simulators have been used for the multicore simulations using the Parsec benchmark 

programs. The experimental results show that the proposed cache improves the power 

consumption by as much as 54% over conventional caches.
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 Fabrication technology is progressing at a very rapid pace, resulting in large transistor 

budgets for chips and processors. This, in turn, enables processor designs with extremely large 

caches, i.e., more than 32KB for level-one (L1) cache memory. Even though large caches 

lead to higher performance, they might consume a large amount of power; hence, it can be very 

critical for mobile or hand-held devices, which are typically battery powered. These cache 

structures occupy more than 60% of modern microprocessors' die area [1] and cause more than 

50% of total power dissipation [2]. Typically, on-chip caches in mobile devices are not highly 

associative, i.e., less than 16-way. Therefore, a cache miss results in a lower cost for access, 

power and latency, to the memory. Modern mobile microprocessors, such as the ARM Cortex 

A9, use only 4-way or 8-way cache architectures [3]. 

 Modern computers and mobile devices play an important role in daily use, either for 

entertainment, communication, or work. These devices are multifunctional and place great 

demand on its processing capabilities. Multicore processors can fit this role and have become the 

standard in computing, even in mobile devices. Low-power multicore architectures are the trend 

of development; hence there is a need for research and experimentation in this area [4]. 

Multicore architectures are more complex than single core architectures and can consume more 

power. This is a limiting factor in mobile devices that are battery powered. A low-power 
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multicore design is essential for mobile devices due to the limited capacity of its battery power. 

Another issue that limits the performance of multicore processors is cache coherence [5]: when 

different cores share a common memory resource, inconsistent data may arise. Research is 

ongoing in this area to mitigate the problem. In this regard, this paper experiments with multiple 

arrangements of cores, L1 caches, and L2 caches to determine the optimal cache configuration 

for BBC cache. The arrangement of these cache components will effect cache coherence and 

hence, the processor's overall performance. 
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CHAPTER II 

 

 

BACKGROUND 

 

 

 The memory system of a computer is comprised of several components. These 

components form a memory hierarchy of varying access latencies. This thesis will focus on the 

cache memory component and its vital role in performance and power consumption. 

2.1 Memory Hierarchy 

 A fundamental need of a computer system is storing data and program code. Some code 

is required only when the computer is operating, while other data must be retained when the 

computer is off. A computer system can store a vast amount of data, however only a small 

fraction is processed at a time. Therefore a memory hierarchy is necessary to rapidly stream data 

to and from the processor and to store large data sets and large programs [6]. 

 

 

 

 

 

 

Figure 1.1: Memory Hierarchy
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Figure 1.1 shows the four typical components of the memory hierarchy. From top to 

bottom, latency and storage capacity increases. For example, the Registers contain the least data 

but are also the fastest (least latency). At the bottom, Magnetic Disks contain the most data but 

are also the slowest. The components are described in detail as follows: 

 Registers: Provides the smallest capacities (hundreds of bytes) and latency (one cycle). 

Register files provides the fastest access times and is responsible for supplying 

operational data and program code for execution by the processor. 

 Cache Memory. Provides small capacities (kilobytes to megabytes) and latency (a few 

cycles). Cache memory is based on SRAM (Static Random Access Memory) technology 

but is still volatile. It is used to reduce the latency from main memory to the processor. 

 Main Memory. Provides moderate capacities (gigabytes) and latency (hundreds of cycles). 

Main memory is based on DRAM (Dynamic Random Access Memory). It is also volatile 

but ideal for storing temporary data and running programs. 

 Magnetic Disks. Provide the largest capacities (terabytes) but also the greatest latency 

(millions of cycles). Magnetic storage are nonvolatile and will retain their information 

when the power is turned off. This makes it ideal for storing large data sets and large 

programs.   

 These components are also attached to the CPU in a hierarchical manner and their designs 

greatly affect the performance of the CPU. While each of these components are large subjects on 

their own, this thesis will focus on the design of cache memory. 
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2.2 Cache Memory 

 Cache memory is the first level of the memory hierarchy that the CPU encounters. It is 

smaller and faster than main memory. The cache is ideal for storing the most frequently used 

data from main memory. When the processor needs data, the cache is checked before main 

memory. Access to main memory is unnecessary if the data exists in the cache. To speed up 

access and execution, most modern CPUs have separate data and instruction caches. 

Furthermore, the data cache can be organized in more cache levels (L1, L2, L3, etc.) called 

multi-level cache. Cache level L1 is the fastest but also the smallest in capacity, while L3 cache 

is slower but has more capacity. Multi-level cache offers a trade-off between latency and hit rate. 

Cache L1 is checked first, if a hit occurs, low latency is maintained. If a miss occurs, the next 

larger cache (L2) is checked, and so on down the memory hierarchy. For this thesis, only L1 

cache is considered for modification. 

 The following sections describe a number of attributes that factor into the design and 

performance of the cache. When data is selected to be placed in the cache, a method is used 

called locality of reference.  The mapping function describes how the data is organized in cache 

memory. Finally, several policies control how data is replaced and updated in the cache. These 

attributes affect the performance of the cache and a formula is derived based on these attributes 

for performance measurement. 

2.2.1 Locality of Reference 

 Due to the nature of the data, computer programs tend to access the same or nearby 

memory locations in repeatable patterns.  The locality of reference describes the frequency and 

repetition attributes that take advantage of these patterns[6]. There are two types of locality that 

refer to time and space (location): 
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1. Temporal Locality:  A block of memory is accessed repeatedly in a narrow 

window of time or accessed again in the near future. Loops in program execution 

and frequently referenced data can lead to temporal locality. 

2. Spatial Locality: Adjacent blocks of memory are accessed repeatedly or in the 

near future. Any instruction or data reference accessed sequentially, such as 

reading a media file, can lead to spatial locality. 

 Both types of locality have been observed from user-level application to system kernel 

code. Hench, a majority of computer systems implement some form of locality reference in the 

cache.  

 The locality of reference is a good predictor of usable data, but is not a guarantee that the 

data will be used. A cache hit occurs when the CPU finds the requested data in the cache. If the 

requested data is not in the cache, a cache miss occurs. In the case of a cache miss, the data is 

fetched from main memory and placed in the cache since there is a high probability that the same 

data will be used again in the near future. 

2.2.2 Cache Memory Organization 

 Since main memory is much larger than cache memory, only a subset of data can go into 

cache memory. There needs to be an organization or mapping function to place data from main 

memory to cache memory. The complexity of the mapping function also determines the cache 

associativity. The associativity of the cache is a major factor of CPU performance. And because 

cache memory has sufficiently low latency, the focus shifts to employing complex cache 

organization to increase performance. There are three basic types, shown in Figure 2.1, in order 

of increasing hit times and decreasing miss rates: 

1. Direct-mapped: Refer to Figure 2.1 (a), each entry in main memory is mapped to 
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only one location in the cache. This simple organization provides the fastest hit 

times but also the worst miss rates. It is ideal for large caches.  

2.  Set-associative: Refer to Figure 2.1 (b), each entry in main memory can map to a 

'set' (2, 4, 8, etc) number of locations in the cache. For example, a 2-way set-

associative cache can map each entry to two locations in the cache. Set-

associative cache is a trade-off that provides a balance of hit times and miss rates.  

3. Fully associative: Refer to Figure 2.1 (c), a complex scheme where each entry can 

map to any location in the cache. This requires more time searching the cache for 

data, and thus has the worst hit times but also provides the best miss rates.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Cache Organizations 
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 Because the cache memory organization cannot be changed once the processor is made, 

the choice of particular mapping function is very important. A great deal of testing must be made 

to insure the best performance for a particular cache design. 

 Once the mapping function is decided, the cache can be accessed. Accessing the cache 

involves decoding the requested address. Each mapping function will process the address 

differently with the goal of locating and validating the data in the cache. As an example, a 

processor has the following properties: direct-mapped, 64 MB, 512 KB cache, 32 byte cache 

lines. 

 When the processor needs to read/write from/to main memory, the processor sends a 

memory address to the cache controller. The address will have the format shown in Figure 2.2. 

The memory address has three portions: 

 Tag: used to validate the stored data in the cache line. Its size (bits) is determined by:  

Tag = (Address Size) – (Index + Offset) 

 Index: used to specify the line (set) in the cache to access. Its size (bits) is determined by: 

Index = log2 [Cache Size / (Associativity * Block Size)] 

 Offset: specifies the desired data (word) within the cache line. The size (bits) is: 

Offset = log2 (Block Size) 

 

 

 



9 

 

 

Figure 2.2: Address Space of a Direct-Mapped Cache 

  

The location indicated by the index is read. Then, the tag of the cache address is 

compared to the tag from the processor address. If they are identical, a hit occurs because it is the 

entry that the processor requested. The entire 32 byte content of the cache line is sent to the 

processor. The process is complete and only the cache is accessed. If the tag comparison 

produces a miss, main memory is accessed using both tag and index addresses.  

2.2.3 Replacement Policy 

 There must be a mechanism for removing data from the cache and replace them with 

more current references. A replacement policy is an algorithm that identifies a block for 

replacement. While there are many different variations, the three basic types are as follows: 

1. FIFO: a first-in, first-out policy implements an eviction based on the oldest data or data 

that has been in the cache the longest. This policy is straightforward and does not take 

into account whether or not the data has just been used. 

2. LRU: a least recently used policy evicts data based on the frequency of access. This 

policy attempts to mitigate the problems of the FIFO policy. Implementing this policy is 

more complicated because of the necessity to track the access to each data or block of 

memory. 

3. Random: as the name suggests, data is replaced randomly regardless of age or frequency 

of access. Although risky, this policy is the easiest to implement. 
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  Current cache designs implement some variation of the LRU replacement policy. 

Performance improvements can be obtained by tailoring a specific replacement policy to the 

cache design and mapping function. For simplicity, this thesis will focus on the LRU 

replacement policy. 

2.2.4 Write Policy 

 When writing to the cache, two types of policies are followed for a hit, write-through and 

write-back. A write-through cache will write the 32 bytes of data to the cache line specified by 

the index as well to main memory. In a write-back cache, the data will only be written on the 

cache. 

 If writing to the cache but a miss occurs, there are also two types policies to be followed, 

write allocate and write no allocate. A write allocate will load the data from main memory to the 

cache, followed by a write-hit action. A write no allocate will write to main memory but not to 

the cache. Many combinations of policies are possible with different advantages and 

disadvantages.  

2.2.5 Cache Performance 

 Cache performance is determined by the average cache access-time and the power 

consumed from each access. Cache performance is heavily dependent on the design of the cache. 

Hence, performance can be improved by reducing the access-time or power consumption. The 

choice of mapping function, replacement policy, and write policy greatly affect the performance 

of the cache. A common metric for access-time is the Average Memory Access-Time (AMAT): 
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AMAT = Hit Time + Miss Rate * Miss Penalty 

 The power consumption is typical calculated by a separate hardware simulator. The 

results of which can be used for the energy equations, presented in Chapter V. 
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CHAPTER III 

 

 

RELATED WORKS 

 

 

 The design of microprocessors builds on the works of others. Through research and 

experimentation, the advantages of a particular design are merged into another design. This 

chapter explores different approaches to improving cache performance. Some designs improve 

the speed of the cache (set-associative cache and phased cache) while other designs improve the 

power consumption of the cache (early tag look-up and filter cache). Other designs take a hybrid 

solution that improves power consumption without slowing down the cache (way-prediction 

cache, filter cache). In most of these designs, more importance is placed on reducing power 

consumption. This is especially true for mobile and embedded microprocessors. 

3.1 Set-Associative Cache 

 Set-associative caches are used to improve cache hit rate performance but tend to have 

higher energy consumption than direct-mapped caches due to dynamic wasted energy dissipation 

[7]. Regardless of the number of ways in a set, at most only one way will have the desired data. 

In a conventional set-associative cache, all tag and data arrays are accessed at the same time, 

Figure 3.1. Conventional cache has the advantage when speed is critical, but also consumes the 

most power.
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Figure 3.1: Conventional 4-Way Set-Associative Cache 

 

3.2 Phased Cache 

To solve the power issue, Hasegwa et. al. [8] proposed a low-power set-associative cache 

architecture, now commonly referred to as phased cache, Figure 3.2. In phased cache all the tags 

are accessed in the first phase, and if a tag matches, only one data block is accessed. Avoiding 

unnecessary data access will reduce power consumption. The disadvantage of phased cache is 

the reduced performance caused by using more clock cycles to access the data, compared to 

conventional cache.  

3.3 Way-Prediction Cache 

Taking advantage of the power savings of phased cache, Inoue et. al. [9] proposed a low-

power set-associative cache architecture, called way-prediction cache, that improves on the 

latency of phased cache. A Most Recently Used (MRU) algorithm is used to predict one of the 

ways to access.  
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Figure 3.2: Phased 4-Way Set-Associative Cache 

 

If this prediction is correct, then the tag and data blocks are accessed in one cycle, with 

the speed and the power savings of direct-mapped cache. If the prediction is wrong, the rest of 

the ways are accessed on the next cycle in parallel. The performance and power efficiency of 

way-prediction cache is highly dependent on the accuracy of the way-prediction algorithm used.  
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Figure 3.3: Way-Prediction 4-Way Set-Associative Cache 

 

3.4 Early Tag Lookup 

Chung et. al.[10] proposes a pipeline change for way determination. An early tag lookup 

stage, between branch prediction and fetch stage, is used to determine the next way to be 

accessed. In this method, prediction accuracy and hit rate of the original way prediction cache 

are maintained while reducing power consumption. This scheme does not experiment on data 

caches, where most power is consumed. 

3.5 Predictive Placement Cache 

Another method proposed by Raveendran et. al. [11] uses a predictive placement scheme 

for better way-prediction hit rate, power efficiency, and performance. In this scheme, an 
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algorithm is used to selectively place the MRU way such that it improves prediction hits using 

minimal prediction bits. The scheme has an average power reduction of 67.75% compared to 

conventional cache and it works very well on data cache. 

3.6 Filter Cache 

Reducing the amount of cache activity (sub-array accesses) would also reduce power 

consumption. Chang et. al [12] proposes a two-level filter (buffer) cache to achieve this,  

Figure 3.4. The Level 1 (L1) filter contains the recently used block. Due to spacial locality, the 

next data access will likely be in the same block. If so, the main cache is bypassed. In case of an 

L1 filter miss, the Level 2 (L2) filter uses sentry –tag to predict which way activities are 

unnecessary, instead of accessing all the ways. Depending on the cache configuration, the two-

level filter cache can reduce power consumption by 46% (32KB, 4-way). Because of the added 

filters, a delay penalty can be incurred from a filter miss. Another disadvantage of this 

architecture is the dependence on program behavior and cache associativity, both of which can 

negatively affect power efficiency. 

 

 

 

 

 

 

Figure 3.4: (a) Conventional Cache Architecture. (b) Two-Level Filter Cache Architecture. 



17 

 

3.7 Cache Bursts 

Data caches in set-associative caches are inherently inefficient. Data can be in a dead 

block or wrong locality causing misses and in turn increasing delay and power consumption. Liu 

et. al. [13] uses cache bursts and prefetching to hide the irregularity of individual references. It 

can also identify 96% of dead blocks with 96% accuracy leading to an average L1 improvement 

of 9% and L2 improvement of 10%.  

3.8 Way-Prediction Scheme 

 Tseng et. al. [14] proposes a method to improve the problems of spatial and temporal 

locality by using a 2-bit counter to store the MRU information of a cache set as well as a 

Modified Pseudo LRU replacement algorithm. Combined, this scheme reduces hardware 

complexity and cache miss rate. The results show an increase in prediction hit rate to 90.15% and 

a power reduction of 64.12%. Another method to fix the problems of locality is the use of 

Dynamic Time Tuning as proposed by Zhang et. al [15]. The method uses self-adapting time 

slice turning according to the prediction and cache misses in the execution interval. This leads to 

better program locality and a longer time slice, which in turn leads to less cache reconfigurations 

and less power consumption. 

3.9 Way Determination Unit 

 As with previous examples, increasing the way prediction hit rate and increasing locality 

will improve the way-prediction cache. The paper by Chung et. al.[16] uses both of these 

methods. The Way Determination Unit exploits high line address locality by recording 

previously seen cache line addresses and their way number. This method does not have mis-

prediction penalties. It saves power on average of 66% for an 8-way set-associative cache and 

power consumption reduces as associativity increases. Using high-associativity in L1 cache is 
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mostly beneficial for way-prediction schemes and similar designs. 

3.10 Adaptive Mode Control 

Yet another method combines the speed of conventional cache and the power savings of 

phased cache with way prediction cache as proposed by Inoue et. al.[17]. This method has a 

performance-aware mode (switching between conventional and way prediction) and an energy-

aware mode (switching between phased and way prediction). The performance aware mode 

reduces performance overhead of the original way prediction cache to 17%. The energy-aware 

mode reduces power consumption of the original way prediction cache to 73%. While this 

scheme uses a 2-bit saturation counter to determine which mode to use, other branch predictors 

such as Fast Way-Prediction Cache [18] and Taken Branch Identification Table [19] further 

improve performance and power consumption. 

An inhibiting aspect in multicore processors is the ability to exploit parallelism in 

software programs [20]. If a program is not written with parallelism in mind, then it may not run 

any faster in a multicore system. While software programs written for parallization continuous to 

improve, hardware design must also meet the demands of software architecture. Processor 

performance can be increased by taking advantage of the software application load. For example, 

specialized chips or coprocessors can be added for specific purposes, such as media and graphics. 

A media chip can decode videos. A graphics chip can process graphics and games. These 

specialized chips are highly efficient and can bypass the less efficient general processor. 

Software programs written for a particular processor hardware or with parallelism can take full 

of advantage of multicore systems.   

An asymmetric design, such as ARM's big.LITTLE, combines different types of cores 

(performance and energy-efficient cores) in one chip [21]. When performance is required, all the 
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cores can be used. If the load is minimal, only the energy-efficient cores are used. To the 

software, it appears as an homogeneous multicore processor. These cores can be linked via a 

high speed interconnect. Access to memory via an interconnect can inhibit performance by 

delaying communication between cores. A solution to this is a high-speed buffer in the form of 

an L4 cache [22].  

Intel's Turbo Boost allows different cores to be completely switched off and the 

frequency of the remaining threads can be raised [23]. This temporary performance boost is only 

limited by the thermal capacity of the chip. The ability to control the voltage or frequency of the 

different cores and other processing units will also increase performance and power management. 

Synchronization is a hardware solution to the problem of cache coherency in multicore 

system [24]. Coherencies contribute to major locks and conflicts which result in poor 

performance. Locks and conflicts occur because of inconsistent data from improperly managed 

cache coherency. When data is expected but not available, it causes a lock or a stall in processing. 

Synchronization attempts to prioritize access to memory only to cores that are requesting. The 

address being accessed by the core is also locked, preventing other cores from accessing it. 

Synchronization provides fairness with regards to memory access with affecting performance. 

For battery powered embedded systems, power consumption has been a critical issue 

compared to performance. Based on previous work presented in this section, power consumption 

can be minimized by using way-prediction mode in the case of a predicted cache hit and using 

phased mode in the case of a predicted cache miss. Furthermore, cache activity can be reduced 

by the use of a buffer. The results of the buffer will control the access mode of the cache. This 

cache is called Buffer Controlled Cache (BCC cache). A multicore system utilizing BCC cache 

will have an inherent benefit of lower power consumption. Further optimizations can be made to 
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a multicore system design to lowering power consumption, as explored in this thesis. 
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CHAPTER IV 

 

 

BUFFER CONTROLLED CACHE 

 

 

 This thesis proposes a cache scheme to reduce power consumption by using a buffer and 

dual accessing modes. The three main components of BBC cache are: a most recently used 

(MRU) buffer, Phased mode, and Way-prediction mode. The goal of this scheme is to reduce 

power consumption by minimizing cache activities. The MRU buffer acts as a filter cache and 

will determine how the main cache is accessed, phased mode or way-prediction mode. This 

approach provides many advantages as compared to conventional caches. 

4.1 Access Cases 

The method of access to the cache will determine its power consumption by increasing 

cache activities. The more components the cache uses (activates), the more power it will 

consume. Therefore, it is important to minimize cache activities using the appropriate access 

case. Figure 4.1 shows the access mode sequence of BCC cache for a valid reference address. 

Three cases exist for the access path of BCC cache: 

1) Buffer tag hit and cache hit, Figure 4.2 

2) Buffer tag miss and cache hit, Figure 4.3 

3) Buffer tag miss and cache miss, Figure 4.4 

If a hit occurs in the buffer, the cache is accessed using way-prediction mode. A hit in the buffer 
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entails that the tag/data has been accessed recently and it remains in the main cache. In this case, 

way-prediction mode is used to access the cache because the correct „way‟ is determined by the 

buffer, via tag comparison. If a miss occurs in the buffer, the cache is accessed using phased 

mode. A miss in the buffer entails that the tag/data has either not been accessed recently or it 

doesn‟t exist in the cache, a cache miss. In this case, phased mode is used because of its reduced 

power consumption when accessing all the tags in the cache for comparison. 

 

 

Figure 4.1: BCC Cache Access Mode Sequence 
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Figure 4.2: Buffer Tag Hit and Cache Hit 

 

Figure 4.3: Buffer Tag Miss and Cache Hit 
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Figure 4.4: Buffer Tag Miss and Cache Miss 

 

4.2 MRU Tag Buffer 

 The latest n MRU tag entries are stored in the buffer, where n refers to the number of 

main cache lines. Regardless of associativity, only the MRU tag of a cache line will be stored in 

the buffer. Hence, the buffer will have the same number of entries as there are cache lines. Figure 

4.5 shows the address space of an entry for a 16-way cache. For this experiment, all cache 

configurations will use a 20-bit tag. Therefore, the buffer will also have a 20-bit tag plus a few 

bits, for the offset, to determine the location of the MRU way in the main cache. The 

associativity of the cache will determine the number of offset bits. 
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Figure 4.5: Address Space of a BCC Buffer Entry for a 16-Way Cache 

 

 As the cache size increases, the buffer size (number of entries) also increases. As the 

associativity increases for a given cache size, the buffer size will decrease. For example, in 

Figure 4.6, a 32KB 4-way cache will have 256 entries in the cache and buffer, but a 32KB 16-

way cache will have only 64 entries in the cache and buffer. Using the same block size (32B), the 

number of entries (i.e. number of sets) is calculated using the following formula:  

(cache size) = (number of sets) x (block size) x (associativity) 

 A cache line correlation exists in that the indexing of the buffer is exactly the same as the main 

cache. 

 

  

 

 

 

 

 

Figure 4.6: Buffer Size Example 
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Notice also that only two bits of offset are required for the 4-way cache; whereas the 16-

way cache requires four bits. This makes it unnecessary to have index bits in the address space of 

the buffer and thus lowering the area footprint and power consumption of the buffer. Before the 

cache is accessed, the buffer is checked. If the tag entry exists in the buffer, the cache is accessed 

using way-prediction mode and will require only one cycle, Figure 4.7. Only one tag and one 

data will be accessed. If the tag entry does not exist in the buffer, the cache is accessed using 

phased mode and requires two cycles, Figure 4.8. For a 4-way cache, four tag sub-arrays and one 

data sub-array will be accessed. 

4.3 BCC Organization 

The organization of BCC cache is shown in Figure 4.9. The access controller has three 

main functions: mode control, way selection, and tag update.  
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Figure 4.7: Way-Prediction Mode 

 

Figure 4.8: Phased Mode 



28 

 

 

Figure 4.9: Organization of a 4-Way BCC Cache 

 

Tags from the reference address and MRU buffer are selected, via index bits, then compared and 

the result is given to the mode control. If the tags match, a hit occurs; the control signal for way-

prediction mode is given. If the tags don‟t match, a miss occurs; the control signal for phased 

mode is given. The way selection simply decrypts the buffer offset bits. For example, an offset of 

„0000‟ will select „way 0‟. While an offset of „0101‟ will select „way 5‟. If a buffer hit occurs, 

the buffer tag does not need to be updated. However, it does need to be updated for a buffer miss. 

The result of cycle 2 tag comparison will used to update the buffer entries. 
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4.4 Advantages 

The original way-prediction cache has power and delay penalties incurred during a 

prediction-miss. This is nullified by the use of an MRU buffer. Way-prediction relies on the 

MRU information for prediction. By comparing the MRU entries before accessing the cache, the 

power consumption penalty of a prediction-miss can be avoided. The prediction-miss access of 

the original way-prediction is replaced by the more power efficient phased mode access. Phased 

mode access has the benefit of reduced energy because only one data block is accessed, 

compared to all data blocks of a prediction-miss of way-prediction cache. In terms of delay 

penalty, both phased mode access and the prediction-miss of way-prediction require two cycles, 

so this stays the same. It is desirable to use way-prediction mode of BCC cache as much as 

possible as this provides both reduced power consumption and minimal delay penalties. Table 

4.1 summarizes the power and delay characteristics of BCC cache by minimizing tag and data 

sub-array accesses.  For comparison, Table 4.2 summarizes the access characteristics of 

conventional caches. 

AccessCase TagSub-array DataSub-array Cycles 

1)Taghit,cachehit 1 1 1 

2)Tagmiss,cachehit All 1 2 

3)Tagmiss,cachemiss All 0 2 

 

Table 4.1: Power and Delay Characteristics of BCC Cache 
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 AccessCase TagSub-array DataSub-array Cycles 

Conventional 

1)Cachehit All All 1 

2)Cachemiss All All 1 

Phased 

1)Cachehit All 1 2 

2)Cachemiss All 0 2 

Way-prediction 

1)Cachehit 1 1 1 

2)Cachemiss All All 2 

 

Table 4.2: Power and Delay Characteristics of Conventional Caches 

 

Because of temporal locality, the MRU entries are the most likely memory locations to be 

referenced again. Because of spatial locality, the next access data are likely to be located in the 

same block as the last access. This observation will result in more way-prediction accesses as 

opposed to phased accesses, which is desirable because of the improved performance and power 

consumption of way-prediction when the prediction is correct.  

BBC is similar to AMC cache from [17]. The main difference is the method of deciding 

how the cache is accessed, namely - the MRU buffer. The MRU buffer is more accurate than a 2-

bit counter used in AMC cache. Additionally, when the a hit occurs in the MRU buffer, a miss-

prediction penalty is completely avoided in BBC cache. A miss-prediction penalty still occurs in 

AMC as it is part of the way-prediction access mode.  

4.5 Disadvantages 

 BCC cache has some drawbacks as well as places that can be improved. A buffer is 
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placed between the CPU and the cache. Because of this, a delay is introduced regardless of 

buffer size. However, it is later shown that this delay does not negatively affect the Energy Delay 

Product (EDP) of BCC cache. The accuracy of the prediction technique is crucial to reducing 

power consumption. Although the MRU technique works well with low-associativity caches, the 

first-hit rate decreases as cache associativity increases [25].  

Unlike other schemes, BCC does not change the performance of the cache. The miss rates 

of the cache are unaffected, although altering the replacement policy of the cache can improve 

miss rates. While the number of accesses to the cache remain the same, cache activity is reduced 

by a decrease in the number of accesses to the tag and data sub-arrays. 
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CHAPTER V 

 

 

EXPERIMENTAL METHODOLOGY 

 

 

 The design of BBC cache is versatile in that it can replace a conventional cache without 

modifying the fundamental structure of the cache (tag, blocks, etc.) Therefore, BBC cache works 

equally well in single core and multicore implementations. Each implementation has a different 

focus. For single core, the aim was to determine its performance as compared to conventional 

caches. For multicore, the aim was to compare the performance differences between single core 

and the many cache configurations for multicore. In multicore systems, the sharing of cores and 

threads within cores, greatly affect its performance. 

5.1 Single Core Implementation  

 In this section, the methodology and tools used for single core implementation are 

explained. At the time of this implementation, the best simulation tool for single core design was 

Simplescalar, a popular research tool. Simplescalar lacks a way to simulate power consumption. 

A separate simulator, Cacti, is used for power consumption simulation. An industry standard 

benchmarking suite, SPEC2000, is used for single core. Many papers have used SPEC2000 for 

single core designs and therefore, the results of this thesis can be compared to the papers of 

others. Finally, the simulation model shows how the different tools will work together. 

 For the single core implementation, several cache parameters will stay constant and some 
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will vary. Cache size varies from 16KB to 256KB, the most common sizes for L1 cache. L2 and 

L3 will not be modified and will stay in their default configurations. Each cache is evaluated 

using an associativity ranging from 4-way to 64-way. For all cache configurations, the following 

parameters apply: 20-bit tag, 32 byte lines, LRU replacement policy, separate instruction and 

data cache but of equal size. 

5.2 Simplescalar 

Simplescalar is an architectural simulator that reproduces the behavior of a computing 

device. For this experiment, Simplescalar was used as a functional simulator. Regardless of the 

machine the simulator was executed in, the results are the same. Only the simulation time varies. 

Simplescalar (version 3.0d) [26] was used to model the cache. Because the MRU buffer 

functions similarly to a cache, it will be modeled and evaluated as such. Recently, 64-bit systems 

have become the standard. Therefore, Simplescalar was compiled to run on a modern 64-bit 

Linux OS (operating system). Simplescalar was modified and extended to implement the 

common definitions of phased cache and way prediction cache. The buffer shares many elements 

of a cache and was also implemented as a separate architecture.  

5.3 Cacti 

 Cacti (version 6.5) [27] was used to simulate for the power and access-time 

characteristics of the different cache architectures and the buffer. The installable (as opposed to 

web version) version is used in order to properly simulate Phased and Way-prediction cache.  

Because of the 64-bit benchmark system, Cacti would not compile unless some 32-bit libraries 

were copied over. Table 5.1 shows the Cacti parameters used for each architecture configuration. 

All other parameters were left in its default state. 

 Most Cacti parameters are common among the different architectures. Phased cache 
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requires sequential access because the tag is accessed in the first cycle and the data is accessed in 

the second cycle.  

 The small size of the buffer made it difficult to simulate. For this experiment, the 

maximum associativity is a 64-way cache. This translates to a buffer offset size of six (6) bits. 

With a tag size of 20 bits, the buffer block size is a maximum of 26 bits or less than 5 bytes. 

 

Architecture Size Access 

mode 

Associativity Block 

size 

RW 

ports 

Tag 

size 

Cache 

level 

Tech 

Phased Various Sequential Various 32B 1 20 L1 32nm 

Way-predict Various Normal Various 32B 1 20 L1 32nm 

Buffer Various Normal 1 4B 1 20 L1 32nm 

 

Table 5.1: Cacti Simulation Parameters 

 

 

 Buffer 

size 
64B 128B 256B 

Block size 3B 4B 5B 6B 3B 4B 5B 6B 3B 4B 5B 6B 

Access Time 

(ns) 
0.1191 0.1145 Error Error 0.1223 0.1376 0.1233 0.1191 0.1534 0.1449 0.1264 0.1223 

Dyn. Read(nJ) 0.0013 0.0017 Error Error 0.0014 0.0018 0.0022 0.0026 0.0015 0.0019 0.0024 0.0028 

 

Table 5.2: Buffer Block Size Comparison 

 

Table 5.2 shows the different values of varying buffer block sizes. The difference is minimal 

between 4B and 5B. In fact 5B gives better results most of the time. However, 4B was chosen for 



35 

 

all buffer simulations for simplicity and because 5B block sizes will occasionally give errors 

during simulation.  

 As can be seen in Table 5.2, Cacti simulation will output values for access time and 

energy consumption. One simulation is required for each cache size and architecture 

configuration. While cacti can provide many results, the following is pertinent to this experiment: 

1) Tag energy in nJ. 

2) Phased data read energy in nJ. 

3) Phased data write energy in nJ. 

4) Phased access time in ns. 

5) Way-prediction data read energy in nJ 

6) Way-prediction data write energy in nJ. 

7) Way-prediction access time in ns. 

8) Buffer access energy in nJ. 

9) Buffer access time in ns. 

 

Tag energy values are common to both Phased cache and Way-prediction cache. However, 

accessing the data sub-array requires differing supporting elements (mux drivers, comparators, 

etc.) that can change the values for reading and writing to the data sub-array. Therefore separate 

values must be used for reading and writing of the data sub-array. Simulation results from Cacti 

were integrated (hardcoded) into Simplescalar. This made it easier to calculate the final results.  

5.4 SPEC2000 

 The benchmarks used for the experiment were SPEC2000 (version 1.3) [28]. Varying 

benchmarks from the “Integer” and “Floating” suites of SPEC2000 were chosen for a broad 
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simulation setup. These benchmarks were also compiled to run on a 64-bit Linux OS. As such, 

not all benchmarks successfully compiled due to numerous problems. Most of the problems 

either involves Fortran code or missing C++ headers. Four F90 (a Fortran version) benchmarks 

(galgel, facerec, lucas, fma3d) werel not compile because a F90 Simplescalar compiler is not 

available. The F90 benchmarks are not able to convert to F77 or C because there are objects, 

functions, or structures in F90 that do not have an equivalent in F77 or C.  In fact, F90 is closer 

to C++ than C.  However, it is dissimilar enough to C++ that no converter is available and 

manual conversion is difficult and error prone.  Furthermore, C++ libraries in Simplescalar are 

incomplete. Table 5.3 summarizes the results of compilation and their average simulation time if 

compiled successfully. Table 5.4 provides information about the application type and description 

for each benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

SPEC2000 Floating Point Benchmarks SPEC2000 Integer Benchmarks 

Name Status Name Status 

Wupwise Success; 20 minutes Gzip Success; 6 hours 

Swim Success; 4 hours VPR Success; 15 minutes 

Mgrid Success; 18 hours GCC Success; 50 minutes 

Applu Success; 7 hours MCF Success; 1 hour 

Mesa Success; 3 hours Crafty Assembler – unrecognized opcode 

Galgel Not compiled; F90 Parser Success; 5 minutes 

Art Success; 50+ hours Eon C++ missing headers 

Equake Success; 10 minutes Perlbmk C++ missing headers 

Facerec Not compiled; F90 Gap C++ missing headers 

Ammp Success; 3 hours Bzip2 Success; 8 hours 

Lucas Not compiled; F90 Twolf Success; 5 minutes 

FMA3D Not compiled; F90   

Sixtrack C++ missing headers   

Apsi Success;5 minutes   

 

Table 5.3: SPEC2000 Benchmark Compilation Results 
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Benchmark Application Category Description 

164.gzip Compression Gzip (GNU zip) is a popular data compression 

program written in C. All compression and 

decompression happens entirely in memory. 

175.vpr Integrated Circuit 

Computer-Aided Design 

Program 

VPR is a placement and routing program; it 

automatically implements a technology-mapped 

circuit in a Field-Programmable Gate Array (FPGA) 

chip. 

176.gcc C Language optimizing 

compiler 

GCC generates code for a Motorola 88100 

processor. The benchmark runs as a compiler with 

many of its optimization flags enabled. 

181.mcf Combinatorial 

optimization / Single-

depot vehicle scheduling 

A benchmark derived from a program used for 

single-depot vehicle scheduling in public mass 

transportation.  

197.parser Word processing The Link Grammar Parser is a syntactic parser of 

English, based on link grammar, an original theory 

of English syntax. 

256.bzip2 Compression Another popular data compression program. It is 

based on Julian Seward‟s bzip2 version 0.1. 

300.twolf Computer Aided Design The TimberWolfSC placement and global routing 

package is used in the process of creating the 

lithography artwork needed for the production of 

microchips. 

168.wupwise Physics / Quantum 

Chromodynamics 

"Wupwise" is an acronym for "Wuppertal Wilson 

Fermion Solver", a program in the area of lattice 

gauge theory. 

171.swim Meteorology: Shallow 

Water Modeling 

Benchmark weather prediction program for 

comparing the performance of current 

supercomputers. 

172.mgrid Multi-grid Solver: 3D 

Potential Field 

Mgrid demonstrates the capabilities of a very simple 

multi-grid solver in computing a three dimensional 

potential field. 

173.applu Computational Fluid 

Dynamics and 

Computational Physics 

Solution of five coupled nonlinear PDE's, on a 3-

dimensional logically structured grid, using an 

implicit psuedo-time marching scheme, based on 

two-factor approximate factorization of the sparse 

Jacobian matrix. 

177.mesa 3-D graphics library Mesa is a free OpenGL work-alike library that can 

be configured to have no OS or window system 

dependencies. 

183.equake Simulation of seismic 

wave propagation in large 

basins 

The program simulates the propagation of elastic 

waves in large, highly heterogeneous valleys, such 

as California's San Fernando Valley. 

Table 5.4: SPEC2000 Benchmark Descriptions 
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5.5 Simulation Model for Single Core 

 Figure 5.1 shows the simulation model used for this experiment. Benchmarks were 

compiled to be used specifically for Simplescalar. Cacti inputs were hard coded into the different 

cache architectures. The output of Simplescalar was also extended to include energy and access-

time results. 
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Figure 5.1: Simplescalar Simulation Model 
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Table 5.5 shows the energy equations used for each cache architecture. These equations were 

based on the work of Inoue et. al [9]. The equations are modified to include energies for a 'hit' or 

'miss' in the cache. This is important because a „miss‟ in the cache will consume a different 

amount of energy based on the „write data energy‟ and the number of writebacks.  

Table 5.6 shows the access-time equations. These equations are much simpler. Per access 

latency are simulated from Cacti and are simply multiplied to the number of instructions each 

architecture uses. 

 

Architecture Equation 

Phased: Hit (n * Etag + Edata) * Hits 

Phased: Miss (n * Etag) * Misses + 

(Edata,write * WrtBck) 

Phased: Total (Phased_Hit_Energy + 

Phased_Miss_Energy) / 

Instruction_Count 

WP: Hit (PHR + n*(1-PHR)) *  

(Etag + Edata) * Hits 

WP: Miss n  * (Etag + Edata) * Misses 

+ (Edata,write * WrtBck) 

WP: Total (WP_Hit_Energy + 

WP_Miss_Energy) / 

Instruction_Count 

MRU Buffer Phased_Total + WP_Total + 

(Ebuf* Instruction_Count) 

 

Table 5.5: Energy Equations, Where n Refers to the Number of Ways 
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Architecture Equation 

Phased Phased_Access_Time*Phased_Instruction_Count 

WP WP_Access_Time*WP_Instruction_Count 

MRU Buffer (Tphased + Twp + Tbuf) * Instruction_Count 

 

Table 5.6: Access Time Equations 

 

5.6 Multicore Implementation 

 Multicore systems are becoming the standard, even on embedded systems. Hench, a 

multicore implementation was added to this thesis. This section explains the methodology and 

tools required for multicore implementation. In a similar manner, the simulators and benchmarks 

chosen for multicore implementation were the most commonly used tools in this field of research. 

The following parameters were used: 64KB cache size, 32 sets, 16-way associativity, and 128B 

blocksize. All experiments were evaluated using 2 cores with 2 threads per core. From the results 

of the experiment on single core systems, these parameters provided the average results. The 

goal is to choose parameters that have the least effect on multicore performance. Rather, the 

multicore design should determine performance. Most other parameters in the simulators are left 

in the default states. The goal of the multicore implementation is to determine how BBC cache 

affect different multicore cache configurations. All other parameters (such as core frequency, 

latency, technology, etc.) are left as defaults. Varying too many variables would over-complicate 

the experiment. Most of these parameters are also shared between Multi2Sim and McPAT. 
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5.7 Multi2Sim 

 The limitations of SimpleScalar made it necessary to use a different microprocessor. 

SimpleScalar, in its current version, is not capable of multicore or even multi-threaded 

simulation. An attempt was made to modify SimpleScalar to be multi-threaded. However, this 

proved to be too difficult and time consuming. It was also realized that these modifications could 

possibly negatively affect any benchmarks used or completely prevent benchmarks from 

working. A different simulator was needed that was both multicore and multi-threaded. 

Multi2Sim (version 4.2) [29] was chosen and used to implement the cache and the buffer. 

Multi2Sim is an advanced microprocessor simulator including the core, memory, and 

interconnect networks. It is capable of simulating multicore and multi-threaded systems. 

Multi2Sim was modified and extended to implement the common definitions of phased cache 

and way-prediction cache. The buffer shares many elements of a cache and was also 

implemented as a separate architecture.  

5.8 McPAT 

  In a similar situation with SimpleScalar, Cacti is also limited to single core and single 

thread applications. Fortunately, Cacti has a multicore successor - McPAT (version 1.3) [30] 

McPAT is also created by HP for multicore and multi-threaded simulation. McPAT is 

compatible with Multi2Sim and was used to compute power consumption of the different cache 

configurations. This simulator models the power, area, and timing characteristics for multicore 

and multi-threaded architectures.  

 There are two ways for Multi2Sim to work with McPAT. The first method is configuring 

McPAT so that it is called by Multi2Sim during the simulation. The output of McPAT would be 

appended with the Multi2Sim output. This particular method did not work. The reason is 
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unknown, therefore future work can be focused to make this method work. The second method 

involves running McPAT with input from the Multi2Sim simulation output. The input for 

McPAT must be in an xml format with all the corresponding parameters (number of cores, 

number of threads, etc). Refer to the manual and sample input files of McPAT (both are included 

in the McPAT download). Each simulation of Multi2Sim needed an xml input file for McPAT in 

order to calculate power.  

Multi2Sim McPAT Multi2Sim McPAT 

Cycles Total_cycles ROB.Writes ROB_writes 

Dispatch.Uop.load Load_instructions IQ.Reads Inst_window_reads 

Dispatch.Uop.store Store_instructions IQ.Writes Inst_window_writes 

Dispatch.Uop.call Function_calls IQ.WakeupAccesses Inst_window_wake 

Dispatch.Integer Int_instructions RF_Int.Reads Int_regfile_reads 

Dispatch.FloatingPoint Fp_instructions RF_Int.Writes Int_regfile_writes 

Dispatch.Ctrl Branch_instructions RAT.IntReads Rename_reads 

Dispatch.WndSwitch Context_switches RAT.IntWrites Rename_writes 

Dispatch.Total Committed_instructions BTB.Reads BTB_Read_accesses 

Issue.Integer Ialu_accesses BTB.Writes BTB_Write_accesses 

Issue.Logic Mul_accesses Accesses Icache_read_accesses 

Issue.FloatingPoint Fpu_accesses Misses Icache_read_misses 

Commit.Integer Committed_int_instr Evictions Dcache_conflicts 

Commit.FloatingPoint Committed_fp_instr Reads Dcache_read_access 

Commit.Total Committed_instr ReadMisses Dcache_read_misses 

Commit.DutyCycle Pipeline_duty_cycle Writes Dcache_write_access 

Commit.Mispred Branch_mispredictions WriteMisses Dcache_write_misses 

ROB.Reads ROB_reads   

Table 5.7: Correspondence Between Multi2Sim and McPAT 

This can be cumbersome as this thesis needed at run more than 60 simulations. Therefore, a 

program was created to parse the output of Multi2Sim for the proper parameters and create the 

necessary xml files for McPAT. Table 5.7 shows parameters shared between Multi2Sim and 
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McPAT. 

5.9 PARSEC 

 Initially, SPEC2006 was the benchmark used as it correlates with SPEC2000 used in the 

single core simulations. However, it was discovered that SPEC2006 can take a significant 

amount of time (3 months for one simulation) to simulate. More importantly, SPEC2006 is not 

multithreaded and cannot stress the multicore, shared-memory aspect of BCC cache. The 

PARSEC benchmarks (version 2.1) [31] was used for all multicore simulations as these 

benchmarks met the requirements. PARSEC is a collection of benchmarks that focus on 

multicore and multi-threaded processors. An inherent bottleneck of multicore systems is the 

method of handling shared-memory. The proper benchmarks are required to test this aspect of 

multicore systems. PARSEC excels at stressing the shared-memory paradigm of multicore 

processors. Also, the PARSEC benchmarks selected reflect commonly used commercial 

programs. The benchmarks employ workloads such as systems programs and parallelization 

models that many other benchmarks lack. New and emerging methods for benchmarking 

applications are continuously added. Furthermore, PARSEC is available to the public and 

therefore used by many researchers and universities. Because of this, Parsec works well with 

Multi2Sim. Table 5.8 summarizes the PARSEC benchmarks used in this thesis. 
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Benchmark Parallelization Model Description 

Pthreads OpenMP Intel 

TBB 

Blackscholes Yes Yes Yes This application is an Intel RMS benchmark. It 

calculates the prices for a portfolio of European 

options analytically with the Black-Scholes 

partial differential equation (PDE).  

Bodytrack Yes Yes Yes This computer vision application is an Intel RMS 

workload which tracks a human body with 

multiple cameras through an image sequence 

Canneal Yes No No It is a cache-aware simulated annealing (SA) 

program to minimize the routing cost of a chip 

design using fine-grained parallelism with a lock-

free algorithm. 

Fluidanimate Yes No Yes This Intel RMS application uses an extension of 

the Smoothed Particle Hydrodynamics (SPH) 

method to simulate an incompressible fluid for 

interactive animation purposes. 

X264 Yes No No This application is an H.264/AVC (Advanced 

Video Coding) video encoder. H.264 describes 

the lossy compression of a video stream and is 

also part of ISO/IEC MPEG-4. 

Table 5.8: PARSEC Benchmark Descriptions 

 The simulation tools interact well with each other. Multi2sim lacks a proper power 

simulator. However, all of its outputs parameters can be used by McPAT to calculate power 

consumption. Furthermore, the Parsec benchmark tools were designed to take full advantage of 

Multi2Sim. These simulators were selected because of the ability to evaluate the architectural 

design as a whole. In contrast, cycle-accurate simulators would not be appropriate as the design 

does not provide hardware specifications at the level required for cycle level analysis. 

 It was necessary to be able to compile from source to be able to modify the simulation 

tools to meet the experimental criteria. Benchmarks were compiled to be used specifically for 

Multi2sim. The BCC cache architecture was also implemented in Multi2Sim. All of the 

simulation tools (Multi2Sim, McPAT, PARSEC) were compiled for a modern Linux operation 
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system, Red Hat Enterprise Linux, for the 64-bit little endian architecture. While this computer 

was used for testing and troubleshooting, it is not powerful enough for the numerous simulations 

needed. Therefore, a cluster computer system was employed. 

5.10 HiPAC 

 The High Performance Pan American Cluster (HiPAC) is PC cluster of 860 cores and 

48GB RAM [32]. It is used for high performance paralleling-computing and large-scale 

numerical simulations. HiPAC uses Sun Grid Engine on top of Red Hat Enterprise Linux to 

schedule jobs on the cluster. Several programs are installed in HiPAC such as OpenMPI, Jaguar, 

MPPCrystal, and NAMD.  

 The main criterion for using HiPAC is for large-scale numeral simulations. This cluster 

was used for both the simgle core and multicore simulations. Each benchmark in SPEC2006 and 

PARSEC can run for several minutes to several days. Additionally, each benchmark has multiple 

configurations to be executed. Altogether, the simulations can easily required 70 cores of 

computing power.  

5.11 Simulation Model for Multicore 

 Figure 5.2 shows the simulation model used for this experiment. PARSEC binaries were 

provided with Multi2Sim. Modifications were not necessary. However, source files for PARSEC 

are available for modification. The following source files from Multi2Sim were modified in 

order to implement BCC cache: 

a) Cache.c and Cache.h 

b) Config.c 

c) Module.c and Module.h 
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d) Nmoesi-protocol.c 

The following input files were modified in order for have the proper configuration for BCC 

cache. 

a) Mem-config (provides memory system configuration) 

b) x86-config (provides processor configuration – cores and threads) 

The following is an example command to run a simulation using Multi2Sim: 

m2s --x86-sim detailed ./povray_base.i386 SPEC-benchmark-test.ini --mem-config mem-

config1 --mem-report mem-report1 --x86-config x86-config1 --x86-report x86-report1 2> 

out1.txt 
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Figure 5.2: Multi2Sim Simulation Model 
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5.12 Simulation Parameters 

 The goal of multicore simulation is to determine which cache distribution design is 

optimum for BCC cache. For multicore, power and performance scales depending on how many 

cores are used. This is expected because of the nature of BCC cache, it is a direct replacement for 

conventional cache. The biggest factor in affecting performance in multicore is the cache 

distribution design. If a cache is replicated and/or shared among different processor resources, it 

affects its performance [33]. Figure 5.3 shows the different cache distribution designs to be 

compared. There are numerous ways that caches can be shared among different processor cores 

and threads. In Figure 5.3b, a t indicates that L1 is private per thread and c indicates the L2 is 

private per core. In Figure 5.3c, an s indicates that L2 is shared among the whole system. In 

Config. 1, the cores share only the main memory. Each thread has its own L1 and L2 cache. In 

Config. 2, each thread has its own L1 cache but shares a L2 cache. In Config. 3, each thread has 

its own L1 cache, but the cores share a L2 cache and main memory. In Config. 4, within a core, 

the threads share L1 and L2 caches. But the cores share main memory. In Config. 5, two threads 

share L1 caches, but the cores share L2 and main memory. Finally, in Config. 6, all cores and 

threads share L1 and L2 caches as well as main memory. 

 Table 5.9 provides the processor and cache parameters used in the Multi2Sim simulations. 

Based on the simulations from Simplescalar, these parameters were selected as an optimum 

middle ground for BCC cache multicore simulations. The rest were left as defaults. 
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Figure 5.3: Multicore Cache Configuration Designs 

 

 

 

 

 



52 

 

Cores 2 

Threads 2 

Cache Size 64 KB 

Associativity 16-way 

Buffer Size 128 B 

 

Table 5.9: Cache Parameters for Multicore Simulations 
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CHAPTER VI 

 

 

EVALUATION 

 

 

6.1 Benchmarks 

The experiment was conducted using eight benchmarks from SPEC2000. Four Integer 

benchmarks are: vpr, parser, twolf, and gcc. The other four Floating Point benchmarks are: 

wupwise, equake, swim, and applu. Figure 6.1 shows the energy consumption improvement of 

the BCC architecture as compared to the way-prediction architecture. Most benchmarks have an 

improvement of greater than 25%. Two benchmarks, wupwise and swim, only have minimal 

improvements. An increase in access-time is expected and is shown in Figure 6.2. Generally, the 

increase in access-time is the same for both instruction and data cache. 

The EDP shows the effect of the access-time delay in relation to the decrease in energy 

consumption. Figure 6.3 shows the EDP results. It can be seen that despite the latency increase, 

the EDP still shows a significant improvement with most of the benchmarks. In the “wupwise” 

and partially in the “swim”benchmark, the increase in access-time delay negated any energy 

consumption improvements. The degree of improvement between instruction and data cache is 

highly dependent on the benchmark program. From these results, it can be concluded that BCC 

produces an EDP improvement of up to 37% in the instruction cache for most benchmarks and 

up to 42% in the data cache for most benchmarks, as compared to the common WP cache.
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Figure 6.1: Energy Charts for VPR Benchmark 

 

 

 

Figure 6.2: Access-Time Charts for VPR Benchmark 
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Figure 6.3: Energy-Delay Product Charts for VPR Benchmark 
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Figure 6.4: Percentage Improvement Charts for VPR Benchmark 

6.2 General Pattern 

The charts shown in Figures 6.1 to 6.4 reveal the full effect of varying cache sizes on the 

different architectures. From Figure 6.3 it can be seen that as the associativity increases, the 

energy consumed also increases, almost exponentially. For the VPR benchmark, more time and 

energy are spent evaluating instructions than data, as can be seen on the charts. It can also be 

seen that the energy required is greatly reduced depending on associativity. In terms of energy, 

the balance for most applications can be seen using 16-Way or 32-Way and using a cache size of 

32KB to 128KB. As expected, a slight increase in access-time for the BCC design is seen in 

Figure 6.2. This is almost always the case because of the addition of a buffer. Also notice that 

there is no entry for 64-Way in the 16KB simulation. For a cache size this small, the parameters 

were outside the valid range of the simulators. 
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 As can be seen from Figure 6.4, the percentage improvement goes up as associativity 

increases for a given cache size. However, for a given associativity, the percentage improvement 

decreases as the cache size increases. It can be seen that in the 4-Way simulations, a decline is 

seen for the larger cache sizes. A small associativity, such as 4-Way, in a large cache size can be 

inefficient at handling the larger amounts of data. Hence, a decrease in performance is seen. This 

explains the general trend of the results. However, not all benchmarks will behave in this manner. 

Some will be worst and some will be better. The following section will explain.  

6.3 Improvement 

Figures 6.5 to 6.17 show the EDP and percentage improvement charts for the rest of the 

benchmarks. A general improvement is seen on most benchmarks, especially in DL1. The degree 

of improvement is highly dependent on cache size and associativity. It can be seen that BCC 

works better on DL1. This is because data tends to be more re-used, a benefit of using MRU on 

the buffer. It‟s possible to use a different replacement policy on the IL1 buffer; however, this will 

increase the complexity of BCC cache. Note that when instruction and/or data tend towards LRU, 

BCC becomes less effective, as seen in these benchmarks: gzip, wupwise, and mcf. This explains 

the poor and sometimes negative results, especially in IL1.  

6.4 Prediction Hit-Rate 

Figure 6.18 to 6.30 shows the prediction hit-rate of BCC cache. BCC cache has an equal 

or better hit-rate the WP. The only exception is DL1 of the parser benchmark as shown in Figure 

6.22. A better hit-rate expected as the WP scheme is built into BCC cache. BCC compensates for 

the weakness of WP by using Phased Cache. This results in an equal or better hit-rate the WP 

alone. 
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6.5 Cache Ratio 

Figure 6.31 to 6.43 shows the cache ratio for BCC cache. These figures show the ratio of 

WP to Phased mode usage. The figures show that WP mode is mostly used. This is no surprise as 

the results correspond with the results of prediction hit-rate. A correct prediction will use the WP 

mode.  
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Figure 6.5: Results for GZIP Benchmark 
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Figure 6.6: Results for VPR Benchmark 
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Figure 6.7: Results for GCC Benchmark 
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Figure 6.8: Results for MCF Benchmark 
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Figure 6.9: Results for PARSER Benchmark 
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Figure 6.10: Results for BZIP2 Benchmark 
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Figure 6.11: Results for TWOLF Benchmark 
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Figure 6.12: Results for WUPWISE Benchmark 
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Figure 6.13: Results for SWIM Benchmark 



68 

 

 

 

 

 

Figure 6.14: Results for MGRID Benchmark 
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Figure 6.15: Results for APPLU Benchmark 
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Figure 6.16: Results for MESA Benchmark 
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Figure 6.17: Results for EQUAKE Benchmark 
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Figure 6.18: Prediction Hit-Rate for GZIP Benchmark 

 

 

Figure 6.19: Prediction Hit-Rate for VPR Benchmark 

 

Figure 6.20: Prediction Hit-Rate for GCC Benchmark 
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Figure 6.21: Prediction Hit-Rate for MCF Benchmark 

 

 

Figure 6.22: Prediction Hit-Rate for PARSER Benchmark 

 

Figure 6.23: Prediction Hit-Rate for BZIP2 Benchmark 
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Figure 6.24: Prediction Hit-Rate for TWOLF Benchmark 

 

 

Figure 6.25: Prediction Hit-Rate for WUPWISE Benchmark 

 

Figure 6.26: Prediction Hit-Rate for SWIM Benchmark 



75 

 

 

Figure 6.27: Prediction Hit-Rate for MGRID Benchmark 

 

 

Figure 6.28: Prediction Hit-Rate for APPLU Benchmark 

 

Figure 6.29: Prediction Hit-Rate for MESA Benchmark 
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Figure 6.30: Prediction Hit-Rate for EQUAKE Benchmark 
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Figure 6.31: Cache Ratio for GZIP Benchmark 

 

 

Figure 6.32: Cache Ratio for VPR Benchmark 
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Figure 6.33: Cache Ratio for GCC Benchmark 

 

 

Figure 6.34: Cache Ratio for MCF Benchmark 



79 

 

 

 

Figure 6.35: Cache Ratio for PARSER Benchmark 

 

 

Figure 6.36: Cache Ratio for BZIP2 Benchmark 
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Figure 6.37: Cache Ratio for TWOLF Benchmark 

 

 

Figure 6.38: Cache Ratio for WUPWISE Benchmark 
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Figure 6.39: Cache Ratio for SWIM Benchmark 

 

 

Figure 6.40: Cache Ratio for MGRID Benchmark 
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Figure 6.41: Cache Ratio for APPLU Benchmark 

 

 

Figure 6.42: Cache Ratio for MESA Benchmark 
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Figure 6.43: Cache Ratio for EQUAKE Benchmark 

 

6.6 Multicore Simulation Results 

 Fig. 6.44 shows the power consumption of way-prediction cache using single core and 

various multicore cache configurations. A downward progression in power consumption from 

Config 1 to Config 6 is expected. The change is due to the greater number of cache components 

used in the first few configurations.  

 Fig. 6.45 shows the power consumption of BCC cache. A significant reduction in power 

can be seen depending on the benchmark and configuration. The addition of a buffer adds a 

small amount of delay and power consumption. However, this negated by the significant savings 

in speed and power consumption in bypassing certain tag and data accesses to the cache. Fig. 

6.46 summaries the results for power consumption reduction for BCC cache over the way-

prediction cache. 
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 As can be seen, a minimum reduction of 12% in Config 6 and a maximum of 54% in 

Config 1. Increased reduction in Config 1 can be seen because of the greater number of cache 

components used, therefore providing more opportunities for power savings. Also in Config 1, 

not all cores or threads are used 100% of the time.  

 Fig. 6.47 shows the total simulation time of BCC cache. This does not take into account 

the emulation time, which can be several hours long. Based on the simulation time and power 

consumption, it is recommended to use Config 1, Config 2, or Config 3. These configurations 

provide a balance of power and speed. Similar configurations are already used in modern mobile 

microprocessors.  

 

 

Figure 6.44: Total Power Consumption of Way-Prediction Cache (Watts) 
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Figure 6.45: Total Power Consumption of BCC Cache (Watts) 

 

 

Figure 6.46: Power Consumption Reduction (%) 
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Figure 6.47: Total Simulation Times (Seconds) 
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CHAPTER VII 

 

 

CONCLUSION AND FUTURE WORK 

 

 

7.1 Conclusion 

Current trends in microprocessor design leads to more performance involving large 

caches and more mobile devices. This leads to large consumptions of power. Of course, this is a 

big problem in battery-operated mobile devices. Hence, there is a need for a low-power cache 

design that does not compromise too much in performance. In this paper, a modified architecture 

has been proposed as an improvement to phased and way-prediction caches. It is a dual-mode 

architecture that uses MRU tag entries in a buffer to determine the access mode, way-prediction 

or phased. By using this scheme, the energy consumption is reduced with minimal access-time 

increase. The single-core experimental results show that BCC improves the EDP by 37%-42% 

over way-prediction cache.  

 The multicore experiment implements BCC cache in each core and compares different 

multi-core cache configurations to determine the optimum cache configuration for BCC cache. 

The experimental results show that BCC cache reduces power consumption by 12%-54% over 

way-prediction cache. 



88 

 

7.2 Future Work 

SPEC2000 and PARSEC were used in this thesis. Although these benchmarks are 

industry standards tools, their biggest disadvantage is the length of time to simulate some of the 

benchmarks. The benchmarks can take several hours to several weeks to complete. The use of a 

benchmark with shorter simulation times will be useful for this type of research. A few 

benchmarks that are freely available are SPLASH2 and MediaBench. Different benchmarks 

stress different components of a processor design. This factor must also be taken into 

consideration. 

 As with any cache design, the replacement policy can greatly affect performance. It 

would be interesting to experiment with a more advanced replacement policy than LRU. For 

example, a replacement policy at the line level that evicts that line after a certain number of 

accesses has the potential to reduce conflict misses. Numerous other replacement policies exist 

that will work well with BCC because BCC cache was design to be a direct replacement for the 

standard cache. 

 In the same vein as the replacement policy, a different cache coherence policy could 

greatly affect performance of BCC cache. The design of BCC cache scales very well with 

multicore systems. Therefore, any cache coherence policy should work BCC cache. 
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APPENDIX A 

 

File: cache.c (portion) 

/** MRU Buffer Create **/ 

struct cache_t *buffer_create(char *name, unsigned int num_sets, unsigned int block_size, 

 unsigned int assoc, enum cache_policy_t policy) 

{ 

 struct cache_t *mbuf; 

 struct cache_block_t *bblock; 

 unsigned int set; 

 

 /** Initialize **/ 

 mbuf = xcalloc(1, sizeof(struct cache_t)); 

 mbuf->name = xstrdup(name); 

 mbuf->num_sets = num_sets; 

 mbuf->block_size = block_size; 

 //mbuf->assoc = assoc; 

 //mbuf->policy = policy; 

 

 /** Derived fields **/ 

 assert(!(num_sets & (num_sets - 1))); 

 assert(!(block_size & (block_size - 1))); 

 //assert(!(assoc & (assoc - 1))); 

 mbuf->log_block_size = log_base2(block_size); 

 mbuf->block_mask = block_size - 1; 

  

 /** Initialize array of sets **/ 

 mbuf->sets = xcalloc(num_sets, sizeof(struct cache_set_t));
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 for (set = 0; set < num_sets; set++) 

 { 

  /** Initialize array of blocks **/ 

  mbuf->sets[set].blocks = xcalloc(assoc, sizeof(struct cache_block_t)); 

  //mbuf->sets[set].way_head = &cache->sets[set].blocks[0]; 

  //mbuf->sets[set].way_tail = &cache->sets[set].blocks[assoc - 1]; 

   

  /** Initialize pointer to block within a set **/ 

  bblock = &mbuf->sets[set].blocks[0]; 

  //block->way = way; 

  //block->way_prev = way ? &cache->sets[set].blocks[way - 1] : NULL; 

  //block->way_next = way < assoc - 1 ? &cache->sets[set].blocks[way + 1] : 

NULL; 

  } 

  

 /* Return it */ 

 return mbuf; 

} 

 

/** MRU Buffer Free **/ 

void buffer_free(struct cache_t *mbuf) 

{ 

 unsigned int set; 

 

 for (set = 0; set < mbuf->num_sets; set++) 

  free(mbuf->sets[set].blocks); 

 free(mbuf->sets); 

 free(mbuf->name); 

 if (mbuf->prefetcher)
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  prefetcher_free(mbuf->prefetcher); 

 free(mbuf); 

} 

 

File: module.c (portion) 

 /** Added structure for MRU buffer **/ 

 struct cache_t *mbuf = mod->mbuf; 

   

 struct cache_t *cache = mod->cache; 

 struct cache_block_t *blk; 

 struct dir_lock_t *dir_lock; 

 

 int set; 

 int way; 

 int tag; 

 

 /** Check MRU buffer first **/ 

 if (mbuf->sets[set].blocks[0].tag == tag && mbuf->sets[set].blocks[0].state) 

       goto block_found; 

 else 

  for (way = 0; way < cache->assoc; way++) 

  { 

   blk = &cache->sets[set].blocks[way]; 

   if (blk->tag == tag && blk->state) 

    break; 

   if (blk->transient_tag == tag) 

   { 

    dir_lock = dir_lock_get(mod->dir, set, way); 

    if (dir_lock->lock)
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       break; 

   } 

  } 

 

 PTR_ASSIGN(set_ptr, set); 

 PTR_ASSIGN(tag_ptr, tag); 
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