
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations

5-2018

Buffer Controlled Cache for Low Power Multicore Processors Buffer Controlled Cache for Low Power Multicore Processors

Marven Calagos
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Calagos, Marven, "Buffer Controlled Cache for Low Power Multicore Processors" (2018). Theses and
Dissertations. 131.
https://scholarworks.utrgv.edu/etd/131

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.utrgv.edu%2Fetd%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/131?utm_source=scholarworks.utrgv.edu%2Fetd%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

BUFFER CONTROLLED CACHE FOR LOW

POWER MULTICORE PROCESSORS

A Thesis

by

MARVEN CALAGOS

Submitted to the Graduate College of the

The University of Texas Rio Grande Valley

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE ENGINEERING

May 2018

Major Subject: Electrical Engineering

BUFFER CONTROLLED CACHE FOR LOW

POWER MULTICORE PROCESSORS

A Thesis

by

MARVEN CALAGOS

COMMITTEE MEMBERS

Dr. Yul Chu

Chair of Committee

Dr. Sanjeev Kumar

Committee Member

Dr. John Abraham

Committee Member

May 2018

Copyright 2018 Marven Calagos

All Rights Reserved

iii

ABSTRACT

Calagos, Marven, Buffer Controlled Cache For Low Power Multicore Processors. Master of

Science Engineering (MSE), May, 2018, 96 pp., 10 tables, 66 figures, references, 33 titles.

 This thesis proposes a buffered dual access mode cache to reduce power consumption in

multicore caches for embedded systems. This cache is called Buffer Controlled Cache (BCC

cache). The proposed scheme introduces a pre-cache buffer to determine how to access the cache.

The proposed cache shows better prediction rates and lower power consumption than

conventional caches, such as Phased cache and Way-prediction cache. For single core

implementation, Simplescalar and Cacti simulators have been used for these simulations using

SPEC2000 benchmark programs. The experimental results show that the proposed cache

improves the power consumption by 37%-42% over the conventional caches. Multi2Sim and

McPAT simulators have been used for the multicore simulations using the Parsec benchmark

programs. The experimental results show that the proposed cache improves the power

consumption by as much as 54% over conventional caches.

iv

DEDICATION

 This thesis is dedicated to my parents, Anselmo and Evelyn, who have always supported

me regardless of the circumstances. This is work is also dedicated to my sister, Michelle, who

has always been supportive and encouraging.

v

ACKNOWLEDGEMENTS

 I want to thank my family for their hard work and their confidence in me. I want to thank

the aunties and uncles who gave me familial support while away from home. I could not have

done this without you.

 I would like to thank my thesis adviser, Dr. Yul Chu, for his guidance and never ending

support regardless of the setbacks.

 Thank you, Lord Almighty, for the strength you have given me.

vi

TABLE OF CONTENTS

Page

ABSTRACT ... iii

DEDICATION ... iv

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER I. INTRODUCTION .. 1

CHAPTER II. BACKGROUND .. 3

2.1 Memory Hierarchy .. 3

2.2 Cache Memory .. 5

CHAPTER III. RELATED WORKS .. 12

3.1 Set-Associative Cache ... 12

3.2 Phased Cache .. 13

3.3 Way-Prediction Cache .. 13

3.4 Early Tag Lookup ... 15

3.5 Predictive Placement Cache .. 15

vii

3.6 Filter Cache ... 16

3.7 Cache Bursts ... 17

3.8 Way-Prediction Scheme .. 17

3.9 Way Determination Unit ... 17

3.10 Adaptive Mode Control .. 18

CHAPTER IV. BUFFER CONTROLLED CACHE .. 21

4.1 Access Cases ... 21

4.2 MRU Tag Buffer ... 24

4.3 BCC Organization ... 26

4.4 Advantages .. 29

4.5 Disadvantages ... 30

CHAPTER V. EXPERIMENTAL METHODOLOGY.. 32

5.1 Single Core Implementation .. 32

5.2 Simplescalar .. 33

5.3 Cacti .. 33

5.4 SPEC2000 ... 35

5.5 Simulation Model for Single Core .. 39

5.6 Multicore Implementation ... 42

5.7 Multi2Sim ... 43

5.8 McPAT .. 43

viii

5.9 PARSEC .. 45

5.10 HiPAC ... 47

5.11 Simulation Model for Multicore ... 47

5.12 Simulation Parameters .. 50

CHAPTER VI. EVALUATION ... 53

6.1 Benchmarks ... 53

6.2 General Pattern .. 56

6.3 Improvement ... 57

6.4 Prediction Hit-Rate.. 57

6.5 Cache Ratio ... 58

6.6 Multicore Simulation Results .. 83

CHAPTER VII. CONCLUSION AND FUTURE WORK .. 87

7.1 Conclusion .. 87

7.2 Future Work .. 88

REFERENCES ... 89

APPENDIX A ... 92

BIOGRAPHICAL SKETCH .. 96

 ix

LIST OF TABLES

Page

Table 4.1: Power and Delay Characteristics of BCC Cache ... 29

Table 4.2: Power and Delay Characteristics of Conventional Caches .. 30

Table 5.1: Cacti Simulation Parameters .. 34

Table 5.2: Buffer Block Size Comparison .. 34

Table 5.3: SPEC2000 Benchmark Compilation Results... 37

Table 5.4: SPEC2000 Benchmark Descriptions ... 38

Table 5.5: Energy Equations, Where n Refers to the Number of Ways 41

Table 5.6: Access Time Equations.. 42

Table 5.7: Correspondence Between Multi2Sim and McPAT ... 44

Table 5.8: PARSEC Benchmark Descriptions.. 46

Table 5.9: Cache Parameters for Multicore Simulations .. 52

x

LIST OF FIGURES

Page

Figure 1.1: Memory Hierarchy ... 3

Figure 2.1: Cache Organizations ... 7

Figure 2.2: Address Space of a Direct-Mapped Cache ... 9

Figure 3.1: Conventional 4-Way Set-Associative Cache ... 13

Figure 3.2: Phased 4-Way Set-Associative Cache .. 14

Figure 3.3: Way-Prediction 4-Way Set-Associative Cache .. 15

Figure 3.4: (a) Conventional Cache Architecture. (b) Two-Level Filter Cache Architecture. 16

Figure 4.1: BCC Cache Access Mode Sequence .. 22

Figure 4.2: Buffer Tag Hit and Cache Hit .. 23

Figure 4.3: Buffer Tag Miss and Cache Hit .. 23

Figure 4.4: Buffer Tag Miss and Cache Miss ... 24

Figure 4.5: Address Space of a BCC Buffer Entry for a 16-Way Cache 25

Figure 4.6: Buffer Size Example .. 25

Figure 4.7: Way-Prediction Mode .. 27

Figure 4.8: Phased Mode .. 27

Figure 4.9: Organization of a 4-Way BCC Cache .. 28

xi

Figure 5.1: Simplescalar Simulation Model ... 40

Figure 5.2: Multi2Sim Simulation Model ... 49

Figure 5.3: Multicore Cache Configuration Designs .. 51

Figure 6.1: Energy Charts for VPR Benchmark ... 54

Figure 6.2: Access-Time Charts for VPR Benchmark.. 54

Figure 6.3: Energy-Delay Product Charts for VPR Benchmark ... 55

Figure 6.4: Percentage Improvement Charts for VPR Benchmark... 56

Figure 6.5: Results for GZIP Benchmark ... 59

Figure 6.6: Results for VPR Benchmark .. 60

Figure 6.7: Results for GCC Benchmark .. 61

Figure 6.8: Results for MCF Benchmark .. 62

Figure 6.9: Results for PARSER Benchmark ... 63

Figure 6.10: Results for BZIP2 Benchmark ... 64

Figure 6.11: Results for TWOLF Benchmark .. 65

Figure 6.12: Results for WUPWISE Benchmark ... 66

Figure 6.13: Results for SWIM Benchmark ... 67

Figure 6.14: Results for MGRID Benchmark ... 68

Figure 6.15: Results for APPLU Benchmark ... 69

Figure 6.16: Results for MESA Benchmark ... 70

Figure 6.17: Results for EQUAKE Benchmark .. 71

xii

Figure 6.18: Prediction Hit-Rate for GZIP Benchmark .. 72

Figure 6.19: Prediction Hit-Rate for VPR Benchmark ... 72

Figure 6.20: Prediction Hit-Rate for GCC Benchmark .. 72

Figure 6.21: Prediction Hit-Rate for MCF Benchmark .. 73

Figure 6.22: Prediction Hit-Rate for PARSER Benchmark.. 73

Figure 6.23: Prediction Hit-Rate for BZIP2 Benchmark .. 73

Figure 6.24: Prediction Hit-Rate for TWOLF Benchmark ... 74

Figure 6.25: Prediction Hit-Rate for WUPWISE Benchmark .. 74

Figure 6.26: Prediction Hit-Rate for SWIM Benchmark .. 74

Figure 6.27: Prediction Hit-Rate for MGRID Benchmark ... 75

Figure 6.28: Prediction Hit-Rate for APPLU Benchmark .. 75

Figure 6.29: Prediction Hit-Rate for MESA Benchmark .. 75

Figure 6.30: Prediction Hit-Rate for EQUAKE Benchmark .. 76

Figure 6.31: Cache Ratio for GZIP Benchmark ... 77

Figure 6.32: Cache Ratio for VPR Benchmark .. 77

Figure 6.33: Cache Ratio for GCC Benchmark .. 78

Figure 6.34: Cache Ratio for MCF Benchmark .. 78

Figure 6.35: Cache Ratio for PARSER Benchmark ... 79

Figure 6.36: Cache Ratio for BZIP2 Benchmark .. 79

Figure 6.37: Cache Ratio for TWOLF Benchmark .. 80

xiii

Figure 6.38: Cache Ratio for WUPWISE Benchmark.. 80

Figure 6.39: Cache Ratio for SWIM Benchmark ... 81

Figure 6.40: Cache Ratio for MGRID Benchmark ... 81

Figure 6.41: Cache Ratio for APPLU Benchmark .. 82

Figure 6.42: Cache Ratio for MESA Benchmark ... 82

Figure 6.43: Cache Ratio for EQUAKE Benchmark .. 83

Figure 6.44: Total Power Consumption of Way-Prediction Cache (Watts) 84

Figure 6.45: Total Power Consumption of BCC Cache (Watts) .. 85

Figure 6.46: Power Consumption Reduction (%) ... 85

Figure 6.47: Total Simulation Times (Seconds) ... 86

1

CHAPTER I

INTRODUCTION

 Fabrication technology is progressing at a very rapid pace, resulting in large transistor

budgets for chips and processors. This, in turn, enables processor designs with extremely large

caches, i.e., more than 32KB for level-one (L1) cache memory. Even though large caches

lead to higher performance, they might consume a large amount of power; hence, it can be very

critical for mobile or hand-held devices, which are typically battery powered. These cache

structures occupy more than 60% of modern microprocessors' die area [1] and cause more than

50% of total power dissipation [2]. Typically, on-chip caches in mobile devices are not highly

associative, i.e., less than 16-way. Therefore, a cache miss results in a lower cost for access,

power and latency, to the memory. Modern mobile microprocessors, such as the ARM Cortex

A9, use only 4-way or 8-way cache architectures [3].

 Modern computers and mobile devices play an important role in daily use, either for

entertainment, communication, or work. These devices are multifunctional and place great

demand on its processing capabilities. Multicore processors can fit this role and have become the

standard in computing, even in mobile devices. Low-power multicore architectures are the trend

of development; hence there is a need for research and experimentation in this area [4].

Multicore architectures are more complex than single core architectures and can consume more

power. This is a limiting factor in mobile devices that are battery powered. A low-power

2

multicore design is essential for mobile devices due to the limited capacity of its battery power.

Another issue that limits the performance of multicore processors is cache coherence [5]: when

different cores share a common memory resource, inconsistent data may arise. Research is

ongoing in this area to mitigate the problem. In this regard, this paper experiments with multiple

arrangements of cores, L1 caches, and L2 caches to determine the optimal cache configuration

for BBC cache. The arrangement of these cache components will effect cache coherence and

hence, the processor's overall performance.

3

CHAPTER II

BACKGROUND

 The memory system of a computer is comprised of several components. These

components form a memory hierarchy of varying access latencies. This thesis will focus on the

cache memory component and its vital role in performance and power consumption.

2.1 Memory Hierarchy

 A fundamental need of a computer system is storing data and program code. Some code

is required only when the computer is operating, while other data must be retained when the

computer is off. A computer system can store a vast amount of data, however only a small

fraction is processed at a time. Therefore a memory hierarchy is necessary to rapidly stream data

to and from the processor and to store large data sets and large programs [6].

Figure 1.1: Memory Hierarchy

4

Figure 1.1 shows the four typical components of the memory hierarchy. From top to

bottom, latency and storage capacity increases. For example, the Registers contain the least data

but are also the fastest (least latency). At the bottom, Magnetic Disks contain the most data but

are also the slowest. The components are described in detail as follows:

 Registers: Provides the smallest capacities (hundreds of bytes) and latency (one cycle).

Register files provides the fastest access times and is responsible for supplying

operational data and program code for execution by the processor.

 Cache Memory. Provides small capacities (kilobytes to megabytes) and latency (a few

cycles). Cache memory is based on SRAM (Static Random Access Memory) technology

but is still volatile. It is used to reduce the latency from main memory to the processor.

 Main Memory. Provides moderate capacities (gigabytes) and latency (hundreds of cycles).

Main memory is based on DRAM (Dynamic Random Access Memory). It is also volatile

but ideal for storing temporary data and running programs.

 Magnetic Disks. Provide the largest capacities (terabytes) but also the greatest latency

(millions of cycles). Magnetic storage are nonvolatile and will retain their information

when the power is turned off. This makes it ideal for storing large data sets and large

programs.

 These components are also attached to the CPU in a hierarchical manner and their designs

greatly affect the performance of the CPU. While each of these components are large subjects on

their own, this thesis will focus on the design of cache memory.

5

2.2 Cache Memory

 Cache memory is the first level of the memory hierarchy that the CPU encounters. It is

smaller and faster than main memory. The cache is ideal for storing the most frequently used

data from main memory. When the processor needs data, the cache is checked before main

memory. Access to main memory is unnecessary if the data exists in the cache. To speed up

access and execution, most modern CPUs have separate data and instruction caches.

Furthermore, the data cache can be organized in more cache levels (L1, L2, L3, etc.) called

multi-level cache. Cache level L1 is the fastest but also the smallest in capacity, while L3 cache

is slower but has more capacity. Multi-level cache offers a trade-off between latency and hit rate.

Cache L1 is checked first, if a hit occurs, low latency is maintained. If a miss occurs, the next

larger cache (L2) is checked, and so on down the memory hierarchy. For this thesis, only L1

cache is considered for modification.

 The following sections describe a number of attributes that factor into the design and

performance of the cache. When data is selected to be placed in the cache, a method is used

called locality of reference. The mapping function describes how the data is organized in cache

memory. Finally, several policies control how data is replaced and updated in the cache. These

attributes affect the performance of the cache and a formula is derived based on these attributes

for performance measurement.

2.2.1 Locality of Reference

 Due to the nature of the data, computer programs tend to access the same or nearby

memory locations in repeatable patterns. The locality of reference describes the frequency and

repetition attributes that take advantage of these patterns[6]. There are two types of locality that

refer to time and space (location):

6

1. Temporal Locality: A block of memory is accessed repeatedly in a narrow

window of time or accessed again in the near future. Loops in program execution

and frequently referenced data can lead to temporal locality.

2. Spatial Locality: Adjacent blocks of memory are accessed repeatedly or in the

near future. Any instruction or data reference accessed sequentially, such as

reading a media file, can lead to spatial locality.

 Both types of locality have been observed from user-level application to system kernel

code. Hench, a majority of computer systems implement some form of locality reference in the

cache.

 The locality of reference is a good predictor of usable data, but is not a guarantee that the

data will be used. A cache hit occurs when the CPU finds the requested data in the cache. If the

requested data is not in the cache, a cache miss occurs. In the case of a cache miss, the data is

fetched from main memory and placed in the cache since there is a high probability that the same

data will be used again in the near future.

2.2.2 Cache Memory Organization

 Since main memory is much larger than cache memory, only a subset of data can go into

cache memory. There needs to be an organization or mapping function to place data from main

memory to cache memory. The complexity of the mapping function also determines the cache

associativity. The associativity of the cache is a major factor of CPU performance. And because

cache memory has sufficiently low latency, the focus shifts to employing complex cache

organization to increase performance. There are three basic types, shown in Figure 2.1, in order

of increasing hit times and decreasing miss rates:

1. Direct-mapped: Refer to Figure 2.1 (a), each entry in main memory is mapped to

7

only one location in the cache. This simple organization provides the fastest hit

times but also the worst miss rates. It is ideal for large caches.

2. Set-associative: Refer to Figure 2.1 (b), each entry in main memory can map to a

'set' (2, 4, 8, etc) number of locations in the cache. For example, a 2-way set-

associative cache can map each entry to two locations in the cache. Set-

associative cache is a trade-off that provides a balance of hit times and miss rates.

3. Fully associative: Refer to Figure 2.1 (c), a complex scheme where each entry can

map to any location in the cache. This requires more time searching the cache for

data, and thus has the worst hit times but also provides the best miss rates.

Figure 2.1: Cache Organizations

8

 Because the cache memory organization cannot be changed once the processor is made,

the choice of particular mapping function is very important. A great deal of testing must be made

to insure the best performance for a particular cache design.

 Once the mapping function is decided, the cache can be accessed. Accessing the cache

involves decoding the requested address. Each mapping function will process the address

differently with the goal of locating and validating the data in the cache. As an example, a

processor has the following properties: direct-mapped, 64 MB, 512 KB cache, 32 byte cache

lines.

 When the processor needs to read/write from/to main memory, the processor sends a

memory address to the cache controller. The address will have the format shown in Figure 2.2.

The memory address has three portions:

 Tag: used to validate the stored data in the cache line. Its size (bits) is determined by:

Tag = (Address Size) – (Index + Offset)

 Index: used to specify the line (set) in the cache to access. Its size (bits) is determined by:

Index = log2 [Cache Size / (Associativity * Block Size)]

 Offset: specifies the desired data (word) within the cache line. The size (bits) is:

Offset = log2 (Block Size)

9

Figure 2.2: Address Space of a Direct-Mapped Cache

The location indicated by the index is read. Then, the tag of the cache address is

compared to the tag from the processor address. If they are identical, a hit occurs because it is the

entry that the processor requested. The entire 32 byte content of the cache line is sent to the

processor. The process is complete and only the cache is accessed. If the tag comparison

produces a miss, main memory is accessed using both tag and index addresses.

2.2.3 Replacement Policy

 There must be a mechanism for removing data from the cache and replace them with

more current references. A replacement policy is an algorithm that identifies a block for

replacement. While there are many different variations, the three basic types are as follows:

1. FIFO: a first-in, first-out policy implements an eviction based on the oldest data or data

that has been in the cache the longest. This policy is straightforward and does not take

into account whether or not the data has just been used.

2. LRU: a least recently used policy evicts data based on the frequency of access. This

policy attempts to mitigate the problems of the FIFO policy. Implementing this policy is

more complicated because of the necessity to track the access to each data or block of

memory.

3. Random: as the name suggests, data is replaced randomly regardless of age or frequency

of access. Although risky, this policy is the easiest to implement.

10

 Current cache designs implement some variation of the LRU replacement policy.

Performance improvements can be obtained by tailoring a specific replacement policy to the

cache design and mapping function. For simplicity, this thesis will focus on the LRU

replacement policy.

2.2.4 Write Policy

 When writing to the cache, two types of policies are followed for a hit, write-through and

write-back. A write-through cache will write the 32 bytes of data to the cache line specified by

the index as well to main memory. In a write-back cache, the data will only be written on the

cache.

 If writing to the cache but a miss occurs, there are also two types policies to be followed,

write allocate and write no allocate. A write allocate will load the data from main memory to the

cache, followed by a write-hit action. A write no allocate will write to main memory but not to

the cache. Many combinations of policies are possible with different advantages and

disadvantages.

2.2.5 Cache Performance

 Cache performance is determined by the average cache access-time and the power

consumed from each access. Cache performance is heavily dependent on the design of the cache.

Hence, performance can be improved by reducing the access-time or power consumption. The

choice of mapping function, replacement policy, and write policy greatly affect the performance

of the cache. A common metric for access-time is the Average Memory Access-Time (AMAT):

11

AMAT = Hit Time + Miss Rate * Miss Penalty

 The power consumption is typical calculated by a separate hardware simulator. The

results of which can be used for the energy equations, presented in Chapter V.

12

CHAPTER III

RELATED WORKS

 The design of microprocessors builds on the works of others. Through research and

experimentation, the advantages of a particular design are merged into another design. This

chapter explores different approaches to improving cache performance. Some designs improve

the speed of the cache (set-associative cache and phased cache) while other designs improve the

power consumption of the cache (early tag look-up and filter cache). Other designs take a hybrid

solution that improves power consumption without slowing down the cache (way-prediction

cache, filter cache). In most of these designs, more importance is placed on reducing power

consumption. This is especially true for mobile and embedded microprocessors.

3.1 Set-Associative Cache

 Set-associative caches are used to improve cache hit rate performance but tend to have

higher energy consumption than direct-mapped caches due to dynamic wasted energy dissipation

[7]. Regardless of the number of ways in a set, at most only one way will have the desired data.

In a conventional set-associative cache, all tag and data arrays are accessed at the same time,

Figure 3.1. Conventional cache has the advantage when speed is critical, but also consumes the

most power.

13

Figure 3.1: Conventional 4-Way Set-Associative Cache

3.2 Phased Cache

To solve the power issue, Hasegwa et. al. [8] proposed a low-power set-associative cache

architecture, now commonly referred to as phased cache, Figure 3.2. In phased cache all the tags

are accessed in the first phase, and if a tag matches, only one data block is accessed. Avoiding

unnecessary data access will reduce power consumption. The disadvantage of phased cache is

the reduced performance caused by using more clock cycles to access the data, compared to

conventional cache.

3.3 Way-Prediction Cache

Taking advantage of the power savings of phased cache, Inoue et. al. [9] proposed a low-

power set-associative cache architecture, called way-prediction cache, that improves on the

latency of phased cache. A Most Recently Used (MRU) algorithm is used to predict one of the

ways to access.

14

Figure 3.2: Phased 4-Way Set-Associative Cache

If this prediction is correct, then the tag and data blocks are accessed in one cycle, with

the speed and the power savings of direct-mapped cache. If the prediction is wrong, the rest of

the ways are accessed on the next cycle in parallel. The performance and power efficiency of

way-prediction cache is highly dependent on the accuracy of the way-prediction algorithm used.

15

Figure 3.3: Way-Prediction 4-Way Set-Associative Cache

3.4 Early Tag Lookup

Chung et. al.[10] proposes a pipeline change for way determination. An early tag lookup

stage, between branch prediction and fetch stage, is used to determine the next way to be

accessed. In this method, prediction accuracy and hit rate of the original way prediction cache

are maintained while reducing power consumption. This scheme does not experiment on data

caches, where most power is consumed.

3.5 Predictive Placement Cache

Another method proposed by Raveendran et. al. [11] uses a predictive placement scheme

for better way-prediction hit rate, power efficiency, and performance. In this scheme, an

16

algorithm is used to selectively place the MRU way such that it improves prediction hits using

minimal prediction bits. The scheme has an average power reduction of 67.75% compared to

conventional cache and it works very well on data cache.

3.6 Filter Cache

Reducing the amount of cache activity (sub-array accesses) would also reduce power

consumption. Chang et. al [12] proposes a two-level filter (buffer) cache to achieve this,

Figure 3.4. The Level 1 (L1) filter contains the recently used block. Due to spacial locality, the

next data access will likely be in the same block. If so, the main cache is bypassed. In case of an

L1 filter miss, the Level 2 (L2) filter uses sentry –tag to predict which way activities are

unnecessary, instead of accessing all the ways. Depending on the cache configuration, the two-

level filter cache can reduce power consumption by 46% (32KB, 4-way). Because of the added

filters, a delay penalty can be incurred from a filter miss. Another disadvantage of this

architecture is the dependence on program behavior and cache associativity, both of which can

negatively affect power efficiency.

Figure 3.4: (a) Conventional Cache Architecture. (b) Two-Level Filter Cache Architecture.

17

3.7 Cache Bursts

Data caches in set-associative caches are inherently inefficient. Data can be in a dead

block or wrong locality causing misses and in turn increasing delay and power consumption. Liu

et. al. [13] uses cache bursts and prefetching to hide the irregularity of individual references. It

can also identify 96% of dead blocks with 96% accuracy leading to an average L1 improvement

of 9% and L2 improvement of 10%.

3.8 Way-Prediction Scheme

 Tseng et. al. [14] proposes a method to improve the problems of spatial and temporal

locality by using a 2-bit counter to store the MRU information of a cache set as well as a

Modified Pseudo LRU replacement algorithm. Combined, this scheme reduces hardware

complexity and cache miss rate. The results show an increase in prediction hit rate to 90.15% and

a power reduction of 64.12%. Another method to fix the problems of locality is the use of

Dynamic Time Tuning as proposed by Zhang et. al [15]. The method uses self-adapting time

slice turning according to the prediction and cache misses in the execution interval. This leads to

better program locality and a longer time slice, which in turn leads to less cache reconfigurations

and less power consumption.

3.9 Way Determination Unit

 As with previous examples, increasing the way prediction hit rate and increasing locality

will improve the way-prediction cache. The paper by Chung et. al.[16] uses both of these

methods. The Way Determination Unit exploits high line address locality by recording

previously seen cache line addresses and their way number. This method does not have mis-

prediction penalties. It saves power on average of 66% for an 8-way set-associative cache and

power consumption reduces as associativity increases. Using high-associativity in L1 cache is

18

mostly beneficial for way-prediction schemes and similar designs.

3.10 Adaptive Mode Control

Yet another method combines the speed of conventional cache and the power savings of

phased cache with way prediction cache as proposed by Inoue et. al.[17]. This method has a

performance-aware mode (switching between conventional and way prediction) and an energy-

aware mode (switching between phased and way prediction). The performance aware mode

reduces performance overhead of the original way prediction cache to 17%. The energy-aware

mode reduces power consumption of the original way prediction cache to 73%. While this

scheme uses a 2-bit saturation counter to determine which mode to use, other branch predictors

such as Fast Way-Prediction Cache [18] and Taken Branch Identification Table [19] further

improve performance and power consumption.

An inhibiting aspect in multicore processors is the ability to exploit parallelism in

software programs [20]. If a program is not written with parallelism in mind, then it may not run

any faster in a multicore system. While software programs written for parallization continuous to

improve, hardware design must also meet the demands of software architecture. Processor

performance can be increased by taking advantage of the software application load. For example,

specialized chips or coprocessors can be added for specific purposes, such as media and graphics.

A media chip can decode videos. A graphics chip can process graphics and games. These

specialized chips are highly efficient and can bypass the less efficient general processor.

Software programs written for a particular processor hardware or with parallelism can take full

of advantage of multicore systems.

An asymmetric design, such as ARM's big.LITTLE, combines different types of cores

(performance and energy-efficient cores) in one chip [21]. When performance is required, all the

19

cores can be used. If the load is minimal, only the energy-efficient cores are used. To the

software, it appears as an homogeneous multicore processor. These cores can be linked via a

high speed interconnect. Access to memory via an interconnect can inhibit performance by

delaying communication between cores. A solution to this is a high-speed buffer in the form of

an L4 cache [22].

Intel's Turbo Boost allows different cores to be completely switched off and the

frequency of the remaining threads can be raised [23]. This temporary performance boost is only

limited by the thermal capacity of the chip. The ability to control the voltage or frequency of the

different cores and other processing units will also increase performance and power management.

Synchronization is a hardware solution to the problem of cache coherency in multicore

system [24]. Coherencies contribute to major locks and conflicts which result in poor

performance. Locks and conflicts occur because of inconsistent data from improperly managed

cache coherency. When data is expected but not available, it causes a lock or a stall in processing.

Synchronization attempts to prioritize access to memory only to cores that are requesting. The

address being accessed by the core is also locked, preventing other cores from accessing it.

Synchronization provides fairness with regards to memory access with affecting performance.

For battery powered embedded systems, power consumption has been a critical issue

compared to performance. Based on previous work presented in this section, power consumption

can be minimized by using way-prediction mode in the case of a predicted cache hit and using

phased mode in the case of a predicted cache miss. Furthermore, cache activity can be reduced

by the use of a buffer. The results of the buffer will control the access mode of the cache. This

cache is called Buffer Controlled Cache (BCC cache). A multicore system utilizing BCC cache

will have an inherent benefit of lower power consumption. Further optimizations can be made to

20

a multicore system design to lowering power consumption, as explored in this thesis.

21

CHAPTER IV

BUFFER CONTROLLED CACHE

 This thesis proposes a cache scheme to reduce power consumption by using a buffer and

dual accessing modes. The three main components of BBC cache are: a most recently used

(MRU) buffer, Phased mode, and Way-prediction mode. The goal of this scheme is to reduce

power consumption by minimizing cache activities. The MRU buffer acts as a filter cache and

will determine how the main cache is accessed, phased mode or way-prediction mode. This

approach provides many advantages as compared to conventional caches.

4.1 Access Cases

The method of access to the cache will determine its power consumption by increasing

cache activities. The more components the cache uses (activates), the more power it will

consume. Therefore, it is important to minimize cache activities using the appropriate access

case. Figure 4.1 shows the access mode sequence of BCC cache for a valid reference address.

Three cases exist for the access path of BCC cache:

1) Buffer tag hit and cache hit, Figure 4.2

2) Buffer tag miss and cache hit, Figure 4.3

3) Buffer tag miss and cache miss, Figure 4.4

If a hit occurs in the buffer, the cache is accessed using way-prediction mode. A hit in the buffer

22

entails that the tag/data has been accessed recently and it remains in the main cache. In this case,

way-prediction mode is used to access the cache because the correct „way‟ is determined by the

buffer, via tag comparison. If a miss occurs in the buffer, the cache is accessed using phased

mode. A miss in the buffer entails that the tag/data has either not been accessed recently or it

doesn‟t exist in the cache, a cache miss. In this case, phased mode is used because of its reduced

power consumption when accessing all the tags in the cache for comparison.

Figure 4.1: BCC Cache Access Mode Sequence

23

Figure 4.2: Buffer Tag Hit and Cache Hit

Figure 4.3: Buffer Tag Miss and Cache Hit

24

Figure 4.4: Buffer Tag Miss and Cache Miss

4.2 MRU Tag Buffer

 The latest n MRU tag entries are stored in the buffer, where n refers to the number of

main cache lines. Regardless of associativity, only the MRU tag of a cache line will be stored in

the buffer. Hence, the buffer will have the same number of entries as there are cache lines. Figure

4.5 shows the address space of an entry for a 16-way cache. For this experiment, all cache

configurations will use a 20-bit tag. Therefore, the buffer will also have a 20-bit tag plus a few

bits, for the offset, to determine the location of the MRU way in the main cache. The

associativity of the cache will determine the number of offset bits.

25

Figure 4.5: Address Space of a BCC Buffer Entry for a 16-Way Cache

 As the cache size increases, the buffer size (number of entries) also increases. As the

associativity increases for a given cache size, the buffer size will decrease. For example, in

Figure 4.6, a 32KB 4-way cache will have 256 entries in the cache and buffer, but a 32KB 16-

way cache will have only 64 entries in the cache and buffer. Using the same block size (32B), the

number of entries (i.e. number of sets) is calculated using the following formula:

(cache size) = (number of sets) x (block size) x (associativity)

 A cache line correlation exists in that the indexing of the buffer is exactly the same as the main

cache.

Figure 4.6: Buffer Size Example

26

Notice also that only two bits of offset are required for the 4-way cache; whereas the 16-

way cache requires four bits. This makes it unnecessary to have index bits in the address space of

the buffer and thus lowering the area footprint and power consumption of the buffer. Before the

cache is accessed, the buffer is checked. If the tag entry exists in the buffer, the cache is accessed

using way-prediction mode and will require only one cycle, Figure 4.7. Only one tag and one

data will be accessed. If the tag entry does not exist in the buffer, the cache is accessed using

phased mode and requires two cycles, Figure 4.8. For a 4-way cache, four tag sub-arrays and one

data sub-array will be accessed.

4.3 BCC Organization

The organization of BCC cache is shown in Figure 4.9. The access controller has three

main functions: mode control, way selection, and tag update.

27

Figure 4.7: Way-Prediction Mode

Figure 4.8: Phased Mode

28

Figure 4.9: Organization of a 4-Way BCC Cache

Tags from the reference address and MRU buffer are selected, via index bits, then compared and

the result is given to the mode control. If the tags match, a hit occurs; the control signal for way-

prediction mode is given. If the tags don‟t match, a miss occurs; the control signal for phased

mode is given. The way selection simply decrypts the buffer offset bits. For example, an offset of

„0000‟ will select „way 0‟. While an offset of „0101‟ will select „way 5‟. If a buffer hit occurs,

the buffer tag does not need to be updated. However, it does need to be updated for a buffer miss.

The result of cycle 2 tag comparison will used to update the buffer entries.

29

4.4 Advantages

The original way-prediction cache has power and delay penalties incurred during a

prediction-miss. This is nullified by the use of an MRU buffer. Way-prediction relies on the

MRU information for prediction. By comparing the MRU entries before accessing the cache, the

power consumption penalty of a prediction-miss can be avoided. The prediction-miss access of

the original way-prediction is replaced by the more power efficient phased mode access. Phased

mode access has the benefit of reduced energy because only one data block is accessed,

compared to all data blocks of a prediction-miss of way-prediction cache. In terms of delay

penalty, both phased mode access and the prediction-miss of way-prediction require two cycles,

so this stays the same. It is desirable to use way-prediction mode of BCC cache as much as

possible as this provides both reduced power consumption and minimal delay penalties. Table

4.1 summarizes the power and delay characteristics of BCC cache by minimizing tag and data

sub-array accesses. For comparison, Table 4.2 summarizes the access characteristics of

conventional caches.

AccessCase TagSub-array DataSub-array Cycles

1)Taghit,cachehit 1 1 1

2)Tagmiss,cachehit All 1 2

3)Tagmiss,cachemiss All 0 2

Table 4.1: Power and Delay Characteristics of BCC Cache

30

 AccessCase TagSub-array DataSub-array Cycles

Conventional

1)Cachehit All All 1

2)Cachemiss All All 1

Phased

1)Cachehit All 1 2

2)Cachemiss All 0 2

Way-prediction

1)Cachehit 1 1 1

2)Cachemiss All All 2

Table 4.2: Power and Delay Characteristics of Conventional Caches

Because of temporal locality, the MRU entries are the most likely memory locations to be

referenced again. Because of spatial locality, the next access data are likely to be located in the

same block as the last access. This observation will result in more way-prediction accesses as

opposed to phased accesses, which is desirable because of the improved performance and power

consumption of way-prediction when the prediction is correct.

BBC is similar to AMC cache from [17]. The main difference is the method of deciding

how the cache is accessed, namely - the MRU buffer. The MRU buffer is more accurate than a 2-

bit counter used in AMC cache. Additionally, when the a hit occurs in the MRU buffer, a miss-

prediction penalty is completely avoided in BBC cache. A miss-prediction penalty still occurs in

AMC as it is part of the way-prediction access mode.

4.5 Disadvantages

 BCC cache has some drawbacks as well as places that can be improved. A buffer is

31

placed between the CPU and the cache. Because of this, a delay is introduced regardless of

buffer size. However, it is later shown that this delay does not negatively affect the Energy Delay

Product (EDP) of BCC cache. The accuracy of the prediction technique is crucial to reducing

power consumption. Although the MRU technique works well with low-associativity caches, the

first-hit rate decreases as cache associativity increases [25].

Unlike other schemes, BCC does not change the performance of the cache. The miss rates

of the cache are unaffected, although altering the replacement policy of the cache can improve

miss rates. While the number of accesses to the cache remain the same, cache activity is reduced

by a decrease in the number of accesses to the tag and data sub-arrays.

32

CHAPTER V

EXPERIMENTAL METHODOLOGY

 The design of BBC cache is versatile in that it can replace a conventional cache without

modifying the fundamental structure of the cache (tag, blocks, etc.) Therefore, BBC cache works

equally well in single core and multicore implementations. Each implementation has a different

focus. For single core, the aim was to determine its performance as compared to conventional

caches. For multicore, the aim was to compare the performance differences between single core

and the many cache configurations for multicore. In multicore systems, the sharing of cores and

threads within cores, greatly affect its performance.

5.1 Single Core Implementation

 In this section, the methodology and tools used for single core implementation are

explained. At the time of this implementation, the best simulation tool for single core design was

Simplescalar, a popular research tool. Simplescalar lacks a way to simulate power consumption.

A separate simulator, Cacti, is used for power consumption simulation. An industry standard

benchmarking suite, SPEC2000, is used for single core. Many papers have used SPEC2000 for

single core designs and therefore, the results of this thesis can be compared to the papers of

others. Finally, the simulation model shows how the different tools will work together.

 For the single core implementation, several cache parameters will stay constant and some

33

will vary. Cache size varies from 16KB to 256KB, the most common sizes for L1 cache. L2 and

L3 will not be modified and will stay in their default configurations. Each cache is evaluated

using an associativity ranging from 4-way to 64-way. For all cache configurations, the following

parameters apply: 20-bit tag, 32 byte lines, LRU replacement policy, separate instruction and

data cache but of equal size.

5.2 Simplescalar

Simplescalar is an architectural simulator that reproduces the behavior of a computing

device. For this experiment, Simplescalar was used as a functional simulator. Regardless of the

machine the simulator was executed in, the results are the same. Only the simulation time varies.

Simplescalar (version 3.0d) [26] was used to model the cache. Because the MRU buffer

functions similarly to a cache, it will be modeled and evaluated as such. Recently, 64-bit systems

have become the standard. Therefore, Simplescalar was compiled to run on a modern 64-bit

Linux OS (operating system). Simplescalar was modified and extended to implement the

common definitions of phased cache and way prediction cache. The buffer shares many elements

of a cache and was also implemented as a separate architecture.

5.3 Cacti

 Cacti (version 6.5) [27] was used to simulate for the power and access-time

characteristics of the different cache architectures and the buffer. The installable (as opposed to

web version) version is used in order to properly simulate Phased and Way-prediction cache.

Because of the 64-bit benchmark system, Cacti would not compile unless some 32-bit libraries

were copied over. Table 5.1 shows the Cacti parameters used for each architecture configuration.

All other parameters were left in its default state.

 Most Cacti parameters are common among the different architectures. Phased cache

34

requires sequential access because the tag is accessed in the first cycle and the data is accessed in

the second cycle.

 The small size of the buffer made it difficult to simulate. For this experiment, the

maximum associativity is a 64-way cache. This translates to a buffer offset size of six (6) bits.

With a tag size of 20 bits, the buffer block size is a maximum of 26 bits or less than 5 bytes.

Architecture Size Access

mode

Associativity Block

size

RW

ports

Tag

size

Cache

level

Tech

Phased Various Sequential Various 32B 1 20 L1 32nm

Way-predict Various Normal Various 32B 1 20 L1 32nm

Buffer Various Normal 1 4B 1 20 L1 32nm

Table 5.1: Cacti Simulation Parameters

 Buffer

size
64B 128B 256B

Block size 3B 4B 5B 6B 3B 4B 5B 6B 3B 4B 5B 6B

Access Time

(ns)
0.1191 0.1145 Error Error 0.1223 0.1376 0.1233 0.1191 0.1534 0.1449 0.1264 0.1223

Dyn. Read(nJ) 0.0013 0.0017 Error Error 0.0014 0.0018 0.0022 0.0026 0.0015 0.0019 0.0024 0.0028

Table 5.2: Buffer Block Size Comparison

Table 5.2 shows the different values of varying buffer block sizes. The difference is minimal

between 4B and 5B. In fact 5B gives better results most of the time. However, 4B was chosen for

35

all buffer simulations for simplicity and because 5B block sizes will occasionally give errors

during simulation.

 As can be seen in Table 5.2, Cacti simulation will output values for access time and

energy consumption. One simulation is required for each cache size and architecture

configuration. While cacti can provide many results, the following is pertinent to this experiment:

1) Tag energy in nJ.

2) Phased data read energy in nJ.

3) Phased data write energy in nJ.

4) Phased access time in ns.

5) Way-prediction data read energy in nJ

6) Way-prediction data write energy in nJ.

7) Way-prediction access time in ns.

8) Buffer access energy in nJ.

9) Buffer access time in ns.

Tag energy values are common to both Phased cache and Way-prediction cache. However,

accessing the data sub-array requires differing supporting elements (mux drivers, comparators,

etc.) that can change the values for reading and writing to the data sub-array. Therefore separate

values must be used for reading and writing of the data sub-array. Simulation results from Cacti

were integrated (hardcoded) into Simplescalar. This made it easier to calculate the final results.

5.4 SPEC2000

 The benchmarks used for the experiment were SPEC2000 (version 1.3) [28]. Varying

benchmarks from the “Integer” and “Floating” suites of SPEC2000 were chosen for a broad

36

simulation setup. These benchmarks were also compiled to run on a 64-bit Linux OS. As such,

not all benchmarks successfully compiled due to numerous problems. Most of the problems

either involves Fortran code or missing C++ headers. Four F90 (a Fortran version) benchmarks

(galgel, facerec, lucas, fma3d) werel not compile because a F90 Simplescalar compiler is not

available. The F90 benchmarks are not able to convert to F77 or C because there are objects,

functions, or structures in F90 that do not have an equivalent in F77 or C. In fact, F90 is closer

to C++ than C. However, it is dissimilar enough to C++ that no converter is available and

manual conversion is difficult and error prone. Furthermore, C++ libraries in Simplescalar are

incomplete. Table 5.3 summarizes the results of compilation and their average simulation time if

compiled successfully. Table 5.4 provides information about the application type and description

for each benchmark.

37

SPEC2000 Floating Point Benchmarks SPEC2000 Integer Benchmarks

Name Status Name Status

Wupwise Success; 20 minutes Gzip Success; 6 hours

Swim Success; 4 hours VPR Success; 15 minutes

Mgrid Success; 18 hours GCC Success; 50 minutes

Applu Success; 7 hours MCF Success; 1 hour

Mesa Success; 3 hours Crafty Assembler – unrecognized opcode

Galgel Not compiled; F90 Parser Success; 5 minutes

Art Success; 50+ hours Eon C++ missing headers

Equake Success; 10 minutes Perlbmk C++ missing headers

Facerec Not compiled; F90 Gap C++ missing headers

Ammp Success; 3 hours Bzip2 Success; 8 hours

Lucas Not compiled; F90 Twolf Success; 5 minutes

FMA3D Not compiled; F90

Sixtrack C++ missing headers

Apsi Success;5 minutes

Table 5.3: SPEC2000 Benchmark Compilation Results

38

Benchmark Application Category Description

164.gzip Compression Gzip (GNU zip) is a popular data compression

program written in C. All compression and

decompression happens entirely in memory.

175.vpr Integrated Circuit

Computer-Aided Design

Program

VPR is a placement and routing program; it

automatically implements a technology-mapped

circuit in a Field-Programmable Gate Array (FPGA)

chip.

176.gcc C Language optimizing

compiler

GCC generates code for a Motorola 88100

processor. The benchmark runs as a compiler with

many of its optimization flags enabled.

181.mcf Combinatorial

optimization / Single-

depot vehicle scheduling

A benchmark derived from a program used for

single-depot vehicle scheduling in public mass

transportation.

197.parser Word processing The Link Grammar Parser is a syntactic parser of

English, based on link grammar, an original theory

of English syntax.

256.bzip2 Compression Another popular data compression program. It is

based on Julian Seward‟s bzip2 version 0.1.

300.twolf Computer Aided Design The TimberWolfSC placement and global routing

package is used in the process of creating the

lithography artwork needed for the production of

microchips.

168.wupwise Physics / Quantum

Chromodynamics

"Wupwise" is an acronym for "Wuppertal Wilson

Fermion Solver", a program in the area of lattice

gauge theory.

171.swim Meteorology: Shallow

Water Modeling

Benchmark weather prediction program for

comparing the performance of current

supercomputers.

172.mgrid Multi-grid Solver: 3D

Potential Field

Mgrid demonstrates the capabilities of a very simple

multi-grid solver in computing a three dimensional

potential field.

173.applu Computational Fluid

Dynamics and

Computational Physics

Solution of five coupled nonlinear PDE's, on a 3-

dimensional logically structured grid, using an

implicit psuedo-time marching scheme, based on

two-factor approximate factorization of the sparse

Jacobian matrix.

177.mesa 3-D graphics library Mesa is a free OpenGL work-alike library that can

be configured to have no OS or window system

dependencies.

183.equake Simulation of seismic

wave propagation in large

basins

The program simulates the propagation of elastic

waves in large, highly heterogeneous valleys, such

as California's San Fernando Valley.

Table 5.4: SPEC2000 Benchmark Descriptions

39

5.5 Simulation Model for Single Core

 Figure 5.1 shows the simulation model used for this experiment. Benchmarks were

compiled to be used specifically for Simplescalar. Cacti inputs were hard coded into the different

cache architectures. The output of Simplescalar was also extended to include energy and access-

time results.

40

Figure 5.1: Simplescalar Simulation Model

41

Table 5.5 shows the energy equations used for each cache architecture. These equations were

based on the work of Inoue et. al [9]. The equations are modified to include energies for a 'hit' or

'miss' in the cache. This is important because a „miss‟ in the cache will consume a different

amount of energy based on the „write data energy‟ and the number of writebacks.

Table 5.6 shows the access-time equations. These equations are much simpler. Per access

latency are simulated from Cacti and are simply multiplied to the number of instructions each

architecture uses.

Architecture Equation

Phased: Hit (n * Etag + Edata) * Hits

Phased: Miss (n * Etag) * Misses +

(Edata,write * WrtBck)

Phased: Total (Phased_Hit_Energy +

Phased_Miss_Energy) /

Instruction_Count

WP: Hit (PHR + n*(1-PHR)) *

(Etag + Edata) * Hits

WP: Miss n * (Etag + Edata) * Misses

+ (Edata,write * WrtBck)

WP: Total (WP_Hit_Energy +

WP_Miss_Energy) /

Instruction_Count

MRU Buffer Phased_Total + WP_Total +

(Ebuf* Instruction_Count)

Table 5.5: Energy Equations, Where n Refers to the Number of Ways

42

Architecture Equation

Phased Phased_Access_Time*Phased_Instruction_Count

WP WP_Access_Time*WP_Instruction_Count

MRU Buffer (Tphased + Twp + Tbuf) * Instruction_Count

Table 5.6: Access Time Equations

5.6 Multicore Implementation

 Multicore systems are becoming the standard, even on embedded systems. Hench, a

multicore implementation was added to this thesis. This section explains the methodology and

tools required for multicore implementation. In a similar manner, the simulators and benchmarks

chosen for multicore implementation were the most commonly used tools in this field of research.

The following parameters were used: 64KB cache size, 32 sets, 16-way associativity, and 128B

blocksize. All experiments were evaluated using 2 cores with 2 threads per core. From the results

of the experiment on single core systems, these parameters provided the average results. The

goal is to choose parameters that have the least effect on multicore performance. Rather, the

multicore design should determine performance. Most other parameters in the simulators are left

in the default states. The goal of the multicore implementation is to determine how BBC cache

affect different multicore cache configurations. All other parameters (such as core frequency,

latency, technology, etc.) are left as defaults. Varying too many variables would over-complicate

the experiment. Most of these parameters are also shared between Multi2Sim and McPAT.

43

5.7 Multi2Sim

 The limitations of SimpleScalar made it necessary to use a different microprocessor.

SimpleScalar, in its current version, is not capable of multicore or even multi-threaded

simulation. An attempt was made to modify SimpleScalar to be multi-threaded. However, this

proved to be too difficult and time consuming. It was also realized that these modifications could

possibly negatively affect any benchmarks used or completely prevent benchmarks from

working. A different simulator was needed that was both multicore and multi-threaded.

Multi2Sim (version 4.2) [29] was chosen and used to implement the cache and the buffer.

Multi2Sim is an advanced microprocessor simulator including the core, memory, and

interconnect networks. It is capable of simulating multicore and multi-threaded systems.

Multi2Sim was modified and extended to implement the common definitions of phased cache

and way-prediction cache. The buffer shares many elements of a cache and was also

implemented as a separate architecture.

5.8 McPAT

 In a similar situation with SimpleScalar, Cacti is also limited to single core and single

thread applications. Fortunately, Cacti has a multicore successor - McPAT (version 1.3) [30]

McPAT is also created by HP for multicore and multi-threaded simulation. McPAT is

compatible with Multi2Sim and was used to compute power consumption of the different cache

configurations. This simulator models the power, area, and timing characteristics for multicore

and multi-threaded architectures.

 There are two ways for Multi2Sim to work with McPAT. The first method is configuring

McPAT so that it is called by Multi2Sim during the simulation. The output of McPAT would be

appended with the Multi2Sim output. This particular method did not work. The reason is

44

unknown, therefore future work can be focused to make this method work. The second method

involves running McPAT with input from the Multi2Sim simulation output. The input for

McPAT must be in an xml format with all the corresponding parameters (number of cores,

number of threads, etc). Refer to the manual and sample input files of McPAT (both are included

in the McPAT download). Each simulation of Multi2Sim needed an xml input file for McPAT in

order to calculate power.

Multi2Sim McPAT Multi2Sim McPAT

Cycles Total_cycles ROB.Writes ROB_writes

Dispatch.Uop.load Load_instructions IQ.Reads Inst_window_reads

Dispatch.Uop.store Store_instructions IQ.Writes Inst_window_writes

Dispatch.Uop.call Function_calls IQ.WakeupAccesses Inst_window_wake

Dispatch.Integer Int_instructions RF_Int.Reads Int_regfile_reads

Dispatch.FloatingPoint Fp_instructions RF_Int.Writes Int_regfile_writes

Dispatch.Ctrl Branch_instructions RAT.IntReads Rename_reads

Dispatch.WndSwitch Context_switches RAT.IntWrites Rename_writes

Dispatch.Total Committed_instructions BTB.Reads BTB_Read_accesses

Issue.Integer Ialu_accesses BTB.Writes BTB_Write_accesses

Issue.Logic Mul_accesses Accesses Icache_read_accesses

Issue.FloatingPoint Fpu_accesses Misses Icache_read_misses

Commit.Integer Committed_int_instr Evictions Dcache_conflicts

Commit.FloatingPoint Committed_fp_instr Reads Dcache_read_access

Commit.Total Committed_instr ReadMisses Dcache_read_misses

Commit.DutyCycle Pipeline_duty_cycle Writes Dcache_write_access

Commit.Mispred Branch_mispredictions WriteMisses Dcache_write_misses

ROB.Reads ROB_reads

Table 5.7: Correspondence Between Multi2Sim and McPAT

This can be cumbersome as this thesis needed at run more than 60 simulations. Therefore, a

program was created to parse the output of Multi2Sim for the proper parameters and create the

necessary xml files for McPAT. Table 5.7 shows parameters shared between Multi2Sim and

45

McPAT.

5.9 PARSEC

 Initially, SPEC2006 was the benchmark used as it correlates with SPEC2000 used in the

single core simulations. However, it was discovered that SPEC2006 can take a significant

amount of time (3 months for one simulation) to simulate. More importantly, SPEC2006 is not

multithreaded and cannot stress the multicore, shared-memory aspect of BCC cache. The

PARSEC benchmarks (version 2.1) [31] was used for all multicore simulations as these

benchmarks met the requirements. PARSEC is a collection of benchmarks that focus on

multicore and multi-threaded processors. An inherent bottleneck of multicore systems is the

method of handling shared-memory. The proper benchmarks are required to test this aspect of

multicore systems. PARSEC excels at stressing the shared-memory paradigm of multicore

processors. Also, the PARSEC benchmarks selected reflect commonly used commercial

programs. The benchmarks employ workloads such as systems programs and parallelization

models that many other benchmarks lack. New and emerging methods for benchmarking

applications are continuously added. Furthermore, PARSEC is available to the public and

therefore used by many researchers and universities. Because of this, Parsec works well with

Multi2Sim. Table 5.8 summarizes the PARSEC benchmarks used in this thesis.

46

Benchmark Parallelization Model Description

Pthreads OpenMP Intel

TBB

Blackscholes Yes Yes Yes This application is an Intel RMS benchmark. It

calculates the prices for a portfolio of European

options analytically with the Black-Scholes

partial differential equation (PDE).

Bodytrack Yes Yes Yes This computer vision application is an Intel RMS

workload which tracks a human body with

multiple cameras through an image sequence

Canneal Yes No No It is a cache-aware simulated annealing (SA)

program to minimize the routing cost of a chip

design using fine-grained parallelism with a lock-

free algorithm.

Fluidanimate Yes No Yes This Intel RMS application uses an extension of

the Smoothed Particle Hydrodynamics (SPH)

method to simulate an incompressible fluid for

interactive animation purposes.

X264 Yes No No This application is an H.264/AVC (Advanced

Video Coding) video encoder. H.264 describes

the lossy compression of a video stream and is

also part of ISO/IEC MPEG-4.

Table 5.8: PARSEC Benchmark Descriptions

 The simulation tools interact well with each other. Multi2sim lacks a proper power

simulator. However, all of its outputs parameters can be used by McPAT to calculate power

consumption. Furthermore, the Parsec benchmark tools were designed to take full advantage of

Multi2Sim. These simulators were selected because of the ability to evaluate the architectural

design as a whole. In contrast, cycle-accurate simulators would not be appropriate as the design

does not provide hardware specifications at the level required for cycle level analysis.

 It was necessary to be able to compile from source to be able to modify the simulation

tools to meet the experimental criteria. Benchmarks were compiled to be used specifically for

Multi2sim. The BCC cache architecture was also implemented in Multi2Sim. All of the

simulation tools (Multi2Sim, McPAT, PARSEC) were compiled for a modern Linux operation

47

system, Red Hat Enterprise Linux, for the 64-bit little endian architecture. While this computer

was used for testing and troubleshooting, it is not powerful enough for the numerous simulations

needed. Therefore, a cluster computer system was employed.

5.10 HiPAC

 The High Performance Pan American Cluster (HiPAC) is PC cluster of 860 cores and

48GB RAM [32]. It is used for high performance paralleling-computing and large-scale

numerical simulations. HiPAC uses Sun Grid Engine on top of Red Hat Enterprise Linux to

schedule jobs on the cluster. Several programs are installed in HiPAC such as OpenMPI, Jaguar,

MPPCrystal, and NAMD.

 The main criterion for using HiPAC is for large-scale numeral simulations. This cluster

was used for both the simgle core and multicore simulations. Each benchmark in SPEC2006 and

PARSEC can run for several minutes to several days. Additionally, each benchmark has multiple

configurations to be executed. Altogether, the simulations can easily required 70 cores of

computing power.

5.11 Simulation Model for Multicore

 Figure 5.2 shows the simulation model used for this experiment. PARSEC binaries were

provided with Multi2Sim. Modifications were not necessary. However, source files for PARSEC

are available for modification. The following source files from Multi2Sim were modified in

order to implement BCC cache:

a) Cache.c and Cache.h

b) Config.c

c) Module.c and Module.h

48

d) Nmoesi-protocol.c

The following input files were modified in order for have the proper configuration for BCC

cache.

a) Mem-config (provides memory system configuration)

b) x86-config (provides processor configuration – cores and threads)

The following is an example command to run a simulation using Multi2Sim:

m2s --x86-sim detailed ./povray_base.i386 SPEC-benchmark-test.ini --mem-config mem-

config1 --mem-report mem-report1 --x86-config x86-config1 --x86-report x86-report1 2>

out1.txt

49

Figure 5.2: Multi2Sim Simulation Model

50

5.12 Simulation Parameters

 The goal of multicore simulation is to determine which cache distribution design is

optimum for BCC cache. For multicore, power and performance scales depending on how many

cores are used. This is expected because of the nature of BCC cache, it is a direct replacement for

conventional cache. The biggest factor in affecting performance in multicore is the cache

distribution design. If a cache is replicated and/or shared among different processor resources, it

affects its performance [33]. Figure 5.3 shows the different cache distribution designs to be

compared. There are numerous ways that caches can be shared among different processor cores

and threads. In Figure 5.3b, a t indicates that L1 is private per thread and c indicates the L2 is

private per core. In Figure 5.3c, an s indicates that L2 is shared among the whole system. In

Config. 1, the cores share only the main memory. Each thread has its own L1 and L2 cache. In

Config. 2, each thread has its own L1 cache but shares a L2 cache. In Config. 3, each thread has

its own L1 cache, but the cores share a L2 cache and main memory. In Config. 4, within a core,

the threads share L1 and L2 caches. But the cores share main memory. In Config. 5, two threads

share L1 caches, but the cores share L2 and main memory. Finally, in Config. 6, all cores and

threads share L1 and L2 caches as well as main memory.

 Table 5.9 provides the processor and cache parameters used in the Multi2Sim simulations.

Based on the simulations from Simplescalar, these parameters were selected as an optimum

middle ground for BCC cache multicore simulations. The rest were left as defaults.

51

Figure 5.3: Multicore Cache Configuration Designs

52

Cores 2

Threads 2

Cache Size 64 KB

Associativity 16-way

Buffer Size 128 B

Table 5.9: Cache Parameters for Multicore Simulations

53

CHAPTER VI

EVALUATION

6.1 Benchmarks

The experiment was conducted using eight benchmarks from SPEC2000. Four Integer

benchmarks are: vpr, parser, twolf, and gcc. The other four Floating Point benchmarks are:

wupwise, equake, swim, and applu. Figure 6.1 shows the energy consumption improvement of

the BCC architecture as compared to the way-prediction architecture. Most benchmarks have an

improvement of greater than 25%. Two benchmarks, wupwise and swim, only have minimal

improvements. An increase in access-time is expected and is shown in Figure 6.2. Generally, the

increase in access-time is the same for both instruction and data cache.

The EDP shows the effect of the access-time delay in relation to the decrease in energy

consumption. Figure 6.3 shows the EDP results. It can be seen that despite the latency increase,

the EDP still shows a significant improvement with most of the benchmarks. In the “wupwise”

and partially in the “swim”benchmark, the increase in access-time delay negated any energy

consumption improvements. The degree of improvement between instruction and data cache is

highly dependent on the benchmark program. From these results, it can be concluded that BCC

produces an EDP improvement of up to 37% in the instruction cache for most benchmarks and

up to 42% in the data cache for most benchmarks, as compared to the common WP cache.

54

Figure 6.1: Energy Charts for VPR Benchmark

Figure 6.2: Access-Time Charts for VPR Benchmark

55

Figure 6.3: Energy-Delay Product Charts for VPR Benchmark

56

Figure 6.4: Percentage Improvement Charts for VPR Benchmark

6.2 General Pattern

The charts shown in Figures 6.1 to 6.4 reveal the full effect of varying cache sizes on the

different architectures. From Figure 6.3 it can be seen that as the associativity increases, the

energy consumed also increases, almost exponentially. For the VPR benchmark, more time and

energy are spent evaluating instructions than data, as can be seen on the charts. It can also be

seen that the energy required is greatly reduced depending on associativity. In terms of energy,

the balance for most applications can be seen using 16-Way or 32-Way and using a cache size of

32KB to 128KB. As expected, a slight increase in access-time for the BCC design is seen in

Figure 6.2. This is almost always the case because of the addition of a buffer. Also notice that

there is no entry for 64-Way in the 16KB simulation. For a cache size this small, the parameters

were outside the valid range of the simulators.

57

 As can be seen from Figure 6.4, the percentage improvement goes up as associativity

increases for a given cache size. However, for a given associativity, the percentage improvement

decreases as the cache size increases. It can be seen that in the 4-Way simulations, a decline is

seen for the larger cache sizes. A small associativity, such as 4-Way, in a large cache size can be

inefficient at handling the larger amounts of data. Hence, a decrease in performance is seen. This

explains the general trend of the results. However, not all benchmarks will behave in this manner.

Some will be worst and some will be better. The following section will explain.

6.3 Improvement

Figures 6.5 to 6.17 show the EDP and percentage improvement charts for the rest of the

benchmarks. A general improvement is seen on most benchmarks, especially in DL1. The degree

of improvement is highly dependent on cache size and associativity. It can be seen that BCC

works better on DL1. This is because data tends to be more re-used, a benefit of using MRU on

the buffer. It‟s possible to use a different replacement policy on the IL1 buffer; however, this will

increase the complexity of BCC cache. Note that when instruction and/or data tend towards LRU,

BCC becomes less effective, as seen in these benchmarks: gzip, wupwise, and mcf. This explains

the poor and sometimes negative results, especially in IL1.

6.4 Prediction Hit-Rate

Figure 6.18 to 6.30 shows the prediction hit-rate of BCC cache. BCC cache has an equal

or better hit-rate the WP. The only exception is DL1 of the parser benchmark as shown in Figure

6.22. A better hit-rate expected as the WP scheme is built into BCC cache. BCC compensates for

the weakness of WP by using Phased Cache. This results in an equal or better hit-rate the WP

alone.

58

6.5 Cache Ratio

Figure 6.31 to 6.43 shows the cache ratio for BCC cache. These figures show the ratio of

WP to Phased mode usage. The figures show that WP mode is mostly used. This is no surprise as

the results correspond with the results of prediction hit-rate. A correct prediction will use the WP

mode.

59

Figure 6.5: Results for GZIP Benchmark

60

Figure 6.6: Results for VPR Benchmark

61

Figure 6.7: Results for GCC Benchmark

62

Figure 6.8: Results for MCF Benchmark

63

Figure 6.9: Results for PARSER Benchmark

64

Figure 6.10: Results for BZIP2 Benchmark

65

Figure 6.11: Results for TWOLF Benchmark

66

Figure 6.12: Results for WUPWISE Benchmark

67

Figure 6.13: Results for SWIM Benchmark

68

Figure 6.14: Results for MGRID Benchmark

69

Figure 6.15: Results for APPLU Benchmark

70

Figure 6.16: Results for MESA Benchmark

71

Figure 6.17: Results for EQUAKE Benchmark

72

Figure 6.18: Prediction Hit-Rate for GZIP Benchmark

Figure 6.19: Prediction Hit-Rate for VPR Benchmark

Figure 6.20: Prediction Hit-Rate for GCC Benchmark

73

Figure 6.21: Prediction Hit-Rate for MCF Benchmark

Figure 6.22: Prediction Hit-Rate for PARSER Benchmark

Figure 6.23: Prediction Hit-Rate for BZIP2 Benchmark

74

Figure 6.24: Prediction Hit-Rate for TWOLF Benchmark

Figure 6.25: Prediction Hit-Rate for WUPWISE Benchmark

Figure 6.26: Prediction Hit-Rate for SWIM Benchmark

75

Figure 6.27: Prediction Hit-Rate for MGRID Benchmark

Figure 6.28: Prediction Hit-Rate for APPLU Benchmark

Figure 6.29: Prediction Hit-Rate for MESA Benchmark

76

Figure 6.30: Prediction Hit-Rate for EQUAKE Benchmark

77

Figure 6.31: Cache Ratio for GZIP Benchmark

Figure 6.32: Cache Ratio for VPR Benchmark

78

Figure 6.33: Cache Ratio for GCC Benchmark

Figure 6.34: Cache Ratio for MCF Benchmark

79

Figure 6.35: Cache Ratio for PARSER Benchmark

Figure 6.36: Cache Ratio for BZIP2 Benchmark

80

Figure 6.37: Cache Ratio for TWOLF Benchmark

Figure 6.38: Cache Ratio for WUPWISE Benchmark

81

Figure 6.39: Cache Ratio for SWIM Benchmark

Figure 6.40: Cache Ratio for MGRID Benchmark

82

Figure 6.41: Cache Ratio for APPLU Benchmark

Figure 6.42: Cache Ratio for MESA Benchmark

83

Figure 6.43: Cache Ratio for EQUAKE Benchmark

6.6 Multicore Simulation Results

 Fig. 6.44 shows the power consumption of way-prediction cache using single core and

various multicore cache configurations. A downward progression in power consumption from

Config 1 to Config 6 is expected. The change is due to the greater number of cache components

used in the first few configurations.

 Fig. 6.45 shows the power consumption of BCC cache. A significant reduction in power

can be seen depending on the benchmark and configuration. The addition of a buffer adds a

small amount of delay and power consumption. However, this negated by the significant savings

in speed and power consumption in bypassing certain tag and data accesses to the cache. Fig.

6.46 summaries the results for power consumption reduction for BCC cache over the way-

prediction cache.

84

 As can be seen, a minimum reduction of 12% in Config 6 and a maximum of 54% in

Config 1. Increased reduction in Config 1 can be seen because of the greater number of cache

components used, therefore providing more opportunities for power savings. Also in Config 1,

not all cores or threads are used 100% of the time.

 Fig. 6.47 shows the total simulation time of BCC cache. This does not take into account

the emulation time, which can be several hours long. Based on the simulation time and power

consumption, it is recommended to use Config 1, Config 2, or Config 3. These configurations

provide a balance of power and speed. Similar configurations are already used in modern mobile

microprocessors.

Figure 6.44: Total Power Consumption of Way-Prediction Cache (Watts)

85

Figure 6.45: Total Power Consumption of BCC Cache (Watts)

Figure 6.46: Power Consumption Reduction (%)

86

Figure 6.47: Total Simulation Times (Seconds)

87

CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Current trends in microprocessor design leads to more performance involving large

caches and more mobile devices. This leads to large consumptions of power. Of course, this is a

big problem in battery-operated mobile devices. Hence, there is a need for a low-power cache

design that does not compromise too much in performance. In this paper, a modified architecture

has been proposed as an improvement to phased and way-prediction caches. It is a dual-mode

architecture that uses MRU tag entries in a buffer to determine the access mode, way-prediction

or phased. By using this scheme, the energy consumption is reduced with minimal access-time

increase. The single-core experimental results show that BCC improves the EDP by 37%-42%

over way-prediction cache.

 The multicore experiment implements BCC cache in each core and compares different

multi-core cache configurations to determine the optimum cache configuration for BCC cache.

The experimental results show that BCC cache reduces power consumption by 12%-54% over

way-prediction cache.

88

7.2 Future Work

SPEC2000 and PARSEC were used in this thesis. Although these benchmarks are

industry standards tools, their biggest disadvantage is the length of time to simulate some of the

benchmarks. The benchmarks can take several hours to several weeks to complete. The use of a

benchmark with shorter simulation times will be useful for this type of research. A few

benchmarks that are freely available are SPLASH2 and MediaBench. Different benchmarks

stress different components of a processor design. This factor must also be taken into

consideration.

 As with any cache design, the replacement policy can greatly affect performance. It

would be interesting to experiment with a more advanced replacement policy than LRU. For

example, a replacement policy at the line level that evicts that line after a certain number of

accesses has the potential to reduce conflict misses. Numerous other replacement policies exist

that will work well with BCC because BCC cache was design to be a direct replacement for the

standard cache.

 In the same vein as the replacement policy, a different cache coherence policy could

greatly affect performance of BCC cache. The design of BCC cache scales very well with

multicore systems. Therefore, any cache coherence policy should work BCC cache.

89

REFERENCES

[1] Montanaro, J., Witek, R.T., Anne, K., Black, A.J., Cooper, E.M., Dobberpuhl, D.W.,

 Donahue, P.M., Eno, J., Hoeppner, W., Kruckemyer, D., Lee, T.H., Lin, P.C.M., Madden,

 L., Murray, D., Pearce, M.H., Santhanam, S., Snyder, K.J., Stehpany, R., Thierauf, S.C.,

 “A160- MHz,32-b,0.5-WCMOSRISCMicroprocessor,” IEEE Journal of Solid-

 State Circuits,Vol.31,Issue11,pp1703-1714,Nov.1996.

[2] Flynn, M.J., Hung, P., “Microprocessor design issues: Thoughts on the road ahead,” IEEE

 Micro,Vol.25,Issue3,pp16-31,May2005.

[3] “Cortex-A9TechnicalReferenceManual.” Internet:

 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388g/index.html,

 [Jun.30,2011]

[4] Q. Wang, Y. Tang, Z. Li, J. Wang, "Design and implementation of the multicore

 architecture teaching experiment platform," in Advanced Computational Intelligence

 (ICACI), 2012 IEEE Fifth International Conference on, 18-20 Oct. 2012, pp. 72- 78.

[5]A. D. Joshi, N. Ramasubramanian, "Comparison of significant issues in multicore cache

coherence," in Green Computing and Internet of Things (ICGCIoT), 2015 International

Conference on, 8-10 Oct. 2015, pp. 108-112.

[6] Shen, J.P., Lipasti, M.H., “Modern Processor Design: Fundamentals of Superscalar

Processors,” TatBCCGraw-Hill,pp110,2005.

[7] Powell, M.D., Agarwal, A., Vijaykumar, T.N., Falsafi, B., Roy, K., “Reducing set-associative

cache energy via way-prediction and selective direct-mapping,” 34th ACM/IEEE

International Symposium on Microarchitecture, pp54-64, Dec .2001.

[8] Hasegawa, A. et al., “SH3: High Code Density, Low Power,” IEEE Micro, Vol. 15, No. 6,

Dec. 1995, pp11-19.

[9] Inoue, K., Ishihara, T., Murakami, K., “Way-predicting set-associative cache for high

performance and low energy consumption,” Proc. Of International Symposium on Low

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388g/index.html

90

power electronics and design, pp273-275, 1999.

[10] Chung, E.Y., Kim, C.H., Chung, S.W., “An Accurate and Energy-Efficient Way

Determination Technique for Instruction Caches by Early Tab Matching,”4th IEEE

International Symposium on Electronic Design, Test and Applications, pp190, Jan. 2008.

[11] Raveendran, B.K., Sudarshan, T.S.B., Patil, A., Randive, K., Gurunarayanan, S., “Predictive

Placement Scheme In Set-Associative Cache For Energy Efficient Embedded Systems,”

International Conference on Signal Processing, Communications and Networking, pp152,

Jan. 2008.

[12] Chang, Y.J., Ruan, S.J., Lai, F., “Design and analysis of low-power cache using two-level

filter scheme,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.

11, Is. 4, pp568-580, Aug. 2003.

[13] Liu, H., Ferdman, M., Huh, J., Burger, D., “Cache bursts: A new approach for eliminating

dead blocks and increasing cache efficiency,” 41st IEEE/ACM International Symposium

on Microarchitecture, pp222-233, Nov. 2008.

[14] Tseng, C.Y., Chen, H.C., “The Design of Way-Prediction Scheme in Set-Associative Cache

for Energy Efficient Embedded System,” WRI International Conference on

Communications and Mobile Computing, Vol. 3, 2009.

[15] Zhang, C., Wang, X., Bu, C., Wang, L., Ji, H., Xia, T., “Dynamic time tuning for way

prediction cache in low power embedded processors,” IEEE/AIAA 28th Digital Avionics

Systems Conference, 7.E.1-1, Oct. 2009.

[16] Nicolaescu, D., Veidenbaum, A., Nicolau, A., “Reducing power consumption for high-

associativity data caches in embedded processors,” Design, Automation and Test in

Europe Conference and Exhibition, pp1064-1068, 2003.

[17] Inoue, K., Tanaka, H., “Adaptive Mode Control for Low-Power Caches Based on Way-

Prediction Accuracy,” IEICE Trans. Fundamentals. Vol.E88, pp3274-3281, Dec. 2005.

[18] Xu, C., Zhang, G., Hao, S., “Fast Way-Prediction Instruction Cache for Energy Efficiency

and High Performance,” International Conference on Networking, Architecture, and

Storage. pp235-238, July 2009.

[19] Kim, S., Jo, E., Kim, H., “Low Power Branch Predictor for Embedded Processors,” IEEE

10th International Conference on Computer and Information Technology, pp107-114,

June 2010.

[20]H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger, “Executable Dark

Silicon Performance Model”: http://research.cs.wisc.edu/vertical/DarkSilicon, last access

Dec. 3, 2015.

91

[21]http://www.arm.com/products/processors/technologies/biglittleprocessing.php

[22]C. Märtin, "Multicore Processors: Challenges, Opportunities, Emerging Trends," in

Proceedings Embedded World Conference 2014, 25-27 February 2014.

 [23]http://www.intel.com

[24]C. Stoif, M. Schoeberl, B. Liccardi, J. Haase, "Hardware synchronization for embedded

multi-core processors," in Circuits and Systems (ISCAS), 2011 IEEE International

Symposium on , 15-18 May 2011, pp. 2557-2560.

[25] Zhu, Z., Zhang, X., “Access-mode predictions for low-power cache design,” Micro, IEEE,

pp58-71, March 2002.

[26] “SimpleScalar v3.0d.” Internet: http://www.simplescalar.com/, [Mar. 3, 2010].

[27] “Cacti v6.5.” Internet: http://www.hpl.hp.com/research/cacti/, [Jun. 9, 2010].

[28] “SPEC2000 v1.3.” Internet: http://www.spec.org/cpu2000/, [May 15, 2010].

[29] R. Ubal, B. Jang, P. Mistry, D. Schaa, D. Kaeli, "Multi2Sim: A Simulation Framework for

CPU-GPU Computing," in Proc. of the 21st International Conference on Parallel

Architectures and Compilation Techniques, Sep. 2012.

[30] Sheng Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, N. P. Jouppi, "McPAT:

An integrated power, area, and timing modeling framework for multicore and manycore

architectures," in Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM

International Symposium on , vol., no., 12-16 Dec. 2009, pp.469-480.

[31] C. Bienia, "Benchmarking Modern Multiprocessors", Princeton University, Jan. 2011.

[32] "HiPAC." Internet: http://portal.utpa.edu/utpa_main/daa_home/cosm_home/hipac_home

[Sep. 30, 2010].

[33] Ubal, R., Jang, B., Mistry, P., Schaa, D., & Kaeli, D., “Multi2Sim: a simulation framework

for CPU-GPU computing,” In Proceedings of the 21st international conference on

Parallel architectures and compilation techniques. pp335-344. ACM. Sep. 2012.

http://www.simplescalar.com/
http://www.hpl.hp.com/research/cacti/
http://www.spec.org/cpu2000/

92

APPENDIX A

File: cache.c (portion)

/** MRU Buffer Create **/

struct cache_t *buffer_create(char *name, unsigned int num_sets, unsigned int block_size,

 unsigned int assoc, enum cache_policy_t policy)

{

 struct cache_t *mbuf;

 struct cache_block_t *bblock;

 unsigned int set;

 /** Initialize **/

 mbuf = xcalloc(1, sizeof(struct cache_t));

 mbuf->name = xstrdup(name);

 mbuf->num_sets = num_sets;

 mbuf->block_size = block_size;

 //mbuf->assoc = assoc;

 //mbuf->policy = policy;

 /** Derived fields **/

 assert(!(num_sets & (num_sets - 1)));

 assert(!(block_size & (block_size - 1)));

 //assert(!(assoc & (assoc - 1)));

 mbuf->log_block_size = log_base2(block_size);

 mbuf->block_mask = block_size - 1;

 /** Initialize array of sets **/

 mbuf->sets = xcalloc(num_sets, sizeof(struct cache_set_t));

93

 for (set = 0; set < num_sets; set++)

 {

 /** Initialize array of blocks **/

 mbuf->sets[set].blocks = xcalloc(assoc, sizeof(struct cache_block_t));

 //mbuf->sets[set].way_head = &cache->sets[set].blocks[0];

 //mbuf->sets[set].way_tail = &cache->sets[set].blocks[assoc - 1];

 /** Initialize pointer to block within a set **/

 bblock = &mbuf->sets[set].blocks[0];

 //block->way = way;

 //block->way_prev = way ? &cache->sets[set].blocks[way - 1] : NULL;

 //block->way_next = way < assoc - 1 ? &cache->sets[set].blocks[way + 1] :

NULL;

 }

 /* Return it */

 return mbuf;

}

/** MRU Buffer Free **/

void buffer_free(struct cache_t *mbuf)

{

 unsigned int set;

 for (set = 0; set < mbuf->num_sets; set++)

 free(mbuf->sets[set].blocks);

 free(mbuf->sets);

 free(mbuf->name);

 if (mbuf->prefetcher)

94

 prefetcher_free(mbuf->prefetcher);

 free(mbuf);

}

File: module.c (portion)

 /** Added structure for MRU buffer **/

 struct cache_t *mbuf = mod->mbuf;

 struct cache_t *cache = mod->cache;

 struct cache_block_t *blk;

 struct dir_lock_t *dir_lock;

 int set;

 int way;

 int tag;

 /** Check MRU buffer first **/

 if (mbuf->sets[set].blocks[0].tag == tag && mbuf->sets[set].blocks[0].state)

 goto block_found;

 else

 for (way = 0; way < cache->assoc; way++)

 {

 blk = &cache->sets[set].blocks[way];

 if (blk->tag == tag && blk->state)

 break;

 if (blk->transient_tag == tag)

 {

 dir_lock = dir_lock_get(mod->dir, set, way);

 if (dir_lock->lock)

95

 break;

 }

 }

 PTR_ASSIGN(set_ptr, set);

 PTR_ASSIGN(tag_ptr, tag);

96

BIOGRAPHICAL SKETCH

Marven Calagos is a Computer Engineering graduate of Walla Walla University, located

in Walla Walla, Washington. He graduated in 2006 with a major in Computer Engineering and a

minor in Math. Marven earned his Master‟s in Electrical Engineering under the supervision of

Prof. Yul Chu in Low-Power Processor Design, University of Texas Rio Grande Valley. Marven

has published three papers based on his thesis work. His research interests include Embedded

Systems, Processor Design, and Wireless Systems. Marven‟s permanent address is at 8834 Snow

Goose, San Antonio, TX 78245.

	Buffer Controlled Cache for Low Power Multicore Processors
	Recommended Citation

	tmp.1680182935.pdf.CXnST

