Number of bounded distance equivalence classes in hulls of repetitive Delone sets

Dirk Frettlöh
Alexey Garber
Lorenzo Sadun

Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac

Part of the Mathematics Commons

Recommended Citation

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Mathematical and Statistical Sciences Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.
NUMBER OF BOUNDED DISTANCE EQUIVALENCE CLASSES IN HULLS OF REPETITIVE DELONE SETS

DIRK FRETTLÖH, ALEXEY GARBER, AND LORENZO SADUN

Abstract. Two Delone sets are bounded distance equivalent to each other if there is a bijection between them such that the distance of corresponding points is uniformly bounded. Bounded distance equivalence is an equivalence relation. We show that the hull of a repetitive Delone set with finite local complexity has either one equivalence class or uncountably many.

1. Introduction

Delone sets are central objects of study in the theory of aperiodic order and give rise to dynamical systems and topological objects with interesting properties [2]. A Delone set $\Lambda \subset \mathbb{R}^d$ is a set that is both uniformly discrete (that is, there is $r > 0$ such that each open ball of radius r contains at most one point of Λ) and relatively dense (that is, there is $R > 0$ such that each closed ball of radius R contains at least one point of Λ). A point lattice is the \mathbb{Z}-span $\langle v_1, \ldots, v_d \rangle_\mathbb{Z}$ of d linear independent vectors in \mathbb{R}^d. Each point lattice is a Delone set. A Delone set Λ in \mathbb{R}^d is d-periodic if the set

$$P_\Lambda = \{ t \in \mathbb{R}^d \mid t + \Lambda = \Lambda \}$$

of its period vectors is a point lattice. Of course for every point lattice Λ we have $\Lambda = P_\Lambda$, hence each point lattice is d-periodic. A Delone set Λ is nonperiodic if $P_\Lambda = \{0\}$.

Two Delone sets Λ, Λ' in \mathbb{R}^d are called bounded distance equivalent ($\Lambda \overset{\text{bd}}{\sim} \Lambda'$) or bde, if there is a bijection $\varphi: \Lambda \to \Lambda'$ such that $|x - \varphi(x)|$ is uniformly bounded. It is easy to see that $\overset{\text{bd}}{\sim}$ is an equivalence relation for Delone sets.

In the 1990s several authors studied the question of whether a given Delone set in \mathbb{R}^d is bounded distant equivalent to a point lattice [3, 6, 15]. In [3] it was shown that any two point lattices in \mathbb{R}^d with the same density are bde. It is a simple consequence that any two d-periodic Delone sets in \mathbb{R}^d with the same density are bde. This leads to considering aperiodic Delone sets, for instance the vertices of a Penrose tiling. There are two well studied classes of aperiodic Delone sets: cut-and-project sets and Delone sets arising from substitution tilings. For details and a precise definition of an aperiodic Delone set, see [2]. Recently, the question of whether an aperiodic Delone set is bde to a point lattice has gained some interest. For the bd-equivalence of cut-and-project sets to a point lattice see

Date: January 8, 2021.
The bd-equivalence of Delone sets from substitution tilings to a point lattice was studied in [15, 9, 22, 10]. Since the bd-equivalence of Delone sets to a point lattice is well understood, the focus now turns to the question of when two Delone sets are bde.

This is where hulls of nonperiodic Delone sets come into play. In the theory of aperiodic order the hull X_Λ of a given Delone set Λ is a central object of interest. The hull of Λ is usually defined as the closure of the orbit of Λ under translations in the topology defined by the “big box” metric. Specifically, the distance between two (r, R)-Delone sets Λ and Λ' is the infimum over all $\varepsilon \in (0, 1)$ such that there exist $x, x' \in \mathbb{R}^d$, each of size $\varepsilon/2$ or less, such that $\Lambda - x$ and $\Lambda' - x'$ agree exactly on $B_{1/\varepsilon}$. If no such ε exists, then $d(\Lambda, \Lambda') = 1$.

The hull may be studied as a topological object [1, 16, 20], or as a dynamical system $(X_\Lambda, \mathbb{R}^d)$ [2], where \mathbb{R}^d stands for the action of translations by $x \in \mathbb{R}^d$.

This raises the question “How many bde classes does X_Λ contain?”. A partial answer was given in [23]: If Λ comes from a substitution tiling meeting some technical conditions, then X_Λ consists of uncountably many bde classes. Here we provide a generalization that covers all Delone sets that are repetitive and have finite local complexity (see definitions below). This category includes practically all of the substitution tilings and cut-and-project sets that have been studied to date.

Two geometric properties of the Delone set Λ are closely associated with dynamical properties of $(X_\Lambda, \mathbb{R}^d)$. A patch in a Delone set Λ is a set $\Lambda \cap K$ for some compact $K \subset \mathbb{R}^d$. A Delone set Λ has finite local complexity (FLC) if for any compact set $K \subset \mathbb{R}^d$ there are only finitely many different patches $(\Lambda - x) \cap K$ ($x \in \mathbb{R}^d$), up to translation. A Delone set Λ is called repetitive if for each compact set $K \subset \mathbb{R}^d$ such that $K \cap \Lambda$ is non-empty, the set

$$\{x \in \mathbb{R}^d \mid (\Lambda - x) \cap K = \Lambda \cap K\}$$

is a Delone set. The uniform density radius R of this Delone set is the repetitivity radius of the patch $\Lambda \cap K$. The following fact is the essence of the work of several authors, see [2, 20] for details.

Fact 1. Let $\Lambda \subset \mathbb{R}^d$ be a Delone set. Then X_Λ is compact if and only if Λ has FLC. If Λ has FLC, then the dynamical system $(X_\Lambda, \mathbb{R}^d)$ is minimal (that is, each orbit is dense) if and only if Λ is repetitive.

Now we can state our main result.

Theorem 1.1. Let Λ be a repetitive Delone set in \mathbb{R}^d having FLC and such that the density of Λ exists. Let X_Λ be the hull of Λ. Then X_Λ either consists of a single bde class or X_Λ contains uncountably many bde classes.

In fact we show that the number of bde classes is either 1 or 2^{\aleph_0}, where \aleph_0 is the cardinality of \mathbb{Z}. It is clear that the number of bde classes can’t be larger than 2^{\aleph_0} [11, 21].

1 Some authors work with a different topology, called the “local rubber” topology. When the Delone set has finite local complexity, defined below, then the two topologies agree.
During the completion of this paper, Smilanski and Solomon released a preprint [21] in which a nearly identical result is proven using the language of dynamical systems. Their theorem does not require FLC and considers the orbit closure of Λ in the local rubber topology. They replace our assumption of repetitivity with one of minimality. They also do not require that the density of Λ exists. The cost of that generalization is complexity. Our proof is shorter and simpler than theirs.

An interesting consequence of both results is the following: In [9] it was shown that a certain one-dimensional collection of Delone sets, namely, the set of cut-and-project sets using half of the window of the famous Fibonacci tiling [2], has at least two different bde classes. Theorem 1.1 then yields the following result.

Corollary 1.2. The hull \mathbb{X}_{HF} of the 'Half-Fibonacci' cut-and-project tiling contains uncountably many bde classes.

2. Auxiliary results

Let us fix some more notation. In the sequel, let $\#M$ denote the cardinality of a (typically finite) set M. We denote the Euclidean norm of $x \in \mathbb{R}^d$ by $\|x\|$. The closed ball of radius r about x is denoted by $B_r(x)$. The d-dimensional Lebesgue measure of a set $A \subset \mathbb{R}^d$ is denoted by $\mu(A)$ and all sets in the paper are compact and measurable unless noted otherwise. Let $A^{+\varepsilon}$ denote the ε-tube of the boundary of A. That is,

$$A^{+\varepsilon} = \{ x \in \mathbb{R}^d \mid d_2(x, \partial A) \leq \varepsilon \},$$

where ∂A is the topological boundary of A and d_2 is the standard Euclidean distance in \mathbb{R}^d. Hence $\mu(A^{+1})$ is the Lebesgue measure of the set of all points whose distance to the boundary of A is one or less.

Any d-periodic Delone set has a well defined density, in the sense of “average number of points per unit volume”. The same holds for cut-and-project sets and for Delone sets from primitive substitutions. In general, the definition of the density of a Delone set can be tricky. It is easy to construct Delone sets having no well defined density (for instance $-\mathbb{N} \cup 2\mathbb{N}$ in \mathbb{R}). There are even repetitive Delone sets without density, see [18, Thm. 5.1], or [8] for a simpler example.

In order to define the density of an arbitrary Delone sets we need van Hove sequences. A van Hove sequence is a sequence $(A_i)_i$ of compact subsets of \mathbb{R}^d such that for all $\varepsilon > 0$

$$\lim_{i \to \infty} \frac{\mu(A_i^{+\varepsilon})}{\mu(A_i)} = 0. \tag{1}$$

A Delone Λ set has density $\text{dens}(\Lambda)$ if for all van Hove sequences $(A_i)_i$ the limits

$$\lim_{i \to \infty} \frac{\#(A_i \cap \Lambda)}{\mu(A_i)}$$

exist and are identical. In that case $\text{dens}(\Lambda)$ is the value of these limits. An important tool in this context is the following result.
Theorem 2.1 ([17]). Let \(\Lambda \) be a Delone set in \(\mathbb{R}^d \) with density \(\text{dens}(\Lambda) \). \(\Lambda \) is bde to some lattice in \(\mathbb{R}^d \) if and only if there is \(c > 0 \) such that, for all bounded measurable sets \(E \subset \mathbb{R}^d \),
\[
\bigl| \#(\Lambda \cap E) - \text{dens}(\Lambda) \mu(E) \bigr| \leq c \mu(E^+) \tag{17}\]

The proof of this result relies on the infinite version of the Hall Marriage Theorem [19]. The same arguments can be used not only to compare a Delone set \(\Lambda \) with \(\alpha \mathbb{Z}^d \), but to compare two arbitrary Delone sets \(\Lambda, \Lambda' \) as well.

Theorem 2.2 ([10]). Let \(\Lambda, \Lambda' \) be two Delone sets in \(\mathbb{R}^d \). Suppose there is a van Hove sequence \((A_i) \) such that
\[
\lim_{n \to \infty} \frac{|\#(\Lambda \cap A_i) - \#(\Lambda' \cap A_i)|}{\mu(A_i^+)} = \infty, \tag{2}\]
then \(\Lambda \not\sim \Lambda' \).

In [10], the result above was formulated using sets \(A_i \) that are unions of lattice cubes of appropriate size, the size depending on the uniform density radius \(r \) of the Delone sets. Since we deal with Delone sets we can “approximate” any van Hove sequence \((A_i) \) by an appropriate union of lattice cubes that are small enough that each cube contains either one or zero points of \(\Lambda \). For more details see [11] or [10].

Example 2.3. As a test case for what follows we consider the set \(L = \mathbb{Z} \cup \{ 1/2 + 2^n \mid n \in \mathbb{N}_0 \} \) and compare \(L \) to the integers \(\mathbb{Z} \). Both have density 1, but \(\mathbb{Z} \not\sim L \). This can be seen by using Theorem 2.1 above, and observing for each \(k > 0 \) there are intervals \(Q_i := [0, 2^i + 1] \) such that
\[
\#(Q_i \cap \Lambda) - \#(Q_i \cap \mathbb{Z}) > i. \]

Note that \(L \) contains “rich” regions (i.e. regions where the number of points is larger than the expected number of points according to the density), but no “poor” regions.

3. Proof of Theorem 1.1

Note the difference between a patch \(E \cap \Lambda \), which is a finite collection of points, and its support \(E \). Also note that we have two different ways to move patches around: either by translating both its support and \(\Lambda \) to get \((E \cap \Lambda) - x = (E - x) \cap (\Lambda - x)\), or by translating just the support to get \((E - x) \cap \Lambda \). Both ways yield patches occurring in some \(\Lambda' \in \mathcal{X}_{\Lambda} \) and we will use both.

The strategy of the proof of Theorem 1.1 is as follows. If \(\Lambda \) is not bde to a lattice, then there exist large regions that are “deviant” (meaning either very rich or very poor in points of \(\Lambda \) compared to the expected number of points according to the density of \(\Lambda \)) and translates of those regions that are either “normal” (neither rich nor poor) or have a discrepancy of the opposite sign of the original region; we will refer to the latter sets as “normal” anyway. We will recursively define larger and larger regions \(P_i \) around the origin and find elements of \(\mathcal{X}_{\Lambda} \) for which the regions \(P_i \) are either deviant or normal. In fact, for
each infinite word in \(\{D, N\}^\mathbb{N} \) we will construct an element of \(X_\Lambda \) where the form of each \(P_i \) corresponds to the \(i \)-th letter in the word. Any two such elements of \(X_\Lambda \) with words \(u, u' \) that differ in infinitely many letters are not bde to each other by Theorem \[2.2\]. Since there are uncountably many sequences in \(\{D, N\}^\mathbb{N} \), and since each tail-equivalence class is countable, there are uncountably many elements of \(X_\Lambda \), no two of which are bde.

We construct deviant and normal patches \(D'_i \) and \(N'_i \) around the origin recursively. Let \(\rho \) be the density of \(\Lambda \) and suppose that \(D'_{i-1} \) and \(N'_{i-1} \) have already been constructed. Since \(\Lambda \) is not bde to a lattice, there exist a region \(D'_i \) such that the ratio

\[
\frac{|(\Lambda \cap D'_i) - \rho \mu(D'_i)|}{\mu(D'_i)}
\]

is arbitrarily large. In other words, for which \(D'_i \) is deviant. There is also a “normal” translate \(N'_i \) of \(D'_i \) for which the discrepancy \(#(N'_i \cap \Lambda) - \rho \mu(N'_i) \) has the opposite sign as the discrepancy of \(D'_i \). Without loss of generality, we can choose \(D'_i \) so large that there are copies of \(D'_{i-1} \) and \(N'_{i-1} \) near the center of \(D'_i \), and likewise near the center of \(N'_i \). Note that the construction so far only involves looking for regions in the fixed Delone set \(\Lambda \).

Next we construct Delone sets in \(\mathbb{R}^d \) corresponding to each infinite word in \(\{D, N\}^\mathbb{N} \). Let \(u \) be such a word. Place a copy of \(D'_1 \) or \(N'_1 \), centered at the origin, according to whether the first letter of \(u \) is \(D \) or \(N \). Call this copy \(D_1 \) or \(N_1 \), and let \(P_1 = D_1 \) or \(N_1 \).

Since both \(D'_2 \) and \(N'_2 \) contain copies of both \(D'_1 \) and \(N'_1 \) near their centers, we can extend \(P_1 \) to a copy \(D_2 \) or \(N_2 \) of \(D'_2 \) or \(N'_2 \), according to whether the second letter of \(u \) is \(D \) or \(N \), and we can call this copy \(P_2 \). Repeat for each index \(i \in \mathbb{N} \). Note that each \(P_i \) is a patch \(N_i - x_i \) or \(D_i - x_i \) in \(\Lambda - x \). The union of the \(P_i \)'s is a Delone set \(\Lambda_u \in \mathbb{R}^d \). Specifically,

\[
\Lambda_u = \bigcup_i P_i = \lim_{i \to \infty} (\Lambda - x_i).
\]

The tricky point is that, if \(u \neq u' \), then the \(i \)-th patch \(P_i \) of \(\Lambda_u \) is not perfectly aligned with the \(P_i \) of \(\Lambda_{u'} \), so we cannot directly compare the two \(P_i \)'s in Theorem \[2.2\]. Instead, we must compare patches defined by small translates (within \(\Lambda_u \)) of supports of deviant patches \(D_i \) in \(\Lambda_u \) to normal patches \(N_i \) in \(\Lambda_{u'} \), or vice-versa. The remainder of the proof is a series of estimates to show that suitable \(D'_i \)'s and \(N'_i \)'s exist, such that these small translates are still sufficiently deviant to apply Theorem \[2.2\].

The following result is standard, but for completeness we provide a sketch of the proof.

Lemma 3.1. Let \(\Lambda \) be a Delone set in \(\mathbb{R}^d \) with density \(\rho \) and let \(E \) be a bounded measurable set. Then there exist vectors \(x_1, x_2 \in \mathbb{R}^d \) such that

\[
#((E + x_1) \cap \Lambda) \leq \rho \mu(E) \quad \text{and} \quad #((E + x_2) \cap \Lambda) \geq \rho \mu(E).
\]

Sketch of proof: If we average \(#((E + x) \cap \Lambda) \) over all values of \(x \) we must get \(\rho \mu(E) \). This means that for every \(\varepsilon > 0 \) there must a point \(x \) for which \(#((E + x) \cap \Lambda) \leq \rho \mu(E) + \varepsilon \). However, \(#((E + x) \cap \Lambda) \) is always an integer, and so for small enough \(\varepsilon \) cannot be strictly
between $q \mu(E)$ and $q \mu(E) + \varepsilon$. Thus there must be an x_1 satisfying the first inequality. The second is similar. □

The following result is then immediate and allows us to construct normal patches N'_i from deviant patches D'_i.

Lemma 3.2. Let $\Lambda \subset \mathbb{R}^d$ be a Delone set with density q such that Λ is not bde to any lattice in \mathbb{R}^d. Let E be a compact subset of \mathbb{R}^d such that $\#(\Lambda \cap E) - q \mu(E) \geq 0$ (resp. ≤ 0). Then there is a translation $E - x$ of E such that $\#(\Lambda \cap (E - x)) - q \mu(E) \leq 0$ (resp. ≥ 0).

We also need the following elementary identity.

Lemma 3.3. Let $r, \ell > 0$, then $(E + \ell) + r \subseteq E + (\ell + r)$.

Proof. Let $z \in (E + \ell) + r$. By definition there are $y \in \partial E$ and y' such that $\|z - y'\| \leq r$ and $\|y' - y\| \leq \ell$, hence $\|z - y\| \leq \|z - y'\| + \|y' - y\| \leq \ell + r$, hence $z \in E + (\ell + r)$. □

We also need some result on estimates on the minimal and the maximal number of points of a Delone set Λ within a region E.

Lemma 3.4. There exist constants η, η' such that for any Delone set Λ with parameters $r > 0$ and $R > 0$ and any bounded region $E \subset \mathbb{R}^d$,

$$
\#(E \cap \Lambda) \geq \frac{\eta}{R^d}(\mu(E) - \mu(E + R)) \quad \text{and} \quad \#(E \cap \Lambda) \leq \frac{\eta'}{r^d}(\mu(E) + \mu(E + r)).
$$

Proof. Consider a periodic packing of \mathbb{R}^d by balls of radius R. (For instance, we could tile \mathbb{R}^d by cubes of side length $2R$ and place one ball in each cube.) Averaging over translates of this packing, the number of balls with center in $E - E + R$ is the packing density (which is a constant η that depends on dimension divided by R^d) times the volume of $E - E + R$. Therefore there exists a specific packing where the number of such balls is at least $\frac{\eta}{R^d}\mu(E - E + R)$, which in turn is at least $\frac{\eta}{R^d}(\mu(E) - \mu(E + R))$. Each of these disjoint balls is contained completely in E, and by the Delone property each contains at least one point of Λ. This establishes the first inequality.

The second inequality is similar, except that we use a covering by balls of radius r (e.g. by starting with a tiling of \mathbb{R}^d by cubes of side length $2r/\sqrt{d}$ and using circumscribed balls) instead of a packing by balls of radius R. Each point in $E \cap \Lambda$ must lie in a ball whose center is either in E or in $E + r$. However, each such ball can contain at most one point in Λ and the number of such balls is bounded by $\frac{\eta'}{r^d}(\mu(E \cup E + r) \leq \frac{\eta'}{r^d}(\mu(E) + \mu(E + r))$. □

Lemma 3.5. For all $\ell \geq 1$, $\mu(E + \ell) \leq \ell^d \mu(E + 1)$.
Lemma 3.6. Let \(\epsilon > 0 \). Let \(x_1, \ldots, x_n \in \partial(\frac{1}{t}E) \) be points such that the set of \(\epsilon \)-balls centered at \(x_i \) covers \(\partial(\frac{1}{t}E) \).

First we prove \(\mu((\frac{1}{t}E)^+)^+ \leq \mu(E^+) \).

Proof. First we prove \(\mu((\frac{1}{t}E)^+)^+ \leq \mu(E^+) \). Let \(x_1, \ldots, x_n \in \partial(\frac{1}{t}E) \) be points such that the set of \(\epsilon \)-balls centered at \(x_i \) covers \(\partial(\frac{1}{t}E) \).

The balls of radii \(1 + \epsilon \) centered at \(x_i \)'s cover \((\frac{1}{t}E)^+ \); let \(X \) be the union of these balls. Similarly, the balls of radii \(1 + \epsilon \) centered at \(\ell x_i \)'s are contained in \(E^{+(1+\epsilon)} \); let \(Y \) be the union of these balls. Using a variant of the Kneser-Poulsen conjecture for continuous contractions, see [3, 4], we get that \(\mu(X) \leq \mu(Y) \) and therefore

\[
\mu((\frac{1}{t}E)^+)^+ \leq \mu(X) \leq \mu(Y) \leq \mu(E^{+(1+\epsilon)}).
\]

Taking the limit as \(\epsilon \) goes to 0, \(\mu((\frac{1}{t}E)^+)^+ \leq \mu(E^+) \).

Now we can prove the lemma. Scaling \(E^{+\ell} \) down by \(\ell^{-1} \) yields \((\frac{1}{t}E)^+ \). Hence

\[
\mu(E^{+\ell}) = \ell^d \mu((\frac{1}{t}E)^+)^+ \leq \ell^d \mu(E^+).
\]

□

The next lemma ensures that, given a patch of \(E \cap \Lambda \), every patch of \(\Lambda \) with translated support \(E - x \) has “approximately” the same number of points, the difference in the number of points being governed by \(\mu(E^+) \) and the length of the shift.

Lemma 3.6. Let \(\Lambda \) be a Delone set with parameters \(r > 0 \) and \(R > 0 \). Let \(\ell \geq r \). Then there is \(q > 0 \) such that for every \(x \in \mathbb{R}^d \) with \(\|x\| \leq \ell \) holds

\[
\left| \#((E + x) \cap \Lambda) - \#(E \cap \Lambda) \right| \leq q \ell^d \mu(E^+).
\]

Here the constant \(q \) depends on the Delone set \(\Lambda \) and the dimension \(d \).

Proof. Let \(\ell \geq r \) and \(\|x\| \leq \ell \).

\[
\left| \#((E + x) \cap \Lambda) - \#(E \cap \Lambda) \right|
\leq \#((E + x) \cap \Lambda) - \#((E + x) \cap \Lambda) + \#((E \cap \Lambda) \cap \Lambda)
\leq \#((E + x) \cap \Lambda) + \#((E \cap \Lambda) \cap \Lambda)
\leq \#((E + x)^{+\ell} \cap \Lambda) + \#(E^{+\ell} \cap \Lambda)
\leq \frac{\eta'}{\ell^d} \left(\mu((E + x)^{+\ell}) + \mu((E + x)^{+(\ell+\epsilon)}) \right) + \frac{\eta'}{\ell^d} \left(\mu(E^{+\ell}) + \mu(E^{+(\ell+\epsilon)}) \right)
\leq 2 \frac{\eta'}{\ell^d} \left(\mu(E^{+\ell}) + \mu(E^{+(\ell+\epsilon)}) \right)
\leq 2 \frac{\eta'}{\ell^d} (\ell^d + (\ell + \ell)^d) \mu(E^+) \leq 2 \frac{\eta'}{\ell^d} (1 + 2^d) \ell^d \mu(E^+).
\]

With \(q = 2 \frac{\eta'}{\ell^d} (1 + 2^d) \) and \(\eta' \) the constant from Lemma 5.31 the claim follows. □
The next lemma is the key to proving Theorem 1.1 and particularly to the construction of “deviant” patches of Λ.

Lemma 3.7. Let $\Lambda \subset \mathbb{R}^d$ be a repetitive Delone set of FLC with $\text{dens}(\Lambda) = \varrho$ such that Λ is not bde to any lattice in \mathbb{R}^d. Let $c > 0$ and $\ell > 0$ be given. Then there exists a bounded measurable set E such that for all $x \in \mathbb{R}^d$ with $\|x\| \leq \ell$ holds:

$$|\#((E - x) \cap \Lambda) - \varrho \mu(E)| > c \mu(E^{+1})$$

Proof. Let q be as in Lemma 3.7. By Theorem 2.1 there is E such that

$$|\#(E \cap \Lambda) - \varrho \mu(E)| > (c + q \ell^d) \mu(E^{+1}).$$

By Lemma 3.6 we have that $|\#((E \cap \Lambda) - \#((E - x) \cap \Lambda)| \leq q \ell^d \mu(E^{+1})$. Replacing $\#((E \cap \Lambda)$ by $\#((E - x) \cap \Lambda)$ in (3) changes the left hand side by less than $q \ell^d \mu(E^{+1})$. This yields the claim. □

Lemma 3.8. Let Λ be a Delone set in \mathbb{R}^d with $\text{dens}(\Lambda) = \varrho$. Let $(E_i)_i$ be a sequence of bounded measurable subsets of \mathbb{R}^d that violate the condition in Theorem 2.1. That is, let the sequence $(c_i)_i$ be such that $\lim_{i \to \infty} c_i = \infty$, and for each i

$$|\#(E_i \cap \Lambda) - \varrho \mu(E_i)| > c_i \mu(E^{+1}).$$

Then $(E_i)_i$ is a van Hove sequence.

Proof. Inequality (1) is equivalent to

$$\frac{1}{c_i} \left| \frac{\#(E_i \cap \Lambda)}{\mu(E_i)} - \varrho \right| > \frac{\mu(E^{+1})}{\mu(E_i)}.$$

Using Lemma 3.4 we get

$$\frac{\eta}{R^d} - \frac{\mu(E_i^{+R})}{\mu(E_i)} \leq \frac{\#(E_i \cap \Lambda)}{\mu(E_i)} \leq \frac{\eta'}{R^d} + \frac{\mu(E_i^{+R})}{\mu(E_i)}.$$

From Lemma 3.5 we get upper bounds for $\mu(E_i^{+R})$ and $\mu(E_i^{+R})$ in terms of $\mu(E_i^{+1})$ (there is the trivial bound $\mu(E_i^{+1})$ if $r \leq 1$ or $R \leq 1$). Combining these estimates we get the following inequality for some positive constants α and β

$$\left| \frac{\#(E_i \cap \Lambda)}{\mu(E_i)} - \varrho \right| \leq \alpha + \beta \frac{\mu(E^{+1})}{\mu(E_i)}.$$

Once we plug this in inequality (5), we get

$$\frac{1}{c_i} \left(\alpha + \beta \frac{\mu(E^{+1})}{\mu(E_i)} \right) > \frac{\mu(E^{+1})}{\mu(E_i)}.$$
Let \(\Lambda \) be a Delone set in \(\mathbb{R}^d \) with \(\partial E \). Proposition 3.9.

Proof. Assume the contrary; that is, suppose there is \(\varepsilon > 0 \) such that \(\lim_{i \to \infty} \mu(E_i^{+\varepsilon})/\mu(E_i) = 0 \). If \(\varepsilon > 1 \), then we use the estimate from Lemma 3.5 to get
\[
\lim_{i \to \infty} \mu(E_i^{+\varepsilon})/\mu(E_i) \leq \lim_{i \to \infty} \varepsilon^d \mu(E_i^{+1})/\mu(E_i) = 0.
\]

Thus, if \(\varepsilon \leq 1 \), then we have that the \(\mu(E_i^{+\varepsilon})/\mu(E_i) \) is zero or has the opposite sign as the discrepancy of \(E_i^{+\varepsilon} \) for any prescribed \(\varepsilon > 0 \), but in all cases the discrepancy of \(E_i^{+\varepsilon} \) is defined by requiring another property in addition to \(\text{H} \): namely, that the \(E_i \) exhaust the entire space. For instance, the sequence \((B_i(x_i))_i \), with \(x_i = (i,0,\ldots,0)^T \), fulfills \(\text{H} \), but the (closure of the) union of the balls is only the half-space \(\mathbb{R}^{d-1} \times \mathbb{R}^d \). The next result ensures that we do not need this further requirement in our context.

Proposition 3.9. Let \((E_i)_i \) be a van Hove sequence. Then for each \(R > 0 \) there are \(i \geq 0, t_i \in \mathbb{R}^d \) such that \(E_i \) contains a ball \(B_R(t_i) \).

Proof. Assume the contrary; that is, suppose there is \(R > 0 \) such that for all \(t \in \mathbb{R}^d, i \geq 0 \) holds: \(B_R(t_i) \not\subseteq E_i \). This implies that for all \(t, i \) we have that the distance between \(t \) and \(\partial E_i \) is not greater than \(R \). Consequently, for all \(i \) we have \(E_i \setminus (E_i)^{+R} = \emptyset \). Since \(E_i \neq \emptyset \) this implies that for all \(i > 0 \) holds \(\mu(E_i) < \mu((E_i)^{+R}) \), contradicting the van Hove property \(\text{H} \).

Now we can state the proof of our main result.

Proof of Theorem 1.1. Let \(\Lambda \) be a Delone set in \(\mathbb{R}^d \) with \(\text{dens}(\Lambda) = \rho \) such that \(\Lambda \) is not bde to any lattice in \(\mathbb{R}^d \). We choose an infinite word \(u = u_1u_2\cdots \) over the alphabet \(\{D,N\} \), and \((c_i)_i \) such that \(\lim_{i \to \infty} c_i = \infty \).

For \(c > 0 \), we call a bounded measurable set \(E \) \textit{c-deviant} if
\[
\lim_{i \to \infty} |\#(E \cap \Lambda) - \rho\mu(E)| > c\mu(E^{+1}),
\]
otherwise we call \(E \) \textit{c-normal}.

Let \(\ell_1 \) be arbitrary. By Theorem 2.1 there is a compact set \(D_1 \) that is \(c_1 \)-deviant. By Lemma 3.2 there is set \(N'_1 := D'_1 - y_1 \) such that the discrepancy \(\#(N'_1 \cap \Lambda) - \rho\mu(N'_1) \) of \(N'_1 \) is zero or has the opposite sign as the discrepancy of \(D'_1 \). \((N'_1) \) may or may not be \(c \)-normal for any prescribed \(c \), but in all cases the discrepancy of \(N'_1 \) differs greatly from that of \(D'_1 \), which is what we actually need.) Pick a point \(x_1 \in D'_1 \). If the first letter \(u_1 \) of \(u \) is \(D \) then let \(P_1 := D_1 = D'_1 - x_1 \), viewed as a subset of \(\Lambda - x_1 \). Otherwise let \(P_1 := N'_1 + y_1 - x_1 \), viewed as a subset of \(\Lambda + y_1 - x_1 \). The shape of support of \(P_1 \) is the same in both cases, but the underlying patch of the Delone set is different.
Choose ℓ_2 such that $\ell_2 > 2 \max \{ R_{\text{rep}}(D'_i \cap \Lambda), R_{\text{rep}}(N'_i \cap \Lambda) \}$, where $R_{\text{rep}}(P)$ denotes the repetitivity radius of the patch P (compare Section 1). By Lemma 3.7 there is D'_2 such that $D'_2 - x$ is c_2-deviant for all x with $\|x\| \leq \ell_2$. By Lemma 3.2 there is y such that $N'_2 = D'_2 - y$ has the opposite discrepancy as D'_2 (or this discrepancy is 0). Let $B_s(t_1)$ be the largest ball contained in D'_2.

By repetitivity, both $D'_2 \cap \Lambda$ and $N'_2 \cap \Lambda$ contain translates of both $D'_i \cap \Lambda$ and $N'_i \cap \Lambda$ within distance $\frac{\ell_2}{2}$ of the center t_1 of $B_s(t_1)$, say with the points $x_1 \in D'_i$ and $y_1 \in N'_i$ corresponding to x_{D2} and x_{N2} in D'_2. If $u_1 = D$ we take $x_2 = x_{D2}$ and if $u_1 = N$ we take $x_2 = x_{N2}$. Either way, define $D_2 = D'_2 - x_2$, viewed as a pattern in $\Lambda - x_2$. That is, D_2 is a translate (of both support and Delone set) of D'_2 with a copy of P_1 close to the center. We similarly create N'_2 as a translate of N'_2 that likewise extends P_1. Finally, we pick P_2 to be either D_2 or N_2, depending on whether u_2 is D or N.

The supports of the two possible choices of P_2 are not identical, since the relative positions of copies of P_1 in D'_2 and N'_2 are not the same. However, their supports differ by translation by less than ℓ_2. A translate of D_2 that has the same support as N_2 still has a discrepancy greater in magnitude than $c_2 \mu(D_2^{+1})$, while the discrepancy of N_2 has a discrepancy of the opposite sign.

Now iterate: let ℓ_{i+1} be such that $\ell_{i+1} > 2 \max \{ r_{\text{rep}}(D'_i \cap \Lambda), r_{\text{rep}}(N'_i \cap \Lambda) \}$ and continue as above, finding regions D'_{i+1} and N'_{i+1} in Λ such that D'_{i+1} and all its translations by at most ℓ_{i+1} are c_{i+1}-deviant, N'_{i+1} has a discrepancy of the opposite sign as D'_{i+1}, and such that both D'_{i+1} and N'_{i+1} contain copies of D'_i and N'_i within a distance $\ell_{i+1}/2$ of the center of a large sphere. We then defined translates D_{i+1} and N_{i+1} of D'_{i+1} and N'_{i+1}, viewed as regions in translates of Λ, such that these pattern extend P_i. Finally we pick P_{i+1} to be D_{i+1} or N_{i+1} depending on the $(i + 1)$st letter of u.

For any word $u \in \{ D, N \}^N$, this procedure gives a nested sequence of patches $(P_i)_i$ (i.e. $P_i \subset P_{i+1}$). By Lemma 3.8 the supports of the patches P_i are a van Hove sequence. By Proposition 3.9 these van Hove sequences contain arbitrary large balls. Since we have chosen the balls $B_s(t_i)$ in each step to be the largest possible, their diameters s tend to infinity. The union of the patches P_i is then a Delone set $\Lambda_u \in \mathcal{X}_\Lambda$. If $u, u' \in \{ D, N \}^N$ differ in infinitely many letters, then we look at the points of disagreement and compare Λ_i in one Delone set to a translate by less than ℓ_i of D_i in the other. Applying Theorem 2.2 we see that $\Lambda_u \not\sim^b \Lambda_{u'}$ because the translate by at most ℓ_i of D_i is still c_i-deviant. There are 2^{\aleph_0} elements of $\{ D, N \}^N$ and only countably many elements of each bde class, so there are 2^{\aleph_0} distinct bde classes among the $\{ \Lambda_u \}$ and there are at least 2^{\aleph_0} bde classes in \mathcal{X}_Λ.

However, Delone sets that differ only by a translation are bde and \mathcal{X}_Λ consists of only 2^{\aleph_0} translational orbits, so \mathcal{X}_Λ can have at most 2^{\aleph_0} bde classes. Thus the cardinality of the bde classes in \mathcal{X}_Λ is exactly 2^{\aleph_0}. \qed
Acknowledgements

It is a pleasure to thank Philipp Gohlke and Yasushi Nagai for providing the proof of Proposition 3.9 (actually, two proofs).

References

[23] Y. Solomon: Continuously many bounded displacement non-equivalences in substitution tiling spaces,
\texttt{arXiv:2004.07387}

\textbf{Technische Fakultät, Bielefeld University}

\textit{Email address:} dirk.frettloeh@math.uni-bielefeld.de

\textbf{School of Mathematical & Statistical Sciences, The University of Texas Rio Grande Valley, 1 West University Blvd., Brownsville, TX 78520, USA.}

\textit{Email address:} alexey.garber@utrgv.edu

\textbf{Department of Mathematics, University of Texas, 2515 Speedway, PMA 8.100 Austin, TX 78712, USA}

\textit{Email address:} sadun@math.utexas.edu